Ardupilot2/ArduPlane/system.cpp
Andy Piper 9077d41df1 Plane: add support for tracking fft peaks and individual motor rpms with harmonic notches
log harmonic notch even if FFT is disabled. Fallback to throttle notch for BLHeli
move harmonic notch update to AP_Vehicle
2020-06-21 19:09:35 +10:00

516 lines
16 KiB
C++

#include "Plane.h"
/*****************************************************************************
* The init_ardupilot function processes everything we need for an in - air restart
* We will determine later if we are actually on the ground and process a
* ground start in that case.
*
*****************************************************************************/
static void failsafe_check_static()
{
plane.failsafe_check();
}
void Plane::init_ardupilot()
{
#if STATS_ENABLED == ENABLED
// initialise stats module
g2.stats.init();
#endif
#if HIL_SUPPORT
if (g.hil_mode == 1) {
// set sensors to HIL mode
ins.set_hil_mode();
compass.set_hil_mode();
barometer.set_hil_mode();
}
#endif
ins.set_log_raw_bit(MASK_LOG_IMU_RAW);
// setup any board specific drivers
BoardConfig.init();
#if HAL_WITH_UAVCAN
BoardConfig_CAN.init();
#endif
// initialise rc channels including setting mode
rc().init();
relay.init();
// initialise notify system
notify.init();
notify_mode(*control_mode);
init_rc_out_main();
// keep a record of how many resets have happened. This can be
// used to detect in-flight resets
g.num_resets.set_and_save(g.num_resets+1);
// init baro
barometer.init();
// initialise rangefinder
rangefinder.set_log_rfnd_bit(MASK_LOG_SONAR);
rangefinder.init(ROTATION_PITCH_270);
// initialise battery monitoring
battery.init();
rssi.init();
rpm_sensor.init();
// setup telem slots with serial ports
gcs().setup_uarts();
#if OSD_ENABLED == ENABLED
osd.init();
#endif
#if LOGGING_ENABLED == ENABLED
log_init();
#endif
// initialise airspeed sensor
airspeed.init();
AP::compass().set_log_bit(MASK_LOG_COMPASS);
AP::compass().init();
#if OPTFLOW == ENABLED
// make optflow available to libraries
if (optflow.enabled()) {
ahrs.set_optflow(&optflow);
}
#endif
// init EFI monitoring
#if EFI_ENABLED
g2.efi.init();
#endif
// give AHRS the airspeed sensor
ahrs.set_airspeed(&airspeed);
// GPS Initialization
gps.set_log_gps_bit(MASK_LOG_GPS);
gps.init(serial_manager);
init_rc_in(); // sets up rc channels from radio
#if MOUNT == ENABLED
// initialise camera mount
camera_mount.init();
#endif
#if LANDING_GEAR_ENABLED == ENABLED
// initialise landing gear position
g2.landing_gear.init();
#endif
#if FENCE_TRIGGERED_PIN > 0
hal.gpio->pinMode(FENCE_TRIGGERED_PIN, HAL_GPIO_OUTPUT);
hal.gpio->write(FENCE_TRIGGERED_PIN, 0);
#endif
/*
* setup the 'main loop is dead' check. Note that this relies on
* the RC library being initialised.
*/
hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000);
quadplane.setup();
AP_Param::reload_defaults_file(true);
startup_ground();
// don't initialise aux rc output until after quadplane is setup as
// that can change initial values of channels
init_rc_out_aux();
// choose the nav controller
set_nav_controller();
set_mode_by_number((enum Mode::Number)g.initial_mode.get(), ModeReason::UNKNOWN);
// set the correct flight mode
// ---------------------------
reset_control_switch();
// initialise sensor
#if OPTFLOW == ENABLED
if (optflow.enabled()) {
optflow.init(-1);
}
#endif
// init cargo gripper
#if GRIPPER_ENABLED == ENABLED
g2.gripper.init();
#endif
// disable safety if requested
BoardConfig.init_safety();
}
//********************************************************************************
//This function does all the calibrations, etc. that we need during a ground start
//********************************************************************************
void Plane::startup_ground(void)
{
set_mode(mode_initializing, ModeReason::UNKNOWN);
#if (GROUND_START_DELAY > 0)
gcs().send_text(MAV_SEVERITY_NOTICE,"Ground start with delay");
delay(GROUND_START_DELAY * 1000);
#else
gcs().send_text(MAV_SEVERITY_INFO,"Ground start");
#endif
//INS ground start
//------------------------
//
startup_INS_ground();
// Save the settings for in-air restart
// ------------------------------------
//save_EEPROM_groundstart();
// initialise mission library
mission.init();
// initialise AP_Logger library
#if LOGGING_ENABLED == ENABLED
logger.setVehicle_Startup_Writer(
FUNCTOR_BIND(&plane, &Plane::Log_Write_Vehicle_Startup_Messages, void)
);
#endif
#ifdef ENABLE_SCRIPTING
g2.scripting.init();
#endif // ENABLE_SCRIPTING
// reset last heartbeat time, so we don't trigger failsafe on slow
// startup
failsafe.last_heartbeat_ms = millis();
// we don't want writes to the serial port to cause us to pause
// mid-flight, so set the serial ports non-blocking once we are
// ready to fly
serial_manager.set_blocking_writes_all(false);
gcs().send_text(MAV_SEVERITY_INFO,"Ground start complete");
}
bool Plane::set_mode(Mode &new_mode, const ModeReason reason)
{
if (control_mode == &new_mode) {
// don't switch modes if we are already in the correct mode.
return true;
}
#if !QAUTOTUNE_ENABLED
if (&new_mode == &plane.mode_qautotune) {
gcs().send_text(MAV_SEVERITY_INFO,"QAUTOTUNE disabled");
set_mode(plane.mode_qhover, ModeReason::UNAVAILABLE);
return false;
}
#endif
// backup current control_mode and previous_mode
Mode &old_previous_mode = *previous_mode;
Mode &old_mode = *control_mode;
const ModeReason previous_mode_reason_backup = previous_mode_reason;
// update control_mode assuming success
// TODO: move these to be after enter() once start_command_callback() no longer checks control_mode
previous_mode = control_mode;
control_mode = &new_mode;
previous_mode_reason = control_mode_reason;
control_mode_reason = reason;
// attempt to enter new mode
if (!new_mode.enter()) {
// Log error that we failed to enter desired flight mode
gcs().send_text(MAV_SEVERITY_WARNING, "Flight mode change failed");
// we failed entering new mode, roll back to old
previous_mode = &old_previous_mode;
control_mode = &old_mode;
control_mode_reason = previous_mode_reason;
previous_mode_reason = previous_mode_reason_backup;
// currently, only Q modes can fail enter(). This will likely change in the future and all modes
// should be changed to check dependencies and fail early before depending on changes in Mode::set_mode()
if (control_mode->is_vtol_mode()) {
// ignore result because if we fail we risk looping at the qautotune check above
control_mode->enter();
}
return false;
}
if (previous_mode == &mode_autotune) {
// restore last gains
autotune_restore();
}
// exit previous mode
old_mode.exit();
// record reasons
previous_mode_reason = control_mode_reason;
control_mode_reason = reason;
// log and notify mode change
logger.Write_Mode(control_mode->mode_number(), control_mode_reason);
notify_mode(*control_mode);
gcs().send_message(MSG_HEARTBEAT);
return true;
}
bool Plane::set_mode(const uint8_t new_mode, const ModeReason reason)
{
static_assert(sizeof(Mode::Number) == sizeof(new_mode), "The new mode can't be mapped to the vehicles mode number");
Mode *mode = plane.mode_from_mode_num(static_cast<Mode::Number>(new_mode));
if (mode == nullptr) {
gcs().send_text(MAV_SEVERITY_INFO, "Error: invalid mode number: %u", (unsigned)new_mode);
return false;
}
return set_mode(*mode, reason);
}
bool Plane::set_mode_by_number(const Mode::Number new_mode_number, const ModeReason reason)
{
Mode *new_mode = plane.mode_from_mode_num(new_mode_number);
if (new_mode == nullptr) {
gcs().send_text(MAV_SEVERITY_INFO, "Error: invalid mode number: %d", new_mode_number);
return false;
}
return set_mode(*new_mode, reason);
}
void Plane::check_long_failsafe()
{
uint32_t tnow = millis();
// only act on changes
// -------------------
if (failsafe.state != FAILSAFE_LONG && failsafe.state != FAILSAFE_GCS && flight_stage != AP_Vehicle::FixedWing::FLIGHT_LAND) {
uint32_t radio_timeout_ms = failsafe.last_valid_rc_ms;
if (failsafe.state == FAILSAFE_SHORT) {
// time is relative to when short failsafe enabled
radio_timeout_ms = failsafe.short_timer_ms;
}
if (failsafe.rc_failsafe &&
(tnow - radio_timeout_ms) > g.fs_timeout_long*1000) {
failsafe_long_on_event(FAILSAFE_LONG, ModeReason::RADIO_FAILSAFE);
} else if (g.gcs_heartbeat_fs_enabled == GCS_FAILSAFE_HB_AUTO && control_mode == &mode_auto &&
failsafe.last_heartbeat_ms != 0 &&
(tnow - failsafe.last_heartbeat_ms) > g.fs_timeout_long*1000) {
failsafe_long_on_event(FAILSAFE_GCS, ModeReason::GCS_FAILSAFE);
} else if ((g.gcs_heartbeat_fs_enabled == GCS_FAILSAFE_HEARTBEAT ||
g.gcs_heartbeat_fs_enabled == GCS_FAILSAFE_HB_RSSI) &&
failsafe.last_heartbeat_ms != 0 &&
(tnow - failsafe.last_heartbeat_ms) > g.fs_timeout_long*1000) {
failsafe_long_on_event(FAILSAFE_GCS, ModeReason::GCS_FAILSAFE);
} else if (g.gcs_heartbeat_fs_enabled == GCS_FAILSAFE_HB_RSSI &&
gcs().chan(0) != nullptr &&
gcs().chan(0)->last_radio_status_remrssi_ms() != 0 &&
(tnow - gcs().chan(0)->last_radio_status_remrssi_ms()) > g.fs_timeout_long*1000) {
failsafe_long_on_event(FAILSAFE_GCS, ModeReason::GCS_FAILSAFE);
}
} else {
uint32_t timeout_seconds = g.fs_timeout_long;
if (g.fs_action_short != FS_ACTION_SHORT_DISABLED) {
// avoid dropping back into short timeout
timeout_seconds = g.fs_timeout_short;
}
// We do not change state but allow for user to change mode
if (failsafe.state == FAILSAFE_GCS &&
(tnow - failsafe.last_heartbeat_ms) < timeout_seconds*1000) {
failsafe_long_off_event(ModeReason::GCS_FAILSAFE);
} else if (failsafe.state == FAILSAFE_LONG &&
!failsafe.rc_failsafe) {
failsafe_long_off_event(ModeReason::RADIO_FAILSAFE);
}
}
}
void Plane::check_short_failsafe()
{
// only act on changes
// -------------------
if (g.fs_action_short != FS_ACTION_SHORT_DISABLED &&
failsafe.state == FAILSAFE_NONE &&
flight_stage != AP_Vehicle::FixedWing::FLIGHT_LAND) {
// The condition is checked and the flag rc_failsafe is set in radio.cpp
if(failsafe.rc_failsafe) {
failsafe_short_on_event(FAILSAFE_SHORT, ModeReason::RADIO_FAILSAFE);
}
}
if(failsafe.state == FAILSAFE_SHORT) {
if(!failsafe.rc_failsafe || g.fs_action_short == FS_ACTION_SHORT_DISABLED) {
failsafe_short_off_event(ModeReason::RADIO_FAILSAFE);
}
}
}
void Plane::startup_INS_ground(void)
{
#if HIL_SUPPORT
if (g.hil_mode == 1) {
while (barometer.get_last_update() == 0) {
// the barometer begins updating when we get the first
// HIL_STATE message
gcs().send_text(MAV_SEVERITY_WARNING, "Waiting for first HIL_STATE message");
hal.scheduler->delay(1000);
}
}
#endif
if (ins.gyro_calibration_timing() != AP_InertialSensor::GYRO_CAL_NEVER) {
gcs().send_text(MAV_SEVERITY_ALERT, "Beginning INS calibration. Do not move plane");
} else {
gcs().send_text(MAV_SEVERITY_ALERT, "Skipping INS calibration");
}
ahrs.init();
ahrs.set_fly_forward(true);
ahrs.set_vehicle_class(AHRS_VEHICLE_FIXED_WING);
ahrs.set_wind_estimation(true);
ins.init(scheduler.get_loop_rate_hz());
ahrs.reset();
// read Baro pressure at ground
//-----------------------------
barometer.set_log_baro_bit(MASK_LOG_IMU);
barometer.calibrate();
if (airspeed.enabled()) {
// initialize airspeed sensor
// --------------------------
airspeed.calibrate(true);
} else {
gcs().send_text(MAV_SEVERITY_WARNING,"No airspeed");
}
}
// sets notify object flight mode information
void Plane::notify_mode(const Mode& mode)
{
notify.flags.flight_mode = mode.mode_number();
notify.set_flight_mode_str(mode.name4());
}
/*
should we log a message type now?
*/
bool Plane::should_log(uint32_t mask)
{
#if LOGGING_ENABLED == ENABLED
return logger.should_log(mask);
#else
return false;
#endif
}
/*
return throttle percentage from 0 to 100 for normal use and -100 to 100 when using reverse thrust
*/
int8_t Plane::throttle_percentage(void)
{
if (quadplane.in_vtol_mode()) {
return quadplane.throttle_percentage();
}
float throttle = SRV_Channels::get_output_scaled(SRV_Channel::k_throttle);
if (!have_reverse_thrust()) {
return constrain_int16(throttle, 0, 100);
}
return constrain_int16(throttle, -100, 100);
}
// update the harmonic notch filter center frequency dynamically
void Plane::update_dynamic_notch()
{
if (!ins.gyro_harmonic_notch_enabled()) {
return;
}
const float ref_freq = ins.get_gyro_harmonic_notch_center_freq_hz();
const float ref = ins.get_gyro_harmonic_notch_reference();
if (is_zero(ref)) {
ins.update_harmonic_notch_freq_hz(ref_freq);
return;
}
switch (ins.get_gyro_harmonic_notch_tracking_mode()) {
case HarmonicNotchDynamicMode::UpdateThrottle: // throttle based tracking
// set the harmonic notch filter frequency approximately scaled on motor rpm implied by throttle
if (quadplane.available()) {
ins.update_harmonic_notch_freq_hz(ref_freq * MAX(1.0f, sqrtf(quadplane.motors->get_throttle_out() / ref)));
}
break;
case HarmonicNotchDynamicMode::UpdateRPM: // rpm sensor based tracking
float rpm;
if (rpm_sensor.get_rpm(0, rpm)) {
// set the harmonic notch filter frequency from the main rotor rpm
ins.update_harmonic_notch_freq_hz(MAX(ref_freq, rpm * ref / 60.0f));
} else {
ins.update_harmonic_notch_freq_hz(ref_freq);
}
break;
#ifdef HAVE_AP_BLHELI_SUPPORT
case HarmonicNotchDynamicMode::UpdateBLHeli: // BLHeli based tracking
// set the harmonic notch filter frequency scaled on measured frequency
if (ins.has_harmonic_option(HarmonicNotchFilterParams::Options::DynamicHarmonic)) {
float notches[INS_MAX_NOTCHES];
const uint8_t num_notches = AP_BLHeli::get_singleton()->get_motor_frequencies_hz(INS_MAX_NOTCHES, notches);
for (uint8_t i = 0; i < num_notches; i++) {
notches[i] = MAX(ref_freq, notches[i]);
}
if (num_notches > 0) {
ins.update_harmonic_notch_frequencies_hz(num_notches, notches);
} else if (quadplane.available()) { // throttle fallback
ins.update_harmonic_notch_freq_hz(ref_freq * MAX(1.0f, sqrtf(quadplane.motors->get_throttle_out() / ref)));
} else {
ins.update_harmonic_notch_freq_hz(ref_freq);
}
} else {
ins.update_harmonic_notch_freq_hz(MAX(ref_freq, AP_BLHeli::get_singleton()->get_average_motor_frequency_hz() * ref));
}
break;
#endif
#if HAL_GYROFFT_ENABLED
case HarmonicNotchDynamicMode::UpdateGyroFFT: // FFT based tracking
// set the harmonic notch filter frequency scaled on measured frequency
if (ins.has_harmonic_option(HarmonicNotchFilterParams::Options::DynamicHarmonic)) {
float notches[INS_MAX_NOTCHES];
const uint8_t peaks = gyro_fft.get_weighted_noise_center_frequencies_hz(INS_MAX_NOTCHES, notches);
ins.update_harmonic_notch_frequencies_hz(peaks, notches);
} else {
ins.update_harmonic_notch_freq_hz(gyro_fft.get_weighted_noise_center_freq_hz());
}
break;
#endif
case HarmonicNotchDynamicMode::Fixed: // static
default:
ins.update_harmonic_notch_freq_hz(ref_freq);
break;
}
}