b924e6dca5
triple show is a demo of how to combine schedules
2312 lines
83 KiB
Lua
2312 lines
83 KiB
Lua
--[[
|
|
trajectory tracking aerobatic control
|
|
See README.md for usage
|
|
Written by Matthew Hampsey, Andy Palmer and Andrew Tridgell, with controller
|
|
assistance from Paul Riseborough, testing by Henry Wurzburg
|
|
]]--
|
|
|
|
-- setup param block for aerobatics, reserving 30 params beginning with AERO_
|
|
local PARAM_TABLE_KEY = 70
|
|
local PARAM_TABLE_PREFIX = 'AEROM_'
|
|
assert(param:add_table(PARAM_TABLE_KEY, "AEROM_", 30), 'could not add param table')
|
|
|
|
-- add a parameter and bind it to a variable
|
|
function bind_add_param(name, idx, default_value)
|
|
assert(param:add_param(PARAM_TABLE_KEY, idx, name, default_value), string.format('could not add param %s', name))
|
|
return Parameter(PARAM_TABLE_PREFIX .. name)
|
|
end
|
|
|
|
AEROM_ANG_ACCEL = bind_add_param('ANG_ACCEL', 1, 3000)
|
|
HGT_I = bind_add_param('HGT_I', 2, 2)
|
|
AEROM_KE_ANG = bind_add_param('KE_ANG', 3, 15)
|
|
THR_PIT_FF = bind_add_param('THR_PIT_FF', 4, 80)
|
|
SPD_P = bind_add_param('SPD_P', 5, 5)
|
|
SPD_I = bind_add_param('SPD_I', 6, 25)
|
|
ERR_CORR_TC = bind_add_param('ERR_COR_TC', 7, 3)
|
|
ROLL_CORR_TC = bind_add_param('ROL_COR_TC', 8, 0.25)
|
|
AUTO_MIS = bind_add_param('AUTO_MIS', 9, 0)
|
|
AUTO_RAD = bind_add_param('AUTO_RAD', 10, 40)
|
|
TIME_CORR_P = bind_add_param('TIME_COR_P', 11, 1.0)
|
|
ERR_CORR_P = bind_add_param('ERR_COR_P', 12, 2.0)
|
|
ERR_CORR_D = bind_add_param('ERR_COR_D', 13, 2.8)
|
|
AEROM_ENTRY_RATE = bind_add_param('ENTRY_RATE', 14, 60)
|
|
AEROM_THR_LKAHD = bind_add_param('THR_LKAHD', 15, 1)
|
|
AEROM_DEBUG = bind_add_param('DEBUG', 16, 0)
|
|
|
|
-- cope with old param values
|
|
if AEROM_ANG_ACCEL:get() < 100 then
|
|
AEROM_ANG_ACCEL:set_and_save(3000)
|
|
end
|
|
|
|
ACRO_ROLL_RATE = Parameter("ACRO_ROLL_RATE")
|
|
ARSPD_FBW_MIN = Parameter("ARSPD_FBW_MIN")
|
|
SCALING_SPEED = Parameter("SCALING_SPEED")
|
|
|
|
--[[
|
|
Aerobatic tricks on a switch support - allows for tricks to be initiated outside AUTO mode
|
|
--]]
|
|
-- 2nd param table for tricks on a switch
|
|
local PARAM_TABLE_KEY2 = 71
|
|
local PARAM_TABLE_PREFIX2 = "TRIK"
|
|
assert(param:add_table(PARAM_TABLE_KEY2, PARAM_TABLE_PREFIX2, 63), 'could not add param table2')
|
|
|
|
-- add a parameter and bind it to a variable in table2
|
|
function bind_add_param2(name, idx, default_value)
|
|
assert(param:add_param(PARAM_TABLE_KEY2, idx, name, default_value), string.format('could not add param %s', name))
|
|
return Parameter(PARAM_TABLE_PREFIX2 .. name)
|
|
end
|
|
|
|
local TRIK_ENABLE = bind_add_param2("_ENABLE", 1, 0)
|
|
local TRICKS = nil
|
|
local TRIK_SEL_FN = nil
|
|
local TRIK_ACT_FN = nil
|
|
local TRIK_COUNT = nil
|
|
|
|
local function TrickDef(id, arg1, arg2, arg3, arg4)
|
|
local self = {}
|
|
self.id = id
|
|
self.args = {arg1, arg2, arg3, arg4}
|
|
return self
|
|
end
|
|
|
|
-- constrain a value between limits
|
|
function constrain(v, vmin, vmax)
|
|
if v < vmin then
|
|
v = vmin
|
|
end
|
|
if v > vmax then
|
|
v = vmax
|
|
end
|
|
return v
|
|
end
|
|
|
|
if TRIK_ENABLE:get() > 0 then
|
|
TRIK_SEL_FN = bind_add_param2("_SEL_FN", 2, 301)
|
|
TRIK_ACT_FN = bind_add_param2("_ACT_FN", 3, 300)
|
|
TRIK_COUNT = bind_add_param2("_COUNT", 4, 3)
|
|
TRICKS = {}
|
|
|
|
-- setup parameters for tricks
|
|
local count = math.floor(constrain(TRIK_COUNT:get(),1,11))
|
|
for i = 1, count do
|
|
local k = 5*i
|
|
local prefix = string.format("%u", i)
|
|
TRICKS[i] = TrickDef(bind_add_param2(prefix .. "_ID", k+0, i),
|
|
bind_add_param2(prefix .. "_ARG1", k+1, 30),
|
|
bind_add_param2(prefix .. "_ARG2", k+2, 0),
|
|
bind_add_param2(prefix .. "_ARG3", k+3, 0),
|
|
bind_add_param2(prefix .. "_ARG4", k+4, 0))
|
|
end
|
|
gcs:send_text(0, string.format("Enabled %u aerobatic tricks", TRIK_COUNT:get()))
|
|
end
|
|
|
|
local NAV_TAKEOFF = 22
|
|
local NAV_WAYPOINT = 16
|
|
local NAV_SCRIPT_TIME = 42702
|
|
|
|
local MODE_AUTO = 10
|
|
|
|
local LOOP_RATE = 50
|
|
local DO_JUMP = 177
|
|
local k_throttle = 70
|
|
local NAME_FLOAT_RATE = 2
|
|
|
|
local TRIM_ARSPD_CM = Parameter("TRIM_ARSPD_CM")
|
|
|
|
local last_id = 0
|
|
local current_task = nil
|
|
local last_named_float_t = 0
|
|
|
|
local path_var = {}
|
|
|
|
function wrap_360(angle)
|
|
local res = math.fmod(angle, 360.0)
|
|
if res < 0 then
|
|
res = res + 360.0
|
|
end
|
|
return res
|
|
end
|
|
|
|
function wrap_180(angle)
|
|
local res = wrap_360(angle)
|
|
if res > 180 then
|
|
res = res - 360
|
|
end
|
|
return res
|
|
end
|
|
|
|
function wrap_pi(angle)
|
|
local angle_deg = math.deg(angle)
|
|
local angle_wrapped = wrap_180(angle_deg)
|
|
return math.rad(angle_wrapped)
|
|
end
|
|
|
|
function wrap_2pi(angle)
|
|
local angle_deg = math.deg(angle)
|
|
local angle_wrapped = wrap_360(angle_deg)
|
|
return math.rad(angle_wrapped)
|
|
end
|
|
|
|
-- a PI controller implemented as a Lua object
|
|
local function PI_controller(kP,kI,iMax)
|
|
-- the new instance. You can put public variables inside this self
|
|
-- declaration if you want to
|
|
local self = {}
|
|
|
|
-- private fields as locals
|
|
local _kP = kP or 0.0
|
|
local _kI = kI or 0.0
|
|
local _kD = kD or 0.0
|
|
local _iMax = iMax
|
|
local _last_t = nil
|
|
local _I = 0
|
|
local _P = 0
|
|
local _total = 0
|
|
local _counter = 0
|
|
local _target = 0
|
|
local _current = 0
|
|
|
|
-- update the controller.
|
|
function self.update(target, current)
|
|
local now = millis():tofloat() * 0.001
|
|
if not _last_t then
|
|
_last_t = now
|
|
end
|
|
local dt = now - _last_t
|
|
_last_t = now
|
|
local err = target - current
|
|
_counter = _counter + 1
|
|
|
|
local P = _kP * err
|
|
_I = _I + _kI * err * dt
|
|
if _iMax then
|
|
_I = constrain(_I, -_iMax, iMax)
|
|
end
|
|
local I = _I
|
|
local ret = P + I
|
|
|
|
_target = target
|
|
_current = current
|
|
_P = P
|
|
_total = ret
|
|
return ret
|
|
end
|
|
|
|
-- reset integrator to an initial value
|
|
function self.reset(integrator)
|
|
_I = integrator
|
|
end
|
|
|
|
function self.set_I(I)
|
|
_kI = I
|
|
end
|
|
|
|
function self.set_P(P)
|
|
_kP = P
|
|
end
|
|
|
|
function self.set_Imax(Imax)
|
|
_iMax = Imax
|
|
end
|
|
|
|
-- log the controller internals
|
|
function self.log(name, add_total)
|
|
-- allow for an external addition to total
|
|
logger.write(name,'Targ,Curr,P,I,Total,Add','ffffff',_target,_current,_P,_I,_total,add_total)
|
|
end
|
|
-- return the instance
|
|
return self
|
|
end
|
|
|
|
local function speed_controller(kP_param,kI_param, kFF_pitch_param, Imax)
|
|
local self = {}
|
|
local kFF_pitch = kFF_pitch_param
|
|
local PI = PI_controller(kP_param:get(), kI_param:get(), Imax)
|
|
|
|
function self.update(target, anticipated_pitch_rad)
|
|
local current_speed = ahrs:get_velocity_NED():length()
|
|
local throttle = PI.update(target, current_speed)
|
|
local FF = math.sin(anticipated_pitch_rad)*kFF_pitch:get()
|
|
PI.log("AESP", FF)
|
|
return throttle + FF
|
|
end
|
|
|
|
function self.reset()
|
|
PI.reset(0)
|
|
local temp_throttle = self.update(ahrs:get_velocity_NED():length(), 0)
|
|
local current_throttle = SRV_Channels:get_output_scaled(k_throttle)
|
|
PI.reset(current_throttle-temp_throttle)
|
|
end
|
|
|
|
return self
|
|
end
|
|
|
|
local speed_PI = speed_controller(SPD_P, SPD_I, THR_PIT_FF, 100.0)
|
|
|
|
function sgn(x)
|
|
local eps = 0.000001
|
|
if (x > eps) then
|
|
return 1.0
|
|
elseif x < eps then
|
|
return -1.0
|
|
else
|
|
return 0.0
|
|
end
|
|
end
|
|
|
|
function get_wp_location(i)
|
|
local m = mission:get_item(i)
|
|
local loc = Location()
|
|
loc:lat(m:x())
|
|
loc:lng(m:y())
|
|
loc:relative_alt(true)
|
|
loc:terrain_alt(false)
|
|
loc:origin_alt(false)
|
|
loc:alt(math.floor(m:z()*100))
|
|
return loc
|
|
end
|
|
|
|
function resolve_jump(i)
|
|
local m = mission:get_item(i)
|
|
while m:command() == DO_JUMP do
|
|
i = math.floor(m:param1())
|
|
m = mission:get_item(i)
|
|
end
|
|
return i
|
|
end
|
|
|
|
--[[
|
|
Wrapper to construct a Vector3f{x, y, z} from (x, y, z)
|
|
--]]
|
|
function makeVector3f(x, y, z)
|
|
local vec = Vector3f()
|
|
vec:x(x)
|
|
vec:y(y)
|
|
vec:z(z)
|
|
return vec
|
|
end
|
|
|
|
|
|
|
|
--[[
|
|
trajectory building blocks. We have two types of building blocks,
|
|
roll blocks and path blocks. These are combined to give composite paths
|
|
--]]
|
|
|
|
--[[
|
|
all roll components inherit from RollComponent
|
|
--]]
|
|
function RollComponent()
|
|
local self = {}
|
|
self.name = nil
|
|
function self.get_roll(t)
|
|
return 0
|
|
end
|
|
return self
|
|
end
|
|
|
|
--[[
|
|
roll component that goes through a fixed total angle at a fixed roll rate
|
|
--]]
|
|
function roll_angle(_angle)
|
|
local self = RollComponent()
|
|
self.name = "roll_angle"
|
|
local angle = _angle
|
|
function self.get_roll(t)
|
|
return angle * t
|
|
end
|
|
return self
|
|
end
|
|
|
|
--[[
|
|
roll component that banks to _angle over AEROM_ENTRY_RATE
|
|
degrees/s, then holds that angle, then banks back to zero at
|
|
AEROM_ENTRY_RATE degrees/s
|
|
--]]
|
|
function roll_angle_entry_exit(_angle)
|
|
local self = RollComponent()
|
|
self.name = "roll_angle_entry_exit"
|
|
local angle = _angle
|
|
local entry_s = math.abs(angle) / AEROM_ENTRY_RATE:get()
|
|
|
|
function self.get_roll(t, time_s)
|
|
local entry_t = entry_s / time_s
|
|
if entry_t > 0.5 then
|
|
entry_t = 0.5
|
|
end
|
|
if t <= 0 then
|
|
return 0
|
|
end
|
|
if t < entry_t then
|
|
return angle * t / entry_t
|
|
end
|
|
if t < 1.0 - entry_t then
|
|
return angle
|
|
end
|
|
if angle == 0 or t >= 1.0 then
|
|
return 0
|
|
end
|
|
return (1.0 - ((t - (1.0 - entry_t)) / entry_t)) * angle
|
|
end
|
|
return self
|
|
end
|
|
|
|
--[[
|
|
roll component that banks to _angle over AEROM_ENTRY_RATE
|
|
degrees/s, then holds that angle
|
|
--]]
|
|
function roll_angle_entry(_angle)
|
|
local self = RollComponent()
|
|
self.name = "roll_angle_entry"
|
|
local angle = _angle
|
|
local entry_s = math.abs(angle) / AEROM_ENTRY_RATE:get()
|
|
|
|
function self.get_roll(t, time_s)
|
|
local entry_t = entry_s / time_s
|
|
if entry_t > 0.5 then
|
|
entry_t = 0.5
|
|
end
|
|
if t < entry_t then
|
|
return angle * t / entry_t
|
|
end
|
|
return angle
|
|
end
|
|
return self
|
|
end
|
|
|
|
--[[
|
|
roll component that holds angle until the end of the subpath, then
|
|
rolls back to 0 at the AEROM_ENTRY_RATE
|
|
--]]
|
|
function roll_angle_exit(_angle)
|
|
local self = {}
|
|
self.name = "roll_angle_exit"
|
|
local angle = _angle
|
|
local entry_s = math.abs(angle) / AEROM_ENTRY_RATE:get()
|
|
|
|
function self.get_roll(t, time_s)
|
|
local entry_t = entry_s / time_s
|
|
if t < 1.0 - entry_t then
|
|
return 0
|
|
end
|
|
if angle == 0 then
|
|
return 0
|
|
end
|
|
return ((t - (1.0 - entry_t)) / entry_t) * angle
|
|
end
|
|
return self
|
|
end
|
|
|
|
--[[
|
|
all path components inherit from PathComponent
|
|
--]]
|
|
function PathComponent()
|
|
local self = {}
|
|
self.name = nil
|
|
function self.get_pos(t)
|
|
return makeVector3f(0, 0, 0)
|
|
end
|
|
function self.get_length()
|
|
return 0
|
|
end
|
|
function self.get_final_orientation()
|
|
return Quaternion()
|
|
end
|
|
function self.get_roll_correction(t)
|
|
return 0
|
|
end
|
|
return self
|
|
end
|
|
|
|
--[[
|
|
path component that does a straight horizontal line
|
|
--]]
|
|
function path_straight(_distance)
|
|
local self = PathComponent()
|
|
self.name = "path_straight"
|
|
local distance = _distance
|
|
function self.get_pos(t)
|
|
return makeVector3f(distance*t, 0, 0)
|
|
end
|
|
function self.get_length()
|
|
return distance
|
|
end
|
|
return self
|
|
end
|
|
|
|
--[[
|
|
path component that does a vertical arc over a given angle
|
|
--]]
|
|
function path_vertical_arc(_radius, _angle)
|
|
local self = PathComponent()
|
|
self.name = "path_vertical_arc"
|
|
local radius = _radius
|
|
local angle = _angle
|
|
function self.get_pos(t)
|
|
local t2ang = wrap_2pi(t * math.rad(angle))
|
|
return makeVector3f(math.abs(radius)*math.sin(t2ang), 0, -radius*(1.0 - math.cos(t2ang)))
|
|
end
|
|
function self.get_length()
|
|
return math.abs(radius) * 2 * math.pi * math.abs(angle) / 360.0
|
|
end
|
|
function self.get_final_orientation()
|
|
local q = Quaternion()
|
|
q:from_axis_angle(makeVector3f(0,1,0), sgn(radius)*math.rad(wrap_180(angle)))
|
|
q:normalize()
|
|
return q
|
|
end
|
|
return self
|
|
end
|
|
|
|
--[[
|
|
integrate a function, assuming fn takes a time t from 0 to 1
|
|
--]]
|
|
function integrate_length(fn)
|
|
local total = 0.0
|
|
local p = fn(0)
|
|
for i = 1, 100 do
|
|
local t = i*0.01
|
|
local p2 = fn(t)
|
|
local dv = p2 - p
|
|
total = total + dv:length()
|
|
p = p2
|
|
end
|
|
return total
|
|
end
|
|
|
|
--[[
|
|
path component that does a horizontal arc over a given angle
|
|
--]]
|
|
function path_horizontal_arc(_radius, _angle, _height_gain)
|
|
local self = PathComponent()
|
|
self.name = "path_horizontal_arc"
|
|
local radius = _radius
|
|
local angle = _angle
|
|
local height_gain = _height_gain
|
|
if height_gain == nil then
|
|
height_gain = 0
|
|
end
|
|
function self.get_pos(t)
|
|
local t2ang = t * math.rad(angle)
|
|
return makeVector3f(math.abs(radius)*math.sin(t2ang), radius*(1.0 - math.cos(t2ang)), -height_gain*t)
|
|
end
|
|
function self.get_length()
|
|
local circumference = 2 * math.pi * math.abs(radius)
|
|
local full_circle_height_gain = height_gain * 360.0 / math.abs(angle)
|
|
local helix_length = math.sqrt(full_circle_height_gain*full_circle_height_gain + circumference*circumference)
|
|
return helix_length * math.abs(angle) / 360.0
|
|
end
|
|
function self.get_final_orientation()
|
|
local q = Quaternion()
|
|
q:from_axis_angle(makeVector3f(0,0,1), sgn(radius)*math.rad(angle))
|
|
--[[
|
|
we also need to apply the roll correction to the final orientation
|
|
--]]
|
|
local rc = self.get_roll_correction(1.0)
|
|
if rc ~= 0 then
|
|
local q2 = Quaternion()
|
|
q2:from_axis_angle(makeVector3f(1,0,0), math.rad(-rc))
|
|
q = q * q2
|
|
q:normalize()
|
|
end
|
|
return q
|
|
end
|
|
|
|
--[[
|
|
roll correction for the rotation caused by height gain
|
|
--]]
|
|
function self.get_roll_correction(t)
|
|
if height_gain == 0 then
|
|
return 0
|
|
end
|
|
local gamma=math.atan(height_gain*(angle/360)/(2*math.pi*radius))
|
|
return -t*360*math.sin(gamma)
|
|
end
|
|
return self
|
|
end
|
|
|
|
--[[
|
|
a Path has the methods of both RollComponent and
|
|
PathComponent allowing for a complete description of a subpath
|
|
--]]
|
|
function Path(_path_component, _roll_component)
|
|
local self = {}
|
|
self.name = string.format("%s|%s", _path_component.name, _roll_component.name)
|
|
local path_component = _path_component
|
|
local roll_component = _roll_component
|
|
function self.get_roll(t, time_s)
|
|
return wrap_180(roll_component.get_roll(t, time_s) + path_component.get_roll_correction(t))
|
|
end
|
|
function self.get_pos(t)
|
|
return path_component.get_pos(t)
|
|
end
|
|
function self.get_speed(t)
|
|
return nil
|
|
end
|
|
function self.get_length()
|
|
return path_component.get_length()
|
|
end
|
|
function self.get_final_orientation()
|
|
return path_component.get_final_orientation()
|
|
end
|
|
return self
|
|
end
|
|
|
|
|
|
--[[
|
|
componse multiple sub-paths together to create a full trajectory
|
|
--]]
|
|
function path_composer(_name, _subpaths)
|
|
local self = {}
|
|
self.name = _name
|
|
local subpaths = _subpaths
|
|
local lengths = {}
|
|
local proportions = {}
|
|
local start_time = {}
|
|
local end_time = {}
|
|
local start_orientation = {}
|
|
local start_pos = {}
|
|
local start_angle = {}
|
|
local end_speed = {}
|
|
local start_speed = {}
|
|
local total_length = 0
|
|
local num_sub_paths = #subpaths
|
|
local last_subpath_t = { -1, 0, 0 }
|
|
|
|
local orientation = Quaternion()
|
|
local pos = makeVector3f(0,0,0)
|
|
local angle = 0
|
|
local speed = target_groundspeed()
|
|
local highest_i = 0
|
|
local cache_i = -1
|
|
local cache_sp = nil
|
|
local message = nil
|
|
|
|
-- return the subpath with index i. Used to cope with two ways of calling path_composer
|
|
function self.subpath(i)
|
|
if i == cache_i then
|
|
return cache_sp
|
|
end
|
|
cache_i = i
|
|
local sp = subpaths[i]
|
|
if sp.name then
|
|
-- we are being called with a list of Path objects
|
|
cache_sp = sp
|
|
message = nil
|
|
else
|
|
-- we are being called with a list function/argument tuples
|
|
local args = subpaths[i][2]
|
|
cache_sp = subpaths[i][1](args[1], args[2], args[3], args[4], start_pos[i], start_orientation[i])
|
|
message = subpaths[i].message
|
|
end
|
|
return cache_sp
|
|
end
|
|
|
|
for i = 1, num_sub_paths do
|
|
-- accumulate orientation, position and angle
|
|
start_orientation[i] = orientation
|
|
start_pos[i] = pos
|
|
start_angle[i] = angle
|
|
|
|
local sp = self.subpath(i)
|
|
lengths[i] = sp.get_length()
|
|
total_length = total_length + lengths[i]
|
|
|
|
local spos = sp.get_pos(1.0)
|
|
orientation:earth_to_body(spos)
|
|
pos = pos + spos
|
|
orientation = orientation * sp.get_final_orientation()
|
|
orientation:normalize()
|
|
angle = angle + sp.get_roll(1.0, lengths[i]/speed)
|
|
|
|
start_speed[i] = speed
|
|
end_speed[i] = sp.get_speed(1.0)
|
|
if end_speed[i] == nil then
|
|
end_speed[i] = target_groundspeed()
|
|
end
|
|
speed = end_speed[i]
|
|
|
|
if sp.roll_ref ~= nil then
|
|
q = Quaternion()
|
|
q:from_axis_angle(makeVector3f(1,0,0), math.rad(sp.roll_ref))
|
|
orientation = orientation * q
|
|
orientation:normalize()
|
|
end
|
|
end
|
|
|
|
-- get our final orientation, including roll
|
|
local final_orientation = orientation
|
|
local q = Quaternion()
|
|
q:from_axis_angle(makeVector3f(1,0,0), math.rad(wrap_180(angle)))
|
|
final_orientation = q * final_orientation
|
|
|
|
-- work out the proportion of the total time we will spend in each sub path
|
|
local total_time = 0
|
|
for i = 1, num_sub_paths do
|
|
proportions[i] = lengths[i] / total_length
|
|
start_time[i] = total_time
|
|
end_time[i] = total_time + proportions[i]
|
|
total_time = total_time + proportions[i]
|
|
end
|
|
|
|
function self.get_subpath_t(t)
|
|
if last_subpath_t[1] == t then
|
|
-- use cached value
|
|
return last_subpath_t[2], last_subpath_t[3]
|
|
end
|
|
local i = 1
|
|
while t >= end_time[i] and i < num_sub_paths do
|
|
i = i + 1
|
|
end
|
|
local subpath_t = (t - start_time[i]) / proportions[i]
|
|
last_subpath_t = { t, subpath_t, i }
|
|
local sp = self.subpath(i)
|
|
if i > highest_i and t < 1.0 and t > 0 then
|
|
highest_i = i
|
|
if message ~= nil then
|
|
gcs:send_text(0, message)
|
|
end
|
|
if AEROM_DEBUG:get() > 0 then
|
|
gcs:send_text(0, string.format("starting %s[%d] %s", self.name, i, sp.name))
|
|
end
|
|
end
|
|
return subpath_t, i
|
|
end
|
|
|
|
-- return position at time t
|
|
function self.get_pos(t)
|
|
local subpath_t, i = self.get_subpath_t(t)
|
|
local sp = self.subpath(i)
|
|
pos = sp.get_pos(subpath_t)
|
|
start_orientation[i]:earth_to_body(pos)
|
|
return pos + start_pos[i]
|
|
end
|
|
|
|
-- return angle for the composed path at time t
|
|
function self.get_roll(t, time_s)
|
|
local subpath_t, i = self.get_subpath_t(t)
|
|
local speed = self.get_speed(t)
|
|
if speed == nil then
|
|
speed = target_groundspeed()
|
|
end
|
|
local sp = self.subpath(i)
|
|
angle = sp.get_roll(subpath_t, lengths[i]/speed)
|
|
return angle + start_angle[i]
|
|
end
|
|
|
|
-- return speed for the composed path at time t
|
|
function self.get_speed(t)
|
|
local subpath_t, i = self.get_subpath_t(t)
|
|
return start_speed[i] + subpath_t * (end_speed[i] - start_speed[i])
|
|
end
|
|
|
|
function self.get_length()
|
|
return total_length
|
|
end
|
|
|
|
function self.get_final_orientation()
|
|
return final_orientation
|
|
end
|
|
|
|
return self
|
|
end
|
|
|
|
|
|
--[[
|
|
make a list of Path() objects from a list of PathComponent, RollComponent pairs
|
|
--]]
|
|
function make_paths(name, paths)
|
|
local p = {}
|
|
for i = 1, #paths do
|
|
p[i] = Path(paths[i][1], paths[i][2])
|
|
if paths[i].roll_ref then
|
|
p[i].roll_ref = paths[i].roll_ref
|
|
end
|
|
end
|
|
return path_composer(name, p)
|
|
end
|
|
|
|
--[[
|
|
composed trajectories, does as individual aerobatic maneuvers
|
|
--]]
|
|
|
|
function climbing_circle(radius, height, bank_angle, arg4)
|
|
return make_paths("climbing_circle", {
|
|
{ path_horizontal_arc(radius, 360, height), roll_angle_entry_exit(bank_angle) },
|
|
})
|
|
end
|
|
|
|
function half_climbing_circle(radius, height, bank_angle, arg4)
|
|
return make_paths("half_climbing_circle", {
|
|
{ path_horizontal_arc(radius, 180, height), roll_angle_entry_exit(bank_angle) },
|
|
})
|
|
end
|
|
|
|
function loop(radius, bank_angle, num_loops, arg4)
|
|
if not num_loops or num_loops <= 0 then
|
|
num_loops = 1
|
|
end
|
|
return make_paths("loop", {
|
|
{ path_vertical_arc(radius, 360*num_loops), roll_angle_entry_exit(bank_angle) },
|
|
})
|
|
end
|
|
|
|
function straight_roll(length, num_rolls, arg3, arg4)
|
|
return make_paths("straight_roll", {
|
|
{ path_straight(length), roll_angle(num_rolls*360) },
|
|
})
|
|
end
|
|
|
|
--[[
|
|
|
|
fly straight until we are distance meters from the composite path
|
|
origin in the maneuver frame along the X axis. If we are already
|
|
past that position then return immediately
|
|
--]]
|
|
function straight_align(distance, arg2, arg3, arg4, start_pos, start_orientation)
|
|
local d2 = distance - start_pos:x()
|
|
local v = makeVector3f(d2, 0, 0)
|
|
start_orientation:earth_to_body(v)
|
|
local len = math.max(v:x(),0.01)
|
|
return make_paths("straight_align", {
|
|
{ path_straight(len), roll_angle(0) },
|
|
})
|
|
end
|
|
|
|
function immelmann_turn(r, arg2, arg3, arg4)
|
|
local rabs = math.abs(r)
|
|
return make_paths("immelmann_turn", {
|
|
{ path_vertical_arc(r, 180), roll_angle(0) },
|
|
{ path_straight(rabs/3), roll_angle(180) },
|
|
})
|
|
end
|
|
|
|
-- immelmann with max roll rate
|
|
function immelmann_turn_fast(r, arg2, arg3, arg4)
|
|
local rabs = math.abs(r)
|
|
local roll_time = 180.0 / ACRO_ROLL_RATE:get()
|
|
local roll_dist = target_groundspeed() * roll_time
|
|
return make_paths("immelmann_turn_fast", {
|
|
{ path_vertical_arc(r, 180), roll_angle(0) },
|
|
{ path_straight(roll_dist), roll_angle(180) },
|
|
})
|
|
end
|
|
|
|
function humpty_bump(r, h, arg3, arg4)
|
|
assert(h >= 2*r)
|
|
local rabs = math.abs(r)
|
|
return make_paths("humpty_bump", {
|
|
{ path_vertical_arc(r, 90), roll_angle(0) },
|
|
{ path_straight((h-2*rabs)/3), roll_angle(0) },
|
|
{ path_straight((h-2*rabs)/3), roll_angle(180) },
|
|
{ path_straight((h-2*rabs)/3), roll_angle(0) },
|
|
{ path_vertical_arc(-r, 180), roll_angle(0) },
|
|
{ path_straight(h-2*rabs), roll_angle(0) },
|
|
{ path_vertical_arc(-r, 90), roll_angle(0) },
|
|
{ path_straight(2*rabs), roll_angle(0) },
|
|
})
|
|
end
|
|
|
|
function crossbox_humpty(r, h, arg3, arg4)
|
|
assert(h >= 2*r)
|
|
local rabs = math.abs(r)
|
|
return make_paths("crossbox_humpty", {
|
|
{ path_vertical_arc(r, 90), roll_angle(0) },
|
|
{ path_straight((h-2*rabs)/3), roll_angle(0) },
|
|
{ path_straight((h-2*rabs)/3), roll_angle(90), roll_ref=90 },
|
|
{ path_straight((h-2*rabs)/3), roll_angle(0) },
|
|
{ path_vertical_arc(-r, 180), roll_angle(0) },
|
|
{ path_straight((h-2*rabs)/3), roll_angle(0) },
|
|
{ path_straight((h-2*rabs)/3), roll_angle(-90), roll_ref=-90 },
|
|
{ path_straight((h-2*rabs)/3), roll_angle(0) },
|
|
{ path_vertical_arc(-r, 90), roll_angle(0) },
|
|
})
|
|
end
|
|
|
|
function laydown_humpty(r, h, arg3, arg4)
|
|
assert(h >= 2*r)
|
|
local rabs = math.abs(r)
|
|
return make_paths("laydown_humpty", {
|
|
{ path_vertical_arc(r, 45), roll_angle(0) },
|
|
{ path_straight((h-2*rabs)/3), roll_angle(0) },
|
|
{ path_straight((h-2*rabs)/3), roll_angle(90), roll_ref=90 },
|
|
{ path_straight((h-2*rabs)/3), roll_angle(0) },
|
|
{ path_vertical_arc(-r, 180), roll_angle(0) },
|
|
{ path_straight((h-2*rabs)/3), roll_angle(0) },
|
|
{ path_straight((h-2*rabs)/3), roll_angle(-90), roll_ref=-90 },
|
|
{ path_straight((h-2*rabs)/3), roll_angle(0) },
|
|
{ path_vertical_arc(r, 45), roll_angle(0) },
|
|
})
|
|
end
|
|
|
|
function split_s(r, arg2, arg3, arg4)
|
|
local rabs = math.abs(r)
|
|
return make_paths("split_s", {
|
|
{ path_straight(rabs/3), roll_angle(180) },
|
|
{ path_vertical_arc(-r, 180), roll_angle(0) },
|
|
})
|
|
end
|
|
|
|
function upline_45(r, height_gain, arg3, arg4)
|
|
local h = (height_gain - 2*r*(1.0-math.cos(math.rad(45))))/math.sin(math.rad(45))
|
|
assert(h >= 0)
|
|
return make_paths("upline_45", {
|
|
{ path_vertical_arc(r, 45), roll_angle(0) },
|
|
{ path_straight(h), roll_angle(0) },
|
|
{ path_vertical_arc(-r, 45), roll_angle(0) },
|
|
})
|
|
end
|
|
|
|
function upline_20(r, height_gain, arg3, arg4)
|
|
local h = (height_gain - 2*r*(1.0-math.cos(math.rad(20))))/math.sin(math.rad(20))
|
|
assert(h >= 0)
|
|
return make_paths("upline_45", {
|
|
{ path_vertical_arc(r, 20), roll_angle(0) },
|
|
{ path_straight(h), roll_angle(0) },
|
|
{ path_vertical_arc(-r, 20), roll_angle(0) },
|
|
})
|
|
end
|
|
|
|
function downline_45(r, height_loss, arg3, arg4)
|
|
local h = (height_loss - 2*r*(1.0-math.cos(math.rad(45))))/math.sin(math.rad(45))
|
|
assert(h >= 0)
|
|
return make_paths("downline_45", {
|
|
{ path_vertical_arc(-r, 45), roll_angle(0) },
|
|
{ path_straight(h), roll_angle(0) },
|
|
{ path_vertical_arc(r, 45), roll_angle(0) },
|
|
})
|
|
end
|
|
|
|
function rolling_circle(radius, num_rolls, arg3, arg4)
|
|
return make_paths("rolling_circle", {
|
|
{ path_horizontal_arc(radius, 360), roll_angle(360*num_rolls) },
|
|
})
|
|
end
|
|
|
|
function straight_flight(length, bank_angle, arg3, arg4)
|
|
return make_paths("straight_flight", {
|
|
{ path_straight(length), roll_angle_entry_exit(bank_angle) },
|
|
})
|
|
end
|
|
|
|
function scale_figure_eight(r, bank_angle, arg3, arg4)
|
|
local rabs = math.abs(r)
|
|
return make_paths("scale_figure_eight", {
|
|
{ path_straight(rabs), roll_angle(0) },
|
|
{ path_horizontal_arc(r, 90), roll_angle_entry_exit(bank_angle) },
|
|
{ path_horizontal_arc(-r, 360), roll_angle_entry_exit(-bank_angle) },
|
|
{ path_horizontal_arc(r, 270), roll_angle_entry_exit(bank_angle) },
|
|
{ path_straight(3*rabs), roll_angle(0) },
|
|
})
|
|
end
|
|
|
|
function figure_eight(r, bank_angle, arg3, arg4)
|
|
local rabs = math.abs(r)
|
|
return make_paths("figure_eight", {
|
|
{ path_straight(rabs*math.sqrt(2)), roll_angle(0) },
|
|
{ path_horizontal_arc(r, 225), roll_angle_entry_exit(bank_angle) },
|
|
{ path_straight(2*rabs), roll_angle(0) },
|
|
{ path_horizontal_arc(-r, 270), roll_angle_entry_exit(-bank_angle) },
|
|
{ path_straight(2*rabs), roll_angle(0) },
|
|
{ path_horizontal_arc(r, 45), roll_angle_entry_exit(bank_angle) },
|
|
})
|
|
end
|
|
|
|
|
|
--[[
|
|
stall turn is not really correct, as we don't fully stall. Needs to be
|
|
reworked
|
|
--]]
|
|
function stall_turn(radius, height, direction, min_speed)
|
|
local h = height - radius
|
|
assert(h >= 0)
|
|
return make_paths("stall_turn", {
|
|
{ path_vertical_arc(radius, 90), roll_angle(0) },
|
|
{ path_straight(h), roll_angle(0), min_speed },
|
|
{ path_horizontal_arc(5*direction, 180), roll_angle(0), min_speed },
|
|
{ path_straight(h), roll_angle(0) },
|
|
{ path_vertical_arc(radius, 90), roll_angle(0) },
|
|
})
|
|
end
|
|
|
|
function half_cuban_eight(r, arg2, arg3, arg4)
|
|
local rabs = math.abs(r)
|
|
return make_paths("half_cuban_eight", {
|
|
{ path_straight(2*rabs*math.sqrt(2)), roll_angle(0) },
|
|
{ path_vertical_arc(r, 225), roll_angle(0) },
|
|
{ path_straight(2*rabs/3), roll_angle(0) },
|
|
{ path_straight(2*rabs/3), roll_angle(180) },
|
|
{ path_straight(2*rabs/3), roll_angle(0) },
|
|
{ path_vertical_arc(-r, 45), roll_angle(0) },
|
|
})
|
|
end
|
|
|
|
function cuban_eight(r, arg2, arg3, arg4)
|
|
local rabs = math.abs(r)
|
|
return make_paths("cuban_eight", {
|
|
{ path_straight(rabs*math.sqrt(2)), roll_angle(0) },
|
|
{ path_vertical_arc(r, 225), roll_angle(0) },
|
|
{ path_straight(2*rabs/3), roll_angle(0) },
|
|
{ path_straight(2*rabs/3), roll_angle(180) },
|
|
{ path_straight(2*rabs/3), roll_angle(0) },
|
|
{ path_vertical_arc(-r, 270), roll_angle(0) },
|
|
{ path_straight(2*rabs/3), roll_angle(0) },
|
|
{ path_straight(2*rabs/3), roll_angle(180) },
|
|
{ path_straight(2*rabs/3), roll_angle(0) },
|
|
{ path_vertical_arc(r, 45), roll_angle(0) },
|
|
})
|
|
end
|
|
|
|
function half_reverse_cuban_eight(r, arg2, arg3, arg4)
|
|
local rabs = math.abs(r)
|
|
return make_paths("half_reverse_cuban_eight", {
|
|
{ path_vertical_arc(r, 45), roll_angle(0) },
|
|
{ path_straight(2*rabs/3), roll_angle(0) },
|
|
{ path_straight(2*rabs/3), roll_angle(180) },
|
|
{ path_straight(2*rabs/3), roll_angle(0) },
|
|
{ path_vertical_arc(-r, 225), roll_angle(0) },
|
|
})
|
|
end
|
|
|
|
function horizontal_rectangle(total_length, total_width, r, bank_angle)
|
|
local l = total_length - 2*r
|
|
local w = total_width - 2*r
|
|
|
|
return make_paths("horizontal_rectangle", {
|
|
{ path_straight(0.5*l), roll_angle(0) },
|
|
{ path_horizontal_arc(r, 90), roll_angle_entry_exit(bank_angle)},
|
|
{ path_straight(w), roll_angle(0) },
|
|
{ path_horizontal_arc(r, 90), roll_angle_entry_exit(bank_angle) },
|
|
{ path_straight(l), roll_angle(0) },
|
|
{ path_horizontal_arc(r, 90), roll_angle_entry_exit(bank_angle) },
|
|
{ path_straight(w), roll_angle(0) },
|
|
{ path_horizontal_arc(r, 90), roll_angle_entry_exit(bank_angle) },
|
|
{ path_straight(0.5*l), roll_angle(0) },
|
|
})
|
|
end
|
|
|
|
function vertical_aerobatic_box(total_length, total_width, r, bank_angle)
|
|
local l = total_length - 2*r
|
|
local w = total_width - 2*r
|
|
|
|
return make_paths("vertical_aerobatic_box", {
|
|
{ path_straight(0.5*l), roll_angle_entry(bank_angle) },
|
|
{ path_vertical_arc(r, 90), roll_angle(0) },
|
|
{ path_straight(w), roll_angle(0) },
|
|
{ path_vertical_arc(r, 90), roll_angle(0) },
|
|
{ path_straight(l), roll_angle(0) },
|
|
{ path_vertical_arc(r, 90), roll_angle(0) },
|
|
{ path_straight(w), roll_angle(0) },
|
|
{ path_vertical_arc(r, 90), roll_angle(0) },
|
|
{ path_straight(0.5*l), roll_angle_exit(-bank_angle) },
|
|
})
|
|
end
|
|
|
|
function two_point_roll(length, arg2, arg3, arg4)
|
|
return make_paths("two_point_roll", {
|
|
{ path_straight((length*3)/7), roll_angle(180) },
|
|
{ path_straight(length/7), roll_angle(0) },
|
|
{ path_straight((length*3)/7), roll_angle(180) },
|
|
})
|
|
end
|
|
|
|
function procedure_turn(radius, bank_angle, step_out, arg4)
|
|
local rabs = math.abs(radius)
|
|
return make_paths("procedure_turn", {
|
|
{ path_straight(rabs), roll_angle(0) },
|
|
{ path_horizontal_arc(radius, 90), roll_angle_entry_exit(bank_angle) },
|
|
{ path_straight(step_out), roll_angle(0) },
|
|
{ path_horizontal_arc(-radius, 270), roll_angle_entry_exit(-bank_angle) },
|
|
{ path_straight(4*rabs), roll_angle(0) },
|
|
})
|
|
end
|
|
|
|
function derry_turn(radius, bank_angle, arg3, arg4)
|
|
return make_paths("derry_turn", {
|
|
{ path_horizontal_arc(radius, 90), roll_angle_entry_exit(bank_angle) },
|
|
{ path_horizontal_arc(-radius, 90), roll_angle_entry_exit(-bank_angle) },
|
|
})
|
|
end
|
|
|
|
function p23_1(radius, height, width, arg4) -- top hat
|
|
return make_paths("p23_1", {
|
|
{ path_vertical_arc(radius, 90), roll_angle(0) },
|
|
{ path_straight((height-2*radius)*2/9), roll_angle(0) },
|
|
{ path_straight((height-2*radius)*2/9), roll_angle(90) },
|
|
{ path_straight((height-2*radius)/9), roll_angle(0) },
|
|
{ path_straight((height-2*radius)*2/9), roll_angle(90) },
|
|
{ path_straight((height-2*radius)*2/9), roll_angle(0) },
|
|
{ path_vertical_arc(-radius, 90), roll_angle(0) },
|
|
{ path_straight((width-2*radius)/3), roll_angle(0) },
|
|
{ path_straight((width-2*radius)/3), roll_angle(180) },
|
|
{ path_straight((width-2*radius)/3), roll_angle(0) },
|
|
{ path_vertical_arc(-radius, 90), roll_angle(0) },
|
|
{ path_straight((height-2*radius)*2/9), roll_angle(0) },
|
|
{ path_straight((height-2*radius)*2/9), roll_angle(90) },
|
|
{ path_straight((height-2*radius)/9), roll_angle(0) },
|
|
{ path_straight((height-2*radius)*2/9), roll_angle(90) },
|
|
{ path_straight((height-2*radius)*2/9), roll_angle(0) },
|
|
{ path_vertical_arc(radius, 90), roll_angle(0) },
|
|
})
|
|
end
|
|
|
|
function p23_2(radius, height, arg3, arg4) -- half square
|
|
return make_paths("p23_2", {
|
|
{ path_vertical_arc(-radius, 90), roll_angle(0) },
|
|
{ path_straight((height-2*radius)/3), roll_angle(0) },
|
|
{ path_straight((height-2*radius)/3), roll_angle(180) },
|
|
{ path_straight((height-2*radius)/3), roll_angle(0) },
|
|
{ path_vertical_arc(-radius, 90), roll_angle(0) },
|
|
})
|
|
end
|
|
|
|
function p23_3(radius, height, arg3, arg4) -- humpty
|
|
return make_paths("p23_3", {
|
|
{ path_vertical_arc(radius, 90), roll_angle(0) },
|
|
{ path_straight((height-2*radius)/8), roll_angle(0) },
|
|
{ path_straight((height-2*radius)*6/8), roll_angle(360) },
|
|
{ path_straight((height-2*radius)/8), roll_angle(0) },
|
|
{ path_vertical_arc(radius, 180), roll_angle(0) },
|
|
{ path_straight((height-2*radius)/3), roll_angle(0) },
|
|
{ path_straight((height-2*radius)/3), roll_angle(180) },
|
|
{ path_straight((height-2*radius)/3), roll_angle(0) },
|
|
{ path_vertical_arc(radius, 90), roll_angle(0) },
|
|
})
|
|
end
|
|
|
|
function p23_4(radius, height, arg3, arg4) -- on corner
|
|
local l = ((height - (2 * radius)) * math.sin(math.rad(45)))
|
|
return make_paths("p23_4", {
|
|
{ path_vertical_arc(-radius, 45), roll_angle(0) },
|
|
{ path_straight(l/3), roll_angle(0) },
|
|
{ path_straight(l/3), roll_angle(180) },
|
|
{ path_straight(l/3), roll_angle(0) },
|
|
{ path_vertical_arc(-radius, 90), roll_angle(0) },
|
|
{ path_straight(l/3), roll_angle(0) },
|
|
{ path_straight(l/3), roll_angle(180) },
|
|
{ path_straight(l/3), roll_angle(0) },
|
|
{ path_vertical_arc(-radius, 45), roll_angle(0) },
|
|
})
|
|
end
|
|
|
|
function p23_5(radius, height_gain, arg3, arg4) -- 45 up - should be 1 1/2 snaps....
|
|
-- 1 1/2 rolls not working
|
|
local l = (height_gain - 2*radius*(1.0-math.cos(math.rad(45))))/math.sin(math.rad(45))
|
|
return make_paths("p23_5", {
|
|
{ path_vertical_arc(-radius, 45), roll_angle(0) },
|
|
{ path_straight(l/3), roll_angle(0) },
|
|
{ path_straight(l/3), roll_angle(540) },
|
|
{ path_straight(l/3), roll_angle(0) },
|
|
{ path_vertical_arc(radius, 45), roll_angle(0) },
|
|
})
|
|
end
|
|
|
|
function p23_6(radius, height_gain, arg3, arg4) -- 3 sided
|
|
local l = (height_gain - 2*radius) / ((2*math.sin(math.rad(45))) + 1)
|
|
return make_paths("p23_6", {
|
|
{ path_vertical_arc(-radius, 45), roll_angle(0) },
|
|
{ path_straight(l), roll_angle(0) },
|
|
{ path_vertical_arc(-radius, 45), roll_angle(0) },
|
|
{ path_straight(l), roll_angle(0) },
|
|
{ path_vertical_arc(-radius, 45), roll_angle(0) },
|
|
{ path_straight(l), roll_angle(0) },
|
|
{ path_vertical_arc(-radius, 45), roll_angle(0) },
|
|
})
|
|
end
|
|
|
|
function p23_7(length, arg2, arg3, arg4) -- roll combination
|
|
return make_paths("p23_7", {
|
|
{ path_straight(length*5/22), roll_angle(180) },
|
|
{ path_straight(length*1/22), roll_angle(0) },
|
|
{ path_straight(length*5/22), roll_angle(180) },
|
|
{ path_straight(length*5/22), roll_angle(-180) },
|
|
{ path_straight(length*1/22), roll_angle(0) },
|
|
{ path_straight(length*5/22), roll_angle(-180) },
|
|
})
|
|
end
|
|
|
|
function p23_8(radius, height, arg3, arg4) -- immelmann
|
|
return make_paths("p23_8", {
|
|
{ path_vertical_arc(-radius, 180), roll_angle(0) },
|
|
{ path_straight(radius/2), roll_angle(180) },
|
|
})
|
|
end
|
|
|
|
function p23_9(radius, height, num_turns, arg4) -- spin (currently a vert down 1/2 roll)
|
|
return make_paths("p23_9", {
|
|
{ path_vertical_arc(radius, 90), roll_angle(0) },
|
|
{ path_straight(height-2*radius), roll_angle(180) },
|
|
{ path_vertical_arc(-radius, 90), roll_angle(0) },
|
|
})
|
|
end
|
|
|
|
function p23_10(radius, height, arg3, arg4) -- humpty
|
|
return make_paths("p23_10", {
|
|
{ path_vertical_arc(radius, 90), roll_angle(0) },
|
|
{ path_straight((height-2*radius)/3), roll_angle(0) },
|
|
{ path_straight((height-2*radius)/3), roll_angle(180) },
|
|
{ path_straight((height-2*radius)/3), roll_angle(0) },
|
|
{ path_vertical_arc(-radius, 180), roll_angle(0) },
|
|
{ path_straight((height-2*radius)/3), roll_angle(0) },
|
|
{ path_straight((height-2*radius)/3), roll_angle(180) },
|
|
{ path_straight((height-2*radius)/3), roll_angle(0) },
|
|
{ path_vertical_arc(-radius, 90), roll_angle(0) },
|
|
})
|
|
end
|
|
|
|
function p23_11(radius, height, arg3, arg4) -- laydown loop
|
|
local length = height / 3 -- need some better calc here that just takes height
|
|
-- and scales r and length
|
|
return make_paths("p23_11", {
|
|
{ path_vertical_arc(-radius, 45), roll_angle(0) },
|
|
{ path_straight(length*2/6), roll_angle(0) },
|
|
{ path_straight(length*1/6), roll_angle(180) },
|
|
{ path_straight(length*1/6), roll_angle(-180) },
|
|
{ path_straight(length*2/6), roll_angle(0) },
|
|
{ path_vertical_arc(radius, 315), roll_angle(0) },
|
|
{ path_straight(length*2.5/9), roll_angle(0) },
|
|
{ path_straight(length*2.5/9), roll_angle(90) },
|
|
{ path_straight(length*1.5/9), roll_angle(0) },
|
|
{ path_straight(length*2.5/9), roll_angle(90) },
|
|
{ path_straight(length*2.5/9), roll_angle(0) },
|
|
{ path_vertical_arc(radius, 90), roll_angle(0) },
|
|
})
|
|
end
|
|
|
|
function p23_12(radius, height, arg3, arg4) -- 1/2 square
|
|
return make_paths("p23_12", {
|
|
{ path_vertical_arc(-radius, 90), roll_angle(0) },
|
|
{ path_straight((height-2*radius)/3), roll_angle(0) },
|
|
{ path_straight((height-2*radius)/3), roll_angle(180) },
|
|
{ path_straight((height-2*radius)/3), roll_angle(0) },
|
|
{ path_vertical_arc(-radius, 90), roll_angle(0) },
|
|
})
|
|
end
|
|
|
|
function p23_13(radius, height, arg3, arg4) -- stall turn
|
|
return make_paths("p23_13", {
|
|
{ path_vertical_arc(radius, 90), roll_angle(0) },
|
|
{ path_straight((height-2*radius)/3), roll_angle(0) },
|
|
{ path_straight((height-2*radius)/3), roll_angle(90) },
|
|
{ path_straight((height-2*radius)/3), roll_angle(0) },
|
|
{ path_vertical_arc(-radius, 90), roll_angle(0) },
|
|
{ path_straight((height-2*radius)/3), roll_angle(0) },
|
|
{ path_straight((height-2*radius)/3), roll_angle(90) },
|
|
{ path_straight((height-2*radius)/3), roll_angle(0) },
|
|
{ path_vertical_arc(-radius, 90), roll_angle(0) },
|
|
})
|
|
end
|
|
|
|
function p23_14(radius, height, arg3, arg4) -- fighter turn
|
|
local l = height - 2 * radius -- need a calc here
|
|
return make_paths("p23_14", {
|
|
{ path_vertical_arc(radius, 45), roll_angle(0) },
|
|
{ path_straight((l-2*radius)/3), roll_angle(0) },
|
|
{ path_straight((l-2*radius)/3), roll_angle(-90) },
|
|
{ path_straight((l-2*radius)/3), roll_angle(0) },
|
|
{ path_vertical_arc(radius, 180), roll_angle(0) },
|
|
{ path_straight((l-2*radius)/3), roll_angle(0) },
|
|
{ path_straight((l-2*radius)/3), roll_angle(90) },
|
|
{ path_straight((l-2*radius)/3), roll_angle(0) },
|
|
{ path_vertical_arc(radius, 90), roll_angle(0) },
|
|
})
|
|
end
|
|
|
|
function p23_15(radius, height, arg3, arg4) -- triangle
|
|
local side = ((height - (2 * radius)) * math.sin(math.rad(45))) -- need correct calcs
|
|
local base = height * 2 / 3
|
|
return make_paths("p23_15", {
|
|
{ path_straight(base * 2/5), roll_angle(0) },
|
|
{ path_straight(base * 1/5), roll_angle(180) },
|
|
{ path_straight(base * 2/5), roll_angle(0) },
|
|
{ path_vertical_arc(radius, 135), roll_angle(0) },
|
|
{ path_straight(side*2/9), roll_angle(0) },
|
|
{ path_straight(side*2/9), roll_angle(90) },
|
|
{ path_straight(side*1/9), roll_angle(0) },
|
|
{ path_straight(side*2/9), roll_angle(90) },
|
|
{ path_straight(side*2/9), roll_angle(0) },
|
|
{ path_vertical_arc(radius, 90), roll_angle(0) },
|
|
{ path_straight(side*2/9), roll_angle(0) },
|
|
{ path_straight(side*2/9), roll_angle(90) },
|
|
{ path_straight(side*1/9), roll_angle(0) },
|
|
{ path_straight(side*2/9), roll_angle(90) },
|
|
{ path_straight(side*2/9), roll_angle(0) },
|
|
{ path_vertical_arc(radius, 135), roll_angle(0) },
|
|
{ path_straight(base * 2/5), roll_angle(0) },
|
|
{ path_straight(base * 1/5), roll_angle(180) },
|
|
{ path_straight(base * 2/5), roll_angle(0) },
|
|
})
|
|
end
|
|
|
|
function p23_16(radius, height, arg3, arg4) -- sharks tooth
|
|
local l = (height - 2*radius*(1.0-math.cos(math.rad(45))))/math.sin(math.rad(45))
|
|
return make_paths("p23_16", {
|
|
{ path_vertical_arc(radius, 90), roll_angle(0) },
|
|
{ path_straight((height-2*radius)/3), roll_angle(0) },
|
|
{ path_straight((height-2*radius)/3), roll_angle(180) },
|
|
{ path_straight((height-2*radius)/3), roll_angle(0) },
|
|
{ path_vertical_arc(radius, 135), roll_angle(0) },
|
|
{ path_straight(l*2/9), roll_angle(0) },
|
|
{ path_straight(l*2/9), roll_angle(90) },
|
|
{ path_straight(l*1/9), roll_angle(0) },
|
|
{ path_straight(l*2/9), roll_angle(90) },
|
|
{ path_straight(l*2/9), roll_angle(0) },
|
|
{ path_vertical_arc(-radius, 45), roll_angle(0) },
|
|
})
|
|
end
|
|
|
|
function p23_17(radius, arg2, arg3, arg4) -- loop
|
|
return make_paths("p23_17", {
|
|
{ path_vertical_arc(-radius, 135), roll_angle(0) },
|
|
{ path_vertical_arc(-radius, 90), roll_angle(180) },
|
|
{ path_vertical_arc(-radius, 135), roll_angle(0) },
|
|
|
|
})
|
|
end
|
|
|
|
function half_roll(arg1, arg2, arg3, arg4) -- half roll for testing inverted manouvers
|
|
return make_paths("half_roll", {
|
|
{ path_straight(40), roll_angle(180) },
|
|
{ path_straight(10), roll_angle(0) },
|
|
})
|
|
end
|
|
|
|
function fai_f3a_box_l_r()
|
|
return path_composer("f3a_p23_l_r", { -- positioned for a flight line 150m out. Flight line 520m total length.
|
|
-- Script start point is ON CENTER, with the model heading DOWNWIND!
|
|
{ straight_roll, { 150, 0 } },
|
|
{ half_reverse_cuban_eight, { 60 } },
|
|
{ straight_align, { 1, 0 } },
|
|
{ vertical_aerobatic_box, { 540, 230, 30, 0 } },
|
|
{ vertical_aerobatic_box, { 540, 230, 30, 0 } },
|
|
{ vertical_aerobatic_box, { 540, 230, 30, 0 } },
|
|
{ vertical_aerobatic_box, { 540, 230, 30, 0 } },
|
|
{ straight_roll, { 50, 0 } }
|
|
})
|
|
end
|
|
|
|
--[[
|
|
NZ clubman schedule
|
|
--]]
|
|
function nz_clubman() -- positioned for a flight line 100m out
|
|
-- Script start point is ON CENTER, with the model heading DOWNWIND!
|
|
return path_composer("nz_clubman_l_r", {
|
|
--[[
|
|
{ straight_roll, { 20, 0 } },
|
|
{ procedure_turn, { 20, 45, 60 } },
|
|
{ straight_roll, { 150, 0 } },
|
|
{ half_reverse_cuban_eight, { 40 } },
|
|
{ straight_roll, { 150, 0 } },
|
|
--]]
|
|
{ straight_roll, { 150, 0 } },
|
|
{ half_reverse_cuban_eight, { 60 } },
|
|
{ straight_align, { 1, 0 } },
|
|
{ cuban_eight, { 40 } },
|
|
{ straight_align, { -100, 0 } },
|
|
{ half_reverse_cuban_eight, { 40 } },
|
|
{ straight_align, { 40, 0 } },
|
|
{ half_reverse_cuban_eight, { 40 } },
|
|
{ straight_align, { -150, 0 } },
|
|
{ half_reverse_cuban_eight, { 40 } },
|
|
{ straight_align, { -90, 0 } },
|
|
{ two_point_roll, { 180 } },
|
|
{ straight_align, { 150, 0 } },
|
|
{ half_reverse_cuban_eight, { 40 } },
|
|
{ straight_align, { 52, 0 } },
|
|
{ upline_45, { 30, 120 } },
|
|
{ straight_align, { -180, 0 } },
|
|
{ split_s, { 50, 90 } },
|
|
{ straight_align, { -90, 0 } },
|
|
{ straight_roll, { 180, 1 } },
|
|
{ straight_align, { 150, 0 } },
|
|
{ half_cuban_eight, { 40 } },
|
|
{ straight_align, { 1, 0 } },
|
|
{ loop, { 60, 0, 2 } },
|
|
{ straight_align, { -180, 0 } },
|
|
{ immelmann_turn, { 50, 90 } },
|
|
{ straight_align, { -52, 0 } },
|
|
{ downline_45, { 30, 120 } },
|
|
{ straight_align, { 150, 0 } },
|
|
{ half_cuban_eight, { 40 } },
|
|
{ straight_roll, { 100, 0 } },
|
|
})
|
|
end
|
|
|
|
--[[
|
|
F3A p23, preliminary schedule 2023
|
|
--]]
|
|
function f3a_p23_l_r()
|
|
return path_composer("f3a_p23_l_r", { -- positioned for a flight line 150m out. Flight line 520m total length.
|
|
-- Script start point is ON CENTER, with the model heading DOWNWIND!
|
|
{ straight_roll, { 150, 0 } },
|
|
{ half_reverse_cuban_eight, { 60 } },
|
|
{ straight_align, { 130, 0 } },
|
|
{ p23_1, { 30, 200, 200 } }, -- top hat
|
|
{ straight_align, { -230, 0 } },
|
|
{ p23_2, { 30, 200 } }, -- half sq
|
|
{ straight_align, { 1, 0 } },
|
|
{ p23_3, { 30, 200 } }, -- humpty
|
|
{ straight_align, { 180, 0 } },
|
|
{ p23_4, { 30, 200 } }, -- on corner
|
|
{ straight_align, { 145, 0 } },
|
|
{ p23_5, { 30, 200 } }, -- 45 up
|
|
{ straight_align, { -210, 0 } },
|
|
{ p23_6, { 30, 200 } }, -- 3 sided
|
|
{ straight_align, { -100, 0 } },
|
|
{ p23_7, { 200 } }, -- roll combination
|
|
{ straight_align, { 120, 0 } },
|
|
{ p23_8, { 100 } }, -- immelmann
|
|
{ straight_align, { 30, 0 } },
|
|
{ p23_9, { 30, 200 } }, -- spin
|
|
{ straight_align, { -170, 0 } },
|
|
{ p23_10, { 30, 200 } }, -- humpty
|
|
{ straight_align, { -160, 0 } },
|
|
{ p23_11, { 30, 200 } }, -- laydown loop
|
|
{ straight_align, { 230, 0 } },
|
|
{ p23_12, { 30, 200 } }, -- half sq
|
|
{ straight_align, { 30, 0 } },
|
|
--{ p23_13, { 30, 200 } }, -- stall turn
|
|
{ straight_roll, { 60, 0 } }, -- stall turn place holder
|
|
{ straight_roll, { 40, 0 } }, -- cant be align b/w these two manouvers
|
|
-- { p23_14, { 30, 160 } }, -- fighter turn
|
|
{ half_reverse_cuban_eight, { 60 } }, -- fighter turn place holder
|
|
{ straight_align, { -40, 0 } },
|
|
{ p23_15, { 30, 200 } }, -- triangle
|
|
{ straight_align, { 50, 0 } },
|
|
{ p23_16, { 30, 160 } }, -- sharks tooth
|
|
{ straight_align, { 1, 0 } },
|
|
{ p23_17, { 100 } }, -- loop
|
|
{ straight_roll, { 100, 0 } },
|
|
|
|
})
|
|
end
|
|
|
|
--[[
|
|
F4C Scale Schedule Example
|
|
--]]
|
|
|
|
function f4c_example_l_r() -- positioned for a flight line nominally 150m out (some manouvers start 30m out)
|
|
-- Script start point is ON CENTER @ 150m, with the model heading DOWNWIND ie flying Right to Left!
|
|
return path_composer("f4c_example", {
|
|
{ straight_roll, { 180, 0 } },
|
|
{ half_climbing_circle, { -60, 0, -60 } }, -- come in close for the first two manouvers
|
|
{ straight_roll, { 20, 0 } },
|
|
{ scale_figure_eight, { -80, -30 } }, -- scale fig 8
|
|
{ straight_roll, { 180, 0 } },
|
|
{ immelmann_turn, { 50 } },
|
|
{ straight_roll, { 340, 0 } },
|
|
{ climbing_circle, { 80, -125, 30 } }, -- descending 360
|
|
{ straight_roll, { 40, 0 } },
|
|
{ upline_20, { 50, 25 } }, -- Climb up 25m to base height
|
|
{ straight_roll, { 100, 0 } },
|
|
{ half_climbing_circle, { 60, 0, 60 } }, -- Go back out to 150m
|
|
{ straight_align, { 1, 0 } },
|
|
{ loop, { 50, 0, 1 } }, -- loop
|
|
{ straight_align, { -50, 0 } },
|
|
{ half_reverse_cuban_eight, { 50 } },
|
|
{ straight_align, { 1, 0 } },
|
|
{ immelmann_turn, { 50 } }, -- immelmann turn
|
|
{ straight_align, { -140, 0 } },
|
|
{ split_s, { 50 } },
|
|
{ straight_align, { 1, 0 } },
|
|
{ half_cuban_eight, { 60 } }, -- half cuban eight
|
|
{ straight_align, { -180, 0 } },
|
|
{ half_climbing_circle, { 65, 0, 60 } },
|
|
{ straight_roll, { 115, 0 } },
|
|
{ derry_turn, { 65, 60 } }, -- derry turn
|
|
{ straight_align, { 180, 0 } },
|
|
--Path(path_horizontal_arc (-50, 180, 0), roll_angle(60)),
|
|
{ half_climbing_circle, { -65, 0, -60 } },
|
|
{ straight_roll, { 180, 0 } },
|
|
{ climbing_circle, { -80, 0, -30 } }, -- extend and retract gear - 360 circle
|
|
{ straight_roll, { 200, 0 } },
|
|
{ half_climbing_circle, { -65, 0, -60 } },
|
|
{ straight_align, { 200, 0 } },
|
|
--{ barrell_roll, { 100, 200 } }, -- barrel roll - (radius, length)
|
|
{ straight_roll, { 20, 0 } },
|
|
})
|
|
end
|
|
|
|
--[[
|
|
simple air show
|
|
--]]
|
|
|
|
function air_show1()
|
|
return path_composer("AirShow", {
|
|
{ loop, { 25, 0, 1 }, message="Loop"},
|
|
{ straight_align, { 80, 0 } },
|
|
{ half_reverse_cuban_eight, { 25 }, message="HalfReverseCubanEight" },
|
|
{ straight_align, { 80 } },
|
|
{ scale_figure_eight, { -40, -30 }, message="ScaleFigureEight" },
|
|
{ immelmann_turn, { 30 }, message="Immelmann" },
|
|
{ straight_align, { -40, 0 } },
|
|
{ straight_roll, { 80, 2 }, message="Roll" },
|
|
{ straight_align, { 120, 0 } },
|
|
{ split_s, { 30 }, message="Split-S"},
|
|
{ straight_align, { 0 } },
|
|
{ rolling_circle, { -50, 3}, message="RollingCircle" },
|
|
{ straight_align, { -50, 0 } },
|
|
{ humpty_bump, { 20, 60 }, message="HumptyBump" },
|
|
{ straight_align, { 80, 0 } },
|
|
{ half_cuban_eight, { 25 }, message="HalfCubanEight" },
|
|
{ straight_align, { 75, 0 } },
|
|
{ upline_45, { 30, 50 }, message="Upline45", },
|
|
{ downline_45, { 30, 50 }, message="Downline45" },
|
|
{ half_reverse_cuban_eight, { 25 }, message="HalfReverseCubanEight" },
|
|
{ straight_align, { 0 } },
|
|
})
|
|
end
|
|
|
|
function air_show3()
|
|
return path_composer("AirShow3", {
|
|
{ air_show1, {}, message="AirShowPt1" },
|
|
{ air_show1, {}, message="AirShowPt2" },
|
|
{ air_show1, {}, message="AirShowPt3" },
|
|
})
|
|
end
|
|
|
|
function test_all_paths()
|
|
return path_composer("test_all_paths", {
|
|
{ figure_eight, { 100, 45 } },
|
|
{ straight_roll, { 20, 0 } },
|
|
{ loop, { 30, 0, 1 } },
|
|
{ straight_roll, { 20, 0 } },
|
|
{ horizontal_rectangle, { 100, 100, 20, 45 } },
|
|
{ straight_roll, { 20, 0 } },
|
|
{ climbing_circle, { 100, 20, 45 } },
|
|
{ straight_roll, { 20, 0 } },
|
|
{ vertical_aerobatic_box, { 100, 100, 20, 0 } },
|
|
{ straight_roll, { 20, 0 } },
|
|
{ rolling_circle, { 100, 2, 0, 0 } },
|
|
{ straight_roll, { 20, 0 } },
|
|
{ half_cuban_eight, { 30, } },
|
|
{ straight_roll, { 20, 0 } },
|
|
{ half_reverse_cuban_eight, { 30, } },
|
|
{ straight_roll, { 20, 0 } },
|
|
{ cuban_eight, { 30, } },
|
|
{ straight_roll, { 20, 0 } },
|
|
{ humpty_bump, { 30, 100 } },
|
|
{ straight_flight, { 100, 45 } },
|
|
{ scale_figure_eight, { 100, 45 } },
|
|
{ straight_roll, { 20, 0 } },
|
|
{ immelmann_turn, { 30, 60 } },
|
|
{ straight_roll, { 20, 0 } },
|
|
{ split_s, { 30, 60 } },
|
|
{ straight_roll, { 20, 0 } },
|
|
{ upline_45, { 20, 50 } },
|
|
{ straight_roll, { 20, 0 } },
|
|
{ downline_45, { 20, 50 } },
|
|
{ straight_roll, { 20, 0 } },
|
|
{ procedure_turn, { 40, 45, 20 } },
|
|
{ straight_roll, { 20, 0 } },
|
|
{ two_point_roll, { 100 } },
|
|
{ straight_roll, { 20, 0 } },
|
|
{ derry_turn, { 40, 60 } },
|
|
{ straight_roll, { 20, 0 } },
|
|
{ half_climbing_circle, { -65, 0, -60 } },
|
|
{ straight_roll, { 20, 0 } },
|
|
--[[
|
|
{ p23_1, { 20, 150, 150 } },
|
|
{ straight_roll, { 20, 0 } },
|
|
{ p23_2, { 20, 150 } },
|
|
{ straight_roll, { 20, 0 } },
|
|
{ p23_3, { 20, 150 } },
|
|
{ straight_roll, { 20, 0 } },
|
|
{ p23_4, { 20, 150 } },
|
|
{ straight_roll, { 20, 0 } },
|
|
{ p23_5, { 20, 150 } },
|
|
{ straight_roll, { 20, 0 } },
|
|
{ p23_6, { 20, 150 } }, -- now inverted :-)
|
|
{ straight_roll, { 20, 0 } },
|
|
--]]
|
|
})
|
|
end
|
|
|
|
---------------------------------------------------
|
|
|
|
--[[
|
|
target speed is taken as max of target airspeed and current 3D
|
|
velocity at the start of the maneuver
|
|
--]]
|
|
function target_groundspeed()
|
|
return math.max(ahrs:get_EAS2TAS()*TRIM_ARSPD_CM:get()*0.01, ahrs:get_velocity_NED():length())
|
|
end
|
|
|
|
--[[
|
|
get ground course from AHRS
|
|
--]]
|
|
function get_ground_course_deg()
|
|
local vned = ahrs:get_velocity_NED()
|
|
return wrap_180(math.deg(math.atan(vned:y(), vned:x())))
|
|
end
|
|
|
|
|
|
--args:
|
|
-- path_f: path function returning position
|
|
-- t: normalised [0, 1] time
|
|
-- arg1, arg2: arguments for path function
|
|
-- orientation: maneuver frame orientation
|
|
--returns: requested position, angle and speed in maneuver frame
|
|
function rotate_path(path_f, t, orientation, offset)
|
|
t = constrain(t, 0, 1)
|
|
point = path_f.get_pos(t)
|
|
angle = path_f.get_roll(t)
|
|
speed = path_f.get_speed(t)
|
|
orientation:earth_to_body(point)
|
|
return point+offset, math.rad(angle), speed
|
|
end
|
|
|
|
--Given vec1, vec2, returns an (rotation axis, angle) tuple that rotates vec1 to be parallel to vec2
|
|
--If vec1 and vec2 are already parallel, returns a zero vector and zero angle
|
|
--Note that the rotation will not be unique.
|
|
function vectors_to_rotation(vector1, vector2)
|
|
axis = vector1:cross(vector2)
|
|
if axis:length() < 0.00001 then
|
|
local vec = Vector3f()
|
|
vec:x(1)
|
|
return vec, 0
|
|
end
|
|
axis:normalize()
|
|
angle = vector1:angle(vector2)
|
|
return axis, angle
|
|
end
|
|
|
|
--returns Quaternion
|
|
function vectors_to_rotation_w_roll(vector1, vector2, roll)
|
|
axis, angle = vectors_to_rotation(vector1, vector2)
|
|
local vector_rotation = Quaternion()
|
|
vector_rotation:from_axis_angle(axis, angle)
|
|
|
|
local roll_rotation = Quaternion()
|
|
roll_rotation:from_euler(roll, 0, 0)
|
|
|
|
local total_rot = vector_rotation*roll_rotation
|
|
return to_axis_and_angle(total_rot)
|
|
end
|
|
|
|
--Given vec1, vec2, returns an angular velocity tuple that rotates vec1 to be parallel to vec2
|
|
--If vec1 and vec2 are already parallel, returns a zero vector and zero angle
|
|
function vectors_to_angular_rate(vector1, vector2, time_constant)
|
|
axis, angle = vectors_to_rotation(vector1, vector2)
|
|
angular_velocity = angle/time_constant
|
|
return axis:scale(angular_velocity)
|
|
end
|
|
|
|
function vectors_to_angular_rate_w_roll(vector1, vector2, time_constant, roll)
|
|
axis, angle = vectors_to_rotation_w_roll(vector1, vector2, roll)
|
|
angular_velocity = angle/time_constant
|
|
return axis:scale(angular_velocity)
|
|
end
|
|
|
|
-- convert a quaternion to axis angle form
|
|
function to_axis_and_angle(quat)
|
|
local axis_angle = Vector3f()
|
|
quat:to_axis_angle(axis_angle)
|
|
angle = axis_angle:length()
|
|
if angle < 0.00001 then
|
|
return makeVector3f(1.0, 0.0, 0.0), 0.0
|
|
end
|
|
return axis_angle:scale(1.0/angle), angle
|
|
end
|
|
|
|
--projects x onto the othogonal subspace of span(unit_v)
|
|
function ortho_proj(x, unit_v)
|
|
local temp_x = unit_v:cross(x)
|
|
return unit_v:cross(temp_x)
|
|
end
|
|
|
|
-- log a pose from position and quaternion attitude
|
|
function log_pose(logname, pos, quat)
|
|
logger.write(logname, 'px,py,pz,q1,q2,q3,q4,r,p,y','ffffffffff',
|
|
pos:x(),
|
|
pos:y(),
|
|
pos:z(),
|
|
quat:q1(),
|
|
quat:q2(),
|
|
quat:q3(),
|
|
quat:q4(),
|
|
math.deg(quat:get_euler_roll()),
|
|
math.deg(quat:get_euler_pitch()),
|
|
math.deg(quat:get_euler_yaw()))
|
|
end
|
|
|
|
--[[
|
|
check if a number is Nan.
|
|
--]]
|
|
function isNaN(value)
|
|
-- NaN is lua is not equal to itself
|
|
return value ~= value
|
|
end
|
|
|
|
function Vec3IsNaN(v)
|
|
return isNaN(v:x()) or isNaN(v:y()) or isNaN(v:z())
|
|
end
|
|
|
|
function qIsNaN(q)
|
|
return isNaN(q:q1()) or isNaN(q:q2()) or isNaN(q:q3()) or isNaN(q:q4())
|
|
end
|
|
|
|
--[[
|
|
return the body y projection down, this is the c.y element of the equivalent rotation matrix
|
|
--]]
|
|
function quat_projection_ground_plane(q)
|
|
local q1q2 = q:q1() * q:q2()
|
|
local q3q4 = q:q3() * q:q4()
|
|
return 2.0 * (q3q4 + q1q2)
|
|
end
|
|
|
|
path_var.count = 0
|
|
path_var.initial_ori = Quaternion()
|
|
path_var.initial_maneuver_to_earth = Quaternion()
|
|
|
|
function do_path()
|
|
local now = millis():tofloat() * 0.001
|
|
|
|
path_var.count = path_var.count + 1
|
|
local target_dt = 1.0/LOOP_RATE
|
|
local path = current_task.fn
|
|
|
|
if not current_task.started then
|
|
local initial_yaw_deg = current_task.initial_yaw_deg
|
|
current_task.started = true
|
|
|
|
local speed = target_groundspeed()
|
|
path_var.target_speed = speed
|
|
|
|
path_var.length = path.get_length()
|
|
|
|
path_var.total_rate_rads_ef = makeVector3f(0.0, 0.0, 0.0)
|
|
|
|
--assuming constant velocity
|
|
path_var.total_time = path_var.length/speed
|
|
path_var.last_pos = path.get_pos(0) --position at t0
|
|
|
|
--deliberately only want yaw component, because the maneuver should be performed relative to the earth, not relative to the initial orientation
|
|
path_var.initial_ori:from_euler(0, 0, math.rad(initial_yaw_deg))
|
|
|
|
path_var.initial_maneuver_to_earth:from_euler(0, 0, -math.rad(initial_yaw_deg))
|
|
|
|
path_var.initial_ef_pos = ahrs:get_relative_position_NED_origin()
|
|
|
|
|
|
local corrected_position_t0_ef, angle_t0, s0 = rotate_path(path, target_dt/path_var.total_time,
|
|
path_var.initial_ori, path_var.initial_ef_pos)
|
|
local corrected_position_t1_ef, angle_t1, s0 = rotate_path(path, 2*target_dt/path_var.total_time,
|
|
path_var.initial_ori, path_var.initial_ef_pos)
|
|
|
|
path_var.start_pos = ahrs:get_position()
|
|
path_var.path_int = path_var.start_pos:copy()
|
|
|
|
speed_PI.reset()
|
|
|
|
|
|
path_var.accumulated_orientation_rel_ef = path_var.initial_ori
|
|
|
|
path_var.time_correction = 0.0
|
|
|
|
path_var.filtered_angular_velocity = Vector3f()
|
|
|
|
path_var.start_time = now + target_dt
|
|
path_var.last_time = now
|
|
path_var.average_dt = target_dt
|
|
path_var.scaled_dt = target_dt
|
|
path_var.sideslip_angle_rad = 0.0
|
|
path_var.last_ang_rate_dps = Vector3f()
|
|
|
|
path_var.path_t = 0
|
|
return true
|
|
end
|
|
|
|
|
|
local vel_length = ahrs:get_velocity_NED():length()
|
|
|
|
local actual_dt = now - path_var.last_time
|
|
|
|
local local_n_dt = actual_dt/path_var.total_time
|
|
|
|
-- airspeed, assume we don't go below min
|
|
local airspeed_constrained = math.max(ARSPD_FBW_MIN:get(), ahrs:airspeed_estimate())
|
|
|
|
path_var.last_time = now
|
|
|
|
if path_var.path_t + 2*local_n_dt > 1.0 then
|
|
return false
|
|
end
|
|
|
|
--[[
|
|
calculate positions and angles at previous, current and next time steps
|
|
--]]
|
|
|
|
next_target_pos_ef = next_target_pos_ef
|
|
local p0, r0, s0 = rotate_path(path, path_var.path_t,
|
|
path_var.initial_ori, path_var.initial_ef_pos)
|
|
local p1, r1, s1 = rotate_path(path, path_var.path_t + 1*local_n_dt,
|
|
path_var.initial_ori, path_var.initial_ef_pos)
|
|
local p2, r2, s2 = rotate_path(path, path_var.path_t + 2*local_n_dt,
|
|
path_var.initial_ori, path_var.initial_ef_pos)
|
|
|
|
local current_measured_pos_ef = ahrs:get_relative_position_NED_origin()
|
|
|
|
--[[
|
|
get tangents to the path
|
|
--]]
|
|
local tangent1_ef = p1 - p0
|
|
local tangent2_ef = p2 - p1
|
|
|
|
local tv_unit = tangent2_ef:copy()
|
|
if tv_unit:length() < 0.00001 then
|
|
gcs:send_text(0, string.format("path not advancing %f", tv_unit:length()))
|
|
end
|
|
tv_unit:normalize()
|
|
|
|
--[[
|
|
use actual vehicle velocity to calculate how far along the
|
|
path we have progressed
|
|
--]]
|
|
local v = ahrs:get_velocity_NED()
|
|
local path_dist = v:dot(tv_unit)*actual_dt
|
|
if path_dist < 0 then
|
|
gcs:send_text(0, string.format("aborting %.2f", path_dist))
|
|
return false
|
|
end
|
|
local path_t_delta = constrain(path_dist/path_var.length, 0.2*local_n_dt, 4*local_n_dt)
|
|
|
|
--[[
|
|
recalculate the current path position and angle based on actual delta time
|
|
--]]
|
|
p1, r1, s1 = rotate_path(path,
|
|
constrain(path_var.path_t + path_t_delta, 0, 1),
|
|
path_var.initial_ori, path_var.initial_ef_pos)
|
|
p2, r2, s2 = rotate_path(path,
|
|
constrain(path_var.path_t + 2*path_t_delta, 0, 1),
|
|
path_var.initial_ori, path_var.initial_ef_pos)
|
|
|
|
path_var.path_t = path_var.path_t + path_t_delta
|
|
|
|
-- tangents needs to be recalculated
|
|
tangent1_ef = p1 - p0
|
|
tangent2_ef = p2 - p1
|
|
tv_unit = tangent2_ef:copy()
|
|
tv_unit:normalize()
|
|
|
|
-- error in position versus current point on the path
|
|
local pos_error_ef = current_measured_pos_ef - p1
|
|
|
|
--[[
|
|
calculate a time correction. We first get the projection of
|
|
the position error onto the track. This tells us how far we
|
|
are ahead or behind on the track
|
|
--]]
|
|
local path_dist_err_m = tv_unit:dot(pos_error_ef)
|
|
|
|
-- normalize against the total path length
|
|
local path_err_t = path_dist_err_m / path_var.length
|
|
|
|
-- don't allow the path to go backwards in time, or faster than twice the actual rate
|
|
path_err_t = constrain(path_err_t, -0.9*path_t_delta, 2*path_t_delta)
|
|
|
|
-- correct time to bring us back into sync
|
|
path_var.path_t = path_var.path_t + TIME_CORR_P:get() * path_err_t
|
|
|
|
|
|
--[[
|
|
calculation of error correction, calculating acceleration
|
|
needed to bring us back on the path, and body rates in pitch and
|
|
yaw to achieve those accelerations
|
|
--]]
|
|
|
|
-- component of pos_err perpendicular to the current path tangent
|
|
local B = ortho_proj(pos_error_ef, tv_unit)
|
|
|
|
-- derivative of pos_err perpendicular to the current path tangent, assuming tangent is constant
|
|
local B_dot = ortho_proj(v, tv_unit)
|
|
|
|
-- gains for error correction.
|
|
local acc_err_ef = B:scale(ERR_CORR_P:get()) + B_dot:scale(ERR_CORR_D:get())
|
|
|
|
local acc_err_bf = ahrs:earth_to_body(acc_err_ef)
|
|
|
|
local TAS = constrain(ahrs:get_EAS2TAS()*airspeed_constrained, 3, 100)
|
|
local corr_rate_bf_y_rads = -acc_err_bf:z()/TAS
|
|
local corr_rate_bf_z_rads = acc_err_bf:y()/TAS
|
|
|
|
local cor_ang_vel_bf_rads = makeVector3f(0.0, corr_rate_bf_y_rads, corr_rate_bf_z_rads)
|
|
if Vec3IsNaN(cor_ang_vel_bf_rads) then
|
|
cor_ang_vel_bf_rads = makeVector3f(0,0,0)
|
|
end
|
|
local cor_ang_vel_bf_dps = cor_ang_vel_bf_rads:scale(math.deg(1))
|
|
|
|
if path_var.count < 2 then
|
|
cor_ang_vel_bf_dps = Vector3f()
|
|
end
|
|
|
|
|
|
--[[
|
|
work out body frame path rate, this is based on two adjacent tangents on the path
|
|
--]]
|
|
local path_rate_ef_rads = vectors_to_angular_rate(tangent1_ef, tangent2_ef, actual_dt)
|
|
if Vec3IsNaN(path_rate_ef_rads) then
|
|
gcs:send_text(0,string.format("path_rate_ef_rads: NaN"))
|
|
path_rate_ef_rads = makeVector3f(0,0,0)
|
|
end
|
|
local path_rate_ef_dps = path_rate_ef_rads:scale(math.deg(1))
|
|
local path_rate_bf_dps = ahrs:earth_to_body(path_rate_ef_dps)
|
|
|
|
-- set the path roll rate
|
|
path_rate_bf_dps:x(math.deg(wrap_pi(r1 - r0)/actual_dt))
|
|
|
|
|
|
--[[
|
|
calculate body frame roll rate to achieved the desired roll
|
|
angle relative to the maneuver path
|
|
--]]
|
|
local zero_roll_angle_delta = Quaternion()
|
|
zero_roll_angle_delta:from_angular_velocity(path_rate_ef_rads, actual_dt)
|
|
|
|
path_var.accumulated_orientation_rel_ef = zero_roll_angle_delta*path_var.accumulated_orientation_rel_ef
|
|
path_var.accumulated_orientation_rel_ef:normalize()
|
|
|
|
local mf_axis = makeVector3f(1, 0, 0)
|
|
path_var.accumulated_orientation_rel_ef:earth_to_body(mf_axis)
|
|
|
|
local orientation_rel_mf_with_roll_angle = Quaternion()
|
|
orientation_rel_mf_with_roll_angle:from_axis_angle(mf_axis, r1)
|
|
orientation_rel_ef_with_roll_angle = orientation_rel_mf_with_roll_angle*path_var.accumulated_orientation_rel_ef
|
|
|
|
--[[
|
|
calculate the error correction for the roll versus the desired roll
|
|
--]]
|
|
local roll_error = orientation_rel_ef_with_roll_angle*ahrs:get_quaternion():inverse()
|
|
roll_error:normalize()
|
|
local err_axis_ef, err_angle_rad = to_axis_and_angle(roll_error)
|
|
local time_const_roll = ROLL_CORR_TC:get()
|
|
local err_angle_rate_ef_rads = err_axis_ef:scale(err_angle_rad/time_const_roll)
|
|
local err_angle_rate_bf_dps = ahrs:earth_to_body(err_angle_rate_ef_rads):scale(math.deg(1))
|
|
-- zero any non-roll components
|
|
err_angle_rate_bf_dps:y(0)
|
|
err_angle_rate_bf_dps:z(0)
|
|
|
|
--[[
|
|
calculate an additional yaw rate to get us to the right angle of sideslip for knifeedge
|
|
--]]
|
|
local current_orient = orientation_rel_ef_with_roll_angle
|
|
local y_proj = quat_projection_ground_plane(current_orient)
|
|
local airspeed_scaling = SCALING_SPEED:get()/path_var.target_speed
|
|
local sideslip_rad = y_proj * (airspeed_scaling*airspeed_scaling) * math.rad(AEROM_KE_ANG:get())
|
|
local ff_yaw_rate_rads = -(sideslip_rad - path_var.sideslip_angle_rad) / target_dt
|
|
|
|
path_var.sideslip_angle_rad = sideslip_rad
|
|
|
|
if path_var.count <= 2 then
|
|
-- prevent an initialisation issue
|
|
ff_yaw_rate_rads = 0.0
|
|
end
|
|
|
|
local sideslip_rate_bf_dps = makeVector3f(0, 0, ff_yaw_rate_rads):scale(math.deg(1))
|
|
|
|
--[[
|
|
total angular rate is sum of path rate, correction rate and roll correction rate
|
|
--]]
|
|
local tot_ang_vel_bf_dps = path_rate_bf_dps + cor_ang_vel_bf_dps + err_angle_rate_bf_dps + sideslip_rate_bf_dps
|
|
|
|
--[[
|
|
apply angular accel limit
|
|
--]]
|
|
local ang_rate_diff_dps = tot_ang_vel_bf_dps - path_var.last_ang_rate_dps
|
|
local max_delta_dps = AEROM_ANG_ACCEL:get() * actual_dt
|
|
if max_delta_dps > 0 then
|
|
ang_rate_diff_dps:x(constrain(ang_rate_diff_dps:x(), -max_delta_dps, max_delta_dps))
|
|
ang_rate_diff_dps:y(constrain(ang_rate_diff_dps:y(), -max_delta_dps, max_delta_dps))
|
|
ang_rate_diff_dps:z(constrain(ang_rate_diff_dps:z(), -max_delta_dps, max_delta_dps))
|
|
tot_ang_vel_bf_dps = path_var.last_ang_rate_dps + ang_rate_diff_dps
|
|
end
|
|
path_var.last_ang_rate_dps = tot_ang_vel_bf_dps
|
|
|
|
|
|
--[[
|
|
log POSM is pose-measured, POST is pose-track, POSB is pose-track without the roll
|
|
--]]
|
|
log_pose('POSM', current_measured_pos_ef, ahrs:get_quaternion())
|
|
log_pose('POST', p1, orientation_rel_ef_with_roll_angle)
|
|
|
|
logger.write('AETM', 'T,Terr','ff',
|
|
path_var.path_t,
|
|
path_err_t)
|
|
|
|
logger.write('AERT','Cx,Cy,Cz,Px,Py,Pz,Ex,Tx,Ty,Tz,Perr,Aerr,Yff', 'fffffffffffff',
|
|
cor_ang_vel_bf_dps:x(), cor_ang_vel_bf_dps:y(), cor_ang_vel_bf_dps:z(),
|
|
path_rate_bf_dps:x(), path_rate_bf_dps:y(), path_rate_bf_dps:z(),
|
|
err_angle_rate_bf_dps:x(),
|
|
tot_ang_vel_bf_dps:x(), tot_ang_vel_bf_dps:y(), tot_ang_vel_bf_dps:z(),
|
|
pos_error_ef:length(),
|
|
wrap_180(math.deg(err_angle_rad)),
|
|
math.deg(ff_yaw_rate_rads))
|
|
|
|
--log_pose('POSB', p1, path_var.accumulated_orientation_rel_ef)
|
|
|
|
--[[
|
|
run the throttle based speed controller
|
|
--]]
|
|
if s1 == nil then
|
|
s1 = path_var.target_speed
|
|
end
|
|
|
|
--[[
|
|
get the anticipated pitch at the throttle lookahead time
|
|
we use the maximum of the current path pitch and the anticipated pitch
|
|
--]]
|
|
local qchange = Quaternion()
|
|
qchange:from_angular_velocity(path_rate_ef_rads, AEROM_THR_LKAHD:get())
|
|
local qnew = qchange * orientation_rel_ef_with_roll_angle
|
|
local anticipated_pitch_rad = math.max(qnew:get_euler_pitch(), orientation_rel_ef_with_roll_angle:get_euler_pitch())
|
|
|
|
throttle = speed_PI.update(s1, anticipated_pitch_rad)
|
|
throttle = constrain(throttle, 0, 100.0)
|
|
|
|
if isNaN(throttle) or Vec3IsNaN(tot_ang_vel_bf_dps) then
|
|
gcs:send_text(0,string.format("Path NaN - aborting"))
|
|
return false
|
|
end
|
|
|
|
vehicle:set_target_throttle_rate_rpy(throttle, tot_ang_vel_bf_dps:x(), tot_ang_vel_bf_dps:y(), tot_ang_vel_bf_dps:z())
|
|
|
|
if now - last_named_float_t > 1.0 / NAME_FLOAT_RATE then
|
|
last_named_float_t = now
|
|
gcs:send_named_float("PERR", pos_error_ef:length())
|
|
end
|
|
|
|
return true
|
|
end
|
|
|
|
--[[
|
|
an object defining a path
|
|
--]]
|
|
function PathFunction(fn, name)
|
|
local self = {}
|
|
self.fn = fn
|
|
self.name = name
|
|
return self
|
|
end
|
|
|
|
command_table = {}
|
|
command_table[1] = PathFunction(figure_eight, "Figure Eight")
|
|
command_table[2] = PathFunction(loop, "Loop")
|
|
command_table[3] = PathFunction(horizontal_rectangle, "Horizontal Rectangle")
|
|
command_table[4] = PathFunction(climbing_circle, "Climbing Circle")
|
|
command_table[5] = PathFunction(vertical_aerobatic_box, "Vertical Box")
|
|
command_table[6] = PathFunction(immelmann_turn_fast, "Immelmann Fast")
|
|
command_table[7] = PathFunction(straight_roll, "Axial Roll")
|
|
command_table[8] = PathFunction(rolling_circle, "Rolling Circle")
|
|
command_table[9] = PathFunction(half_cuban_eight, "Half Cuban Eight")
|
|
command_table[10]= PathFunction(half_reverse_cuban_eight, "Half Reverse Cuban Eight")
|
|
command_table[11]= PathFunction(cuban_eight, "Cuban Eight")
|
|
command_table[12]= PathFunction(humpty_bump, "Humpty Bump")
|
|
command_table[13]= PathFunction(straight_flight, "Straight Flight")
|
|
command_table[14]= PathFunction(scale_figure_eight, "Scale Figure Eight")
|
|
command_table[15]= PathFunction(immelmann_turn, "Immelmann Turn")
|
|
command_table[16]= PathFunction(split_s, "Split-S")
|
|
command_table[17]= PathFunction(upline_45, "Upline-45")
|
|
command_table[18]= PathFunction(downline_45, "Downline-45")
|
|
command_table[19]= PathFunction(stall_turn, "Stall Turn")
|
|
command_table[20]= PathFunction(procedure_turn, "Procedure Turn")
|
|
command_table[21]= PathFunction(derry_turn, "Derry Turn")
|
|
command_table[22]= PathFunction(two_point_roll, "Two Point Roll")
|
|
command_table[23]= PathFunction(half_climbing_circle, "Half Climbing Circle")
|
|
command_table[24]= PathFunction(crossbox_humpty, "Crossbox Humpty")
|
|
command_table[25]= PathFunction(laydown_humpty, "Laydown Humpty")
|
|
command_table[200] = PathFunction(test_all_paths, "Test Suite")
|
|
command_table[201] = PathFunction(nz_clubman, "NZ Clubman")
|
|
command_table[202] = PathFunction(f3a_p23_l_r, "FAI F3A P23 L to R")
|
|
command_table[203] = PathFunction(f4c_example_l_r, "FAI F4C Example L to R")
|
|
command_table[204] = PathFunction(air_show1, "AirShow")
|
|
command_table[205] = PathFunction(fai_f3a_box_l_r, "FAI F3A Aerobatic Box Demonstration")
|
|
command_table[206] = PathFunction(air_show3, "AirShow3")
|
|
|
|
-- get a location structure from a waypoint number
|
|
function get_location(i)
|
|
local m = mission:get_item(i)
|
|
local loc = Location()
|
|
loc:lat(m:x())
|
|
loc:lng(m:y())
|
|
loc:relative_alt(true)
|
|
loc:terrain_alt(false)
|
|
loc:origin_alt(false)
|
|
loc:alt(math.floor(m:z()*100))
|
|
return loc
|
|
end
|
|
|
|
-- set wp location
|
|
function wp_setloc(wp, loc)
|
|
wp:x(loc:lat())
|
|
wp:y(loc:lng())
|
|
wp:z(loc:alt()*0.01)
|
|
end
|
|
|
|
-- add a waypoint to the end of the mission
|
|
function wp_add(loc,ctype,param1,param2)
|
|
local wp = mavlink_mission_item_int_t()
|
|
wp_setloc(wp,loc)
|
|
wp:command(ctype)
|
|
local seq = mission:num_commands()
|
|
wp:seq(seq)
|
|
wp:param1(param1)
|
|
wp:param2(param2)
|
|
wp:frame(3) -- global position, relative alt
|
|
mission:set_item(seq, wp)
|
|
end
|
|
|
|
-- add a NAV_SCRIPT_TIME waypoint to the end of the mission
|
|
function wp_add_nav_script(cmdid,arg1,arg2,arg3,arg4)
|
|
local wp = mavlink_mission_item_int_t()
|
|
wp:command(NAV_SCRIPT_TIME)
|
|
local seq = mission:num_commands()
|
|
wp:seq(seq)
|
|
wp:param1(cmdid)
|
|
wp:param2(0) -- timeout
|
|
wp:param3(arg1)
|
|
wp:param4(arg2)
|
|
wp:x(arg3)
|
|
wp:y(arg4)
|
|
mission:set_item(seq, wp)
|
|
end
|
|
|
|
--[[
|
|
create auto mission 1
|
|
--]]
|
|
function create_auto_mission1()
|
|
local N = mission:num_commands()
|
|
if N ~= 4 then
|
|
gcs:send_text(0,string.format("Auto mission needs takeoff and 2 WPs (got %u)", N))
|
|
return
|
|
end
|
|
local takeoff_m = mission:get_item(1)
|
|
if takeoff_m:command() ~= NAV_TAKEOFF then
|
|
gcs:send_text(0,string.format("First WP needs to be takeoff"))
|
|
return
|
|
end
|
|
local wp1 = get_location(2)
|
|
local wp2 = get_location(3)
|
|
|
|
local wp_dist = wp1:get_distance(wp2)
|
|
local wp_bearing = math.deg(wp1:get_bearing(wp2))
|
|
local radius = AUTO_RAD:get()
|
|
|
|
gcs:send_text(0, string.format("WP Distance %.0fm bearing %.1fdeg", wp_dist, wp_bearing))
|
|
|
|
-- find mid-point, 25% and 75% points
|
|
local wp_mid = wp1:copy()
|
|
wp_mid:offset_bearing(wp_bearing, wp_dist*0.5)
|
|
|
|
local wp_25pct = wp1:copy()
|
|
wp_25pct:offset_bearing(wp_bearing, wp_dist*0.25)
|
|
|
|
local wp_75pct = wp1:copy()
|
|
wp_75pct:offset_bearing(wp_bearing, wp_dist*0.75)
|
|
|
|
gcs:send_text(0,"Adding half cuban eight")
|
|
wp_add_nav_script(9, radius, 0, 0, 0)
|
|
|
|
gcs:send_text(0,"Adding loop")
|
|
wp_add(wp_mid, NAV_WAYPOINT, 0, 1)
|
|
wp_add_nav_script(2, radius, 0, 0, 0)
|
|
|
|
gcs:send_text(0,"Adding half reverse cuban eight")
|
|
wp_add(wp1, NAV_WAYPOINT, 0, 0)
|
|
wp_add_nav_script(10, radius, 0, 0, 0)
|
|
|
|
gcs:send_text(0,"Adding axial roll")
|
|
wp_add(wp_25pct, NAV_WAYPOINT, 0, 1)
|
|
wp_add_nav_script(7, wp_dist*0.5, 1, 0, 0)
|
|
|
|
gcs:send_text(0,"Adding humpty bump")
|
|
wp_add(wp2, NAV_WAYPOINT, 0, 1)
|
|
wp_add_nav_script(12, radius*0.25, 0.5*radius, 0, 0)
|
|
|
|
gcs:send_text(0,"Adding cuban eight")
|
|
wp_add(wp_mid, NAV_WAYPOINT, 0, 0)
|
|
wp_add_nav_script(11, radius, 0, 0, 0)
|
|
|
|
wp_add(wp1, NAV_WAYPOINT, 0, 0)
|
|
|
|
end
|
|
|
|
function create_auto_mission()
|
|
if AUTO_MIS:get() == 1 then
|
|
create_auto_mission1()
|
|
else
|
|
gcs:send_text(0, string.format("Unknown auto mission", AUTO_MIS:get()))
|
|
end
|
|
end
|
|
|
|
function PathTask(fn, name, id, initial_yaw_deg, arg1, arg2, arg3, arg4)
|
|
self = {}
|
|
self.fn = fn(arg1, arg2, arg3, arg4)
|
|
self.name = name
|
|
self.id = id
|
|
self.initial_yaw_deg = initial_yaw_deg
|
|
self.started = false
|
|
return self
|
|
end
|
|
|
|
-- see if an auto mission item needs to be run
|
|
function check_auto_mission()
|
|
id, cmd, arg1, arg2, arg3, arg4 = vehicle:nav_script_time()
|
|
if not id then
|
|
return
|
|
end
|
|
if id ~= last_id then
|
|
-- we've started a new command
|
|
current_task = nil
|
|
last_id = id
|
|
local initial_yaw_deg = get_ground_course_deg()
|
|
gcs:send_text(0, string.format("Starting %s!", command_table[cmd].name ))
|
|
|
|
-- work out yaw between previous WP and next WP
|
|
local cnum = mission:get_current_nav_index()
|
|
-- find previous nav waypoint
|
|
local loc_prev = get_wp_location(cnum-1)
|
|
local loc_next = get_wp_location(cnum+1)
|
|
local i= cnum-1
|
|
while get_wp_location(i):lat() == 0 and get_wp_location(i):lng() == 0 do
|
|
i = i-1
|
|
loc_prev = get_wp_location(i)
|
|
end
|
|
-- find next nav waypoint
|
|
i = cnum+1
|
|
while get_wp_location(i):lat() == 0 and get_wp_location(i):lng() == 0 do
|
|
i = i+1
|
|
loc_next = get_wp_location(resolve_jump(i))
|
|
end
|
|
local wp_yaw_deg = math.deg(loc_prev:get_bearing(loc_next))
|
|
if math.abs(wrap_180(initial_yaw_deg - wp_yaw_deg)) > 90 then
|
|
gcs:send_text(0, string.format("Doing turnaround!"))
|
|
wp_yaw_deg = wrap_180(wp_yaw_deg + 180)
|
|
end
|
|
initial_yaw_deg = wp_yaw_deg
|
|
current_task = PathTask(command_table[cmd].fn, command_table[cmd].name,
|
|
id, initial_yaw_deg, arg1, arg2, arg3, arg4)
|
|
end
|
|
end
|
|
|
|
local last_trick_action_state = 0
|
|
local trick_sel_chan = nil
|
|
local last_trick_selection = nil
|
|
|
|
--[[
|
|
get selected trick. Trick numbers are 1 .. TRIK_COUNT. A value of 0 is invalid
|
|
--]]
|
|
function get_trick_selection()
|
|
if trick_sel_chan == nil then
|
|
trick_sel_chan = rc:find_channel_for_option(TRIK_SEL_FN:get())
|
|
if trick_sel_chan == nil then
|
|
return 0
|
|
end
|
|
end
|
|
-- get trick selection based on selection channel input and number of tricks
|
|
local i = math.floor(TRIK_COUNT:get() * constrain(0.5*(trick_sel_chan:norm_input_ignore_trim()+1),0,0.999)+1)
|
|
if TRICKS[i] == nil then
|
|
return 0
|
|
end
|
|
return i
|
|
end
|
|
|
|
--[[
|
|
check for running a trick
|
|
--]]
|
|
function check_trick()
|
|
local selection = get_trick_selection()
|
|
local action = rc:get_aux_cached(TRIK_ACT_FN:get())
|
|
if action == 0 and current_task ~= nil then
|
|
gcs:send_text(0,string.format("Trick aborted"))
|
|
current_task = nil
|
|
last_trick_selection = nil
|
|
-- use invalid mode to disable script control
|
|
vehicle:nav_scripting_enable(255)
|
|
return
|
|
end
|
|
if selection == 0 then
|
|
return
|
|
end
|
|
if action == 1 and selection ~= last_trick_selection then
|
|
local id = TRICKS[selection].id:get()
|
|
if command_table[id] ~= nil then
|
|
local cmd = command_table[id]
|
|
gcs:send_text(0, string.format("Trick %u selected (%s)", selection, cmd.name))
|
|
last_trick_selection = selection
|
|
return
|
|
end
|
|
end
|
|
if current_task ~= nil then
|
|
-- let the task finish
|
|
return
|
|
end
|
|
if action ~= last_trick_action_state then
|
|
last_trick_selection = selection
|
|
last_trick_action_state = action
|
|
if selection == 0 then
|
|
gcs:send_text(0, string.format("No trick selected"))
|
|
return
|
|
end
|
|
local id = TRICKS[selection].id:get()
|
|
if command_table[id] == nil then
|
|
gcs:send_text(0, string.format("Invalid trick ID %u", id))
|
|
return
|
|
end
|
|
local cmd = command_table[id]
|
|
if action == 1 then
|
|
gcs:send_text(0, string.format("Trick %u selected (%s)", selection, cmd.name))
|
|
end
|
|
if action == 2 then
|
|
last_trick_selection = nil
|
|
local current_mode = vehicle:get_mode()
|
|
if not vehicle:nav_scripting_enable(current_mode) then
|
|
gcs:send_text(0, string.format("Tricks not available in mode"))
|
|
return
|
|
end
|
|
gcs:send_text(0, string.format("Trick %u started (%s)", selection, cmd.name))
|
|
local initial_yaw_deg = get_ground_course_deg()
|
|
current_task = PathTask(cmd.fn,
|
|
cmd.name,
|
|
nil,
|
|
initial_yaw_deg,
|
|
TRICKS[selection].args[1]:get(),
|
|
TRICKS[selection].args[2]:get(),
|
|
TRICKS[selection].args[3]:get(),
|
|
TRICKS[selection].args[4]:get())
|
|
end
|
|
end
|
|
|
|
end
|
|
|
|
function update()
|
|
|
|
-- check if we should create a mission
|
|
if AUTO_MIS:get() > 0 then
|
|
create_auto_mission()
|
|
AUTO_MIS:set_and_save(0)
|
|
end
|
|
|
|
if vehicle:get_mode() == MODE_AUTO then
|
|
check_auto_mission()
|
|
elseif TRICKS ~= nil then
|
|
check_trick()
|
|
end
|
|
|
|
if current_task ~= nil then
|
|
if not do_path() then
|
|
gcs:send_text(0, string.format("Finishing %s!", current_task.name))
|
|
if current_task.id ~= nil then
|
|
vehicle:nav_script_time_done(current_task.id)
|
|
else
|
|
-- use invalid mode to disable script control
|
|
vehicle:nav_scripting_enable(255)
|
|
end
|
|
current_task = nil
|
|
end
|
|
end
|
|
|
|
return update, 1000.0/LOOP_RATE
|
|
end
|
|
|
|
return update()
|