Ardupilot2/libraries/AP_InertialSensor/AP_InertialSensor_LSM303D.cpp
2014-08-19 10:08:17 +10:00

829 lines
25 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/****************************************************************************
*
* Coded by Víctor Mayoral Vilches <v.mayoralv@gmail.com> using
* lsm3030d.cpp <https://github.com/diydrones/PX4Firmware> from the PX4 Development Team.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include <AP_HAL.h>
#include "AP_InertialSensor_LSM303D.h"
extern const AP_HAL::HAL& hal;
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2
#define LSM303D_DRDY_PIN 70
#elif CONFIG_HAL_BOARD == HAL_BOARD_LINUX
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_ERLE || CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_PXF
#include "../AP_HAL_Linux/GPIO.h"
#define LSM303D_DRDY_X_PIN BBB_P8_8 // ACCEL DRDY
#define LSM303D_DRDY_M_PIN BBB_P8_10 // MAGNETOMETER DRDY
#endif
#endif
/* SPI protocol address bits */
#define DIR_READ (1<<7)
#define DIR_WRITE (0<<7)
#define ADDR_INCREMENT (1<<6)
/* register addresses: A: accel, M: mag, T: temp */
#define ADDR_WHO_AM_I 0x0F
#define WHO_I_AM 0x49
#define ADDR_OUT_TEMP_L 0x05
#define ADDR_OUT_TEMP_H 0x06
#define ADDR_STATUS_M 0x07
#define ADDR_OUT_X_L_M 0x08
#define ADDR_OUT_X_H_M 0x09
#define ADDR_OUT_Y_L_M 0x0A
#define ADDR_OUT_Y_H_M 0x0B
#define ADDR_OUT_Z_L_M 0x0C
#define ADDR_OUT_Z_H_M 0x0D
#define ADDR_INT_CTRL_M 0x12
#define ADDR_INT_SRC_M 0x13
#define ADDR_REFERENCE_X 0x1c
#define ADDR_REFERENCE_Y 0x1d
#define ADDR_REFERENCE_Z 0x1e
#define ADDR_STATUS_A 0x27
#define ADDR_OUT_X_L_A 0x28
#define ADDR_OUT_X_H_A 0x29
#define ADDR_OUT_Y_L_A 0x2A
#define ADDR_OUT_Y_H_A 0x2B
#define ADDR_OUT_Z_L_A 0x2C
#define ADDR_OUT_Z_H_A 0x2D
#define ADDR_CTRL_REG0 0x1F
#define ADDR_CTRL_REG1 0x20
#define ADDR_CTRL_REG2 0x21
#define ADDR_CTRL_REG3 0x22
#define ADDR_CTRL_REG4 0x23
#define ADDR_CTRL_REG5 0x24
#define ADDR_CTRL_REG6 0x25
#define ADDR_CTRL_REG7 0x26
#define ADDR_FIFO_CTRL 0x2e
#define ADDR_FIFO_SRC 0x2f
#define ADDR_IG_CFG1 0x30
#define ADDR_IG_SRC1 0x31
#define ADDR_IG_THS1 0x32
#define ADDR_IG_DUR1 0x33
#define ADDR_IG_CFG2 0x34
#define ADDR_IG_SRC2 0x35
#define ADDR_IG_THS2 0x36
#define ADDR_IG_DUR2 0x37
#define ADDR_CLICK_CFG 0x38
#define ADDR_CLICK_SRC 0x39
#define ADDR_CLICK_THS 0x3a
#define ADDR_TIME_LIMIT 0x3b
#define ADDR_TIME_LATENCY 0x3c
#define ADDR_TIME_WINDOW 0x3d
#define ADDR_ACT_THS 0x3e
#define ADDR_ACT_DUR 0x3f
#define REG1_RATE_BITS_A ((1<<7) | (1<<6) | (1<<5) | (1<<4))
#define REG1_POWERDOWN_A ((0<<7) | (0<<6) | (0<<5) | (0<<4))
#define REG1_RATE_3_125HZ_A ((0<<7) | (0<<6) | (0<<5) | (1<<4))
#define REG1_RATE_6_25HZ_A ((0<<7) | (0<<6) | (1<<5) | (0<<4))
#define REG1_RATE_12_5HZ_A ((0<<7) | (0<<6) | (1<<5) | (1<<4))
#define REG1_RATE_25HZ_A ((0<<7) | (1<<6) | (0<<5) | (0<<4))
#define REG1_RATE_50HZ_A ((0<<7) | (1<<6) | (0<<5) | (1<<4))
#define REG1_RATE_100HZ_A ((0<<7) | (1<<6) | (1<<5) | (0<<4))
#define REG1_RATE_200HZ_A ((0<<7) | (1<<6) | (1<<5) | (1<<4))
#define REG1_RATE_400HZ_A ((1<<7) | (0<<6) | (0<<5) | (0<<4))
#define REG1_RATE_800HZ_A ((1<<7) | (0<<6) | (0<<5) | (1<<4))
#define REG1_RATE_1600HZ_A ((1<<7) | (0<<6) | (1<<5) | (0<<4))
#define REG1_BDU_UPDATE (1<<3)
#define REG1_Z_ENABLE_A (1<<2)
#define REG1_Y_ENABLE_A (1<<1)
#define REG1_X_ENABLE_A (1<<0)
#define REG2_ANTIALIAS_FILTER_BW_BITS_A ((1<<7) | (1<<6))
#define REG2_AA_FILTER_BW_773HZ_A ((0<<7) | (0<<6))
#define REG2_AA_FILTER_BW_194HZ_A ((0<<7) | (1<<6))
#define REG2_AA_FILTER_BW_362HZ_A ((1<<7) | (0<<6))
#define REG2_AA_FILTER_BW_50HZ_A ((1<<7) | (1<<6))
#define REG2_FULL_SCALE_BITS_A ((1<<5) | (1<<4) | (1<<3))
#define REG2_FULL_SCALE_2G_A ((0<<5) | (0<<4) | (0<<3))
#define REG2_FULL_SCALE_4G_A ((0<<5) | (0<<4) | (1<<3))
#define REG2_FULL_SCALE_6G_A ((0<<5) | (1<<4) | (0<<3))
#define REG2_FULL_SCALE_8G_A ((0<<5) | (1<<4) | (1<<3))
#define REG2_FULL_SCALE_16G_A ((1<<5) | (0<<4) | (0<<3))
#define REG5_ENABLE_T (1<<7)
#define REG5_RES_HIGH_M ((1<<6) | (1<<5))
#define REG5_RES_LOW_M ((0<<6) | (0<<5))
#define REG5_RATE_BITS_M ((1<<4) | (1<<3) | (1<<2))
#define REG5_RATE_3_125HZ_M ((0<<4) | (0<<3) | (0<<2))
#define REG5_RATE_6_25HZ_M ((0<<4) | (0<<3) | (1<<2))
#define REG5_RATE_12_5HZ_M ((0<<4) | (1<<3) | (0<<2))
#define REG5_RATE_25HZ_M ((0<<4) | (1<<3) | (1<<2))
#define REG5_RATE_50HZ_M ((1<<4) | (0<<3) | (0<<2))
#define REG5_RATE_100HZ_M ((1<<4) | (0<<3) | (1<<2))
#define REG5_RATE_DO_NOT_USE_M ((1<<4) | (1<<3) | (0<<2))
#define REG6_FULL_SCALE_BITS_M ((1<<6) | (1<<5))
#define REG6_FULL_SCALE_2GA_M ((0<<6) | (0<<5))
#define REG6_FULL_SCALE_4GA_M ((0<<6) | (1<<5))
#define REG6_FULL_SCALE_8GA_M ((1<<6) | (0<<5))
#define REG6_FULL_SCALE_12GA_M ((1<<6) | (1<<5))
#define REG7_CONT_MODE_M ((0<<1) | (0<<0))
#define INT_CTRL_M 0x12
#define INT_SRC_M 0x13
/* default values for this device */
#define LSM303D_ACCEL_DEFAULT_RANGE_G 8
#define LSM303D_ACCEL_DEFAULT_RATE 800
#define LSM303D_ACCEL_DEFAULT_ONCHIP_FILTER_FREQ 50
#define LSM303D_ACCEL_DEFAULT_DRIVER_FILTER_FREQ 30
#define LSM303D_MAG_DEFAULT_RANGE_GA 2
#define LSM303D_MAG_DEFAULT_RATE 100
#define LSM303D_ONE_G 9.80665f
AP_InertialSensor_LSM303D::AP_InertialSensor_LSM303D() :
AP_InertialSensor(),
_drdy_pin_x(NULL),
_drdy_pin_m(NULL),
_initialised(false),
_LSM303D_product_id(AP_PRODUCT_ID_NONE)
{
}
uint16_t AP_InertialSensor_LSM303D::_init_sensor( Sample_rate sample_rate )
{
if (_initialised) return _LSM303D_product_id;
_initialised = true;
_spi = hal.spi->device(AP_HAL::SPIDevice_LSM303D);
_spi_sem = _spi->get_semaphore();
// This device has mag and accel
#ifdef LSM303D_DRDY_X_PIN
_drdy_pin_x = hal.gpio->channel(LSM303D_DRDY_X_PIN);
_drdy_pin_x->mode(HAL_GPIO_INPUT);
#endif
#ifdef LSM303D_DRDY_M_PIN
_drdy_pin_m = hal.gpio->channel(LSM303D_DRDY_M_PIN);
_drdy_pin_m->mode(HAL_GPIO_INPUT);
#endif
hal.scheduler->suspend_timer_procs();
// Test WHOAMI
uint8_t whoami = _register_read(ADDR_WHO_AM_I);
if (whoami != WHO_I_AM) {
// TODO: we should probably accept multiple chip
// revisions. This is the one on the PXF
hal.console->printf("LSM303D: unexpected WHOAMI 0x%x\n", (unsigned)whoami);
hal.scheduler->panic(PSTR("LSM303D: bad WHOAMI"));
}
uint8_t tries = 0;
do {
bool success = _hardware_init(sample_rate);
if (success) {
hal.scheduler->delay(5+2);
if (!_spi_sem->take(100)) {
hal.scheduler->panic(PSTR("LSM303D: Unable to get semaphore"));
}
if (_data_ready()) {
_spi_sem->give();
break;
} else {
hal.console->println_P(
PSTR("LSM303D startup failed: no data ready"));
}
_spi_sem->give();
}
if (tries++ > 5) {
hal.scheduler->panic(PSTR("PANIC: failed to boot LSM303D 5 times"));
}
} while (1);
hal.scheduler->resume_timer_procs();
/* read the first lot of data.
* _read_data_transaction requires the spi semaphore to be taken by
* its caller. */
_last_sample_time_micros = hal.scheduler->micros();
hal.scheduler->delay(10);
if (_spi_sem->take(100)) {
_read_data_transaction();
_spi_sem->give();
}
// start the timer process to read samples
hal.scheduler->register_timer_process(AP_HAL_MEMBERPROC(&AP_InertialSensor_LSM303D::_poll_data));
#if LSM303D_DEBUG
_dump_registers();
#endif
return _LSM303D_product_id;
}
/*================ AP_INERTIALSENSOR PUBLIC INTERFACE ==================== */
bool AP_InertialSensor_LSM303D::wait_for_sample(uint16_t timeout_ms)
{
if (_sample_available()) {
return true;
}
uint32_t start = hal.scheduler->millis();
while ((hal.scheduler->millis() - start) < timeout_ms) {
hal.scheduler->delay_microseconds(100);
if (_sample_available()) {
return true;
}
}
return false;
}
bool AP_InertialSensor_LSM303D::update( void )
{
// wait for at least 1 sample
if (!wait_for_sample(1000)) {
return false;
}
// disable timer procs for mininum time
hal.scheduler->suspend_timer_procs();
_accel[0] = Vector3f(_accel_sum.x, _accel_sum.y, _accel_sum.z);
// _mag[0] = Vector3f(_mag_sum.x, _mag_sum.y, _mag_sum.z);
_num_samples = _sum_count;
_accel_sum.zero();
_mag_sum.zero();
_sum_count = 0;
hal.scheduler->resume_timer_procs();
_accel[0].rotate(_board_orientation);
// TODO change this for the corresponding value
// _accel[0] *= MPU6000_ACCEL_SCALE_1G / _num_samples;
// Vector3f accel_scale = _accel_scale[0].get();
// _accel[0].x *= accel_scale.x;
// _accel[0].y *= accel_scale.y;
// _accel[0].z *= accel_scale.z;
// _accel[0] -= _accel_offset[0];
// TODO similarly put mag values in _mag and scale them
// if (_last_filter_hz != _LSM303D_filter) {
// if (_spi_sem->take(10)) {
// _spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_LOW);
// _set_filter_register(_LSM303D_filter, 0);
// _spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_HIGH);
// _error_count = 0;
// _spi_sem->give();
// }
// }
return true;
}
/*================ HARDWARE FUNCTIONS ==================== */
/**
* Return true if the LSM303D has new data available for both the mag and the accels.
*
* We use the data ready pin if it is available. Otherwise, read the
* status register.
*/
bool AP_InertialSensor_LSM303D::_data_ready()
{
if (_drdy_pin_m && _drdy_pin_x) {
return (_drdy_pin_m->read() && _drdy_pin_x->read()) != 0;
}
// TODO: read status register
return false;
}
/**
* Timer process to poll for new data from the LSM303D.
*/
void AP_InertialSensor_LSM303D::_poll_data(void)
{
if (hal.scheduler->in_timerprocess()) {
if (!_spi_sem->take_nonblocking()) {
/*
the semaphore being busy is an expected condition when the
mainline code is calling wait_for_sample() which will
grab the semaphore. We return now and rely on the mainline
code grabbing the latest sample.
*/
return;
}
if (_data_ready()) {
_last_sample_time_micros = hal.scheduler->micros();
_read_data_transaction();
}
_spi_sem->give();
} else {
/* Synchronous read - take semaphore */
if (_spi_sem->take(10)) {
if (_data_ready()) {
_last_sample_time_micros = hal.scheduler->micros();
_read_data_transaction();
}
_spi_sem->give();
} else {
hal.scheduler->panic(
PSTR("PANIC: AP_InertialSensor_LSM303D::_poll_data "
"failed to take SPI semaphore synchronously"));
}
}
}
void AP_InertialSensor_LSM303D::_read_data_transaction_accel()
{
if (_register_read(ADDR_CTRL_REG1) != _reg1_expected) {
hal.console->println_P(
PSTR("LSM303D _read_data_transaction_accel: _reg1_expected unexpected"));
// reset();
return;
}
struct {
uint8_t cmd;
uint8_t status;
int16_t x;
int16_t y;
int16_t z;
} raw_accel_report;
/* fetch data from the sensor */
memset(&raw_accel_report, 0, sizeof(raw_accel_report));
raw_accel_report.cmd = ADDR_STATUS_A | DIR_READ | ADDR_INCREMENT;
_spi->transaction((uint8_t *)&raw_accel_report, (uint8_t *)&raw_accel_report, sizeof(raw_accel_report));
_accel_sum.x += raw_accel_report.x;
_accel_sum.y += raw_accel_report.y;
_accel_sum.z += raw_accel_report.z;
}
void AP_InertialSensor_LSM303D::_read_data_transaction_mag() {
if (_register_read(ADDR_CTRL_REG7) != _reg7_expected) {
hal.console->println_P(
PSTR("LSM303D _read_data_transaction_accel: _reg7_expected unexpected"));
// reset();
return;
}
struct {
uint8_t cmd;
uint8_t status;
int16_t x;
int16_t y;
int16_t z;
} raw_mag_report;
/* fetch data from the sensor */
memset(&raw_mag_report, 0, sizeof(raw_mag_report));
raw_mag_report.cmd = ADDR_STATUS_M | DIR_READ | ADDR_INCREMENT;
_spi->transaction((uint8_t *)&raw_mag_report, (uint8_t *)&raw_mag_report, sizeof(raw_mag_report));
_mag_sum.x = raw_mag_report.x;
_mag_sum.y = raw_mag_report.y;
_mag_sum.z = raw_mag_report.z;
}
void AP_InertialSensor_LSM303D::_read_data_transaction() {
_read_data_transaction_accel();
_read_data_transaction_mag();
_sum_count++;
if (_sum_count == 0) {
// rollover - v unlikely
_accel_sum.zero();
_mag_sum.zero();
}
}
uint8_t AP_InertialSensor_LSM303D::_register_read( uint8_t reg )
{
uint8_t addr = reg | 0x80; // Set most significant bit
uint8_t tx[2];
uint8_t rx[2];
tx[0] = addr;
tx[1] = 0;
_spi->transaction(tx, rx, 2);
return rx[1];
}
void AP_InertialSensor_LSM303D::_register_write(uint8_t reg, uint8_t val)
{
uint8_t tx[2];
uint8_t rx[2];
tx[0] = reg;
tx[1] = val;
_spi->transaction(tx, rx, 2);
}
/*
useful when debugging SPI bus errors
*/
void AP_InertialSensor_LSM303D::_register_write_check(uint8_t reg, uint8_t val)
{
uint8_t readed;
_register_write(reg, val);
readed = _register_read(reg);
if (readed != val){
hal.console->printf_P(PSTR("Values doesn't match; written: %02x; read: %02x "), val, readed);
}
#if LSM303D_DEBUG
hal.console->printf_P(PSTR("Values written: %02x; readed: %02x "), val, readed);
#endif
}
void AP_InertialSensor_LSM303D::_register_modify(uint8_t reg, uint8_t clearbits, uint8_t setbits)
{
uint8_t val;
val = _register_read(reg);
val &= ~clearbits;
val |= setbits;
_register_write(reg, val);
}
/*
set the DLPF filter frequency. Assumes caller has taken semaphore
TODO needs to be changed according to LSM303D needs
*/
// void AP_InertialSensor_LSM303D::_set_filter_register(uint8_t filter_hz, uint8_t default_filter)
// {
// uint8_t filter = default_filter;
// // choose filtering frequency
// switch (filter_hz) {
// case 5:
// filter = BITS_DLPF_CFG_5HZ;
// break;
// case 10:
// filter = BITS_DLPF_CFG_10HZ;
// break;
// case 20:
// filter = BITS_DLPF_CFG_20HZ;
// break;
// case 42:
// filter = BITS_DLPF_CFG_42HZ;
// break;
// case 98:
// filter = BITS_DLPF_CFG_98HZ;
// break;
// }
// if (filter != 0) {
// _last_filter_hz = filter_hz;
// _register_write(MPUREG_CONFIG, filter);
// }
// }
void AP_InertialSensor_LSM303D::disable_i2c(void)
{
uint8_t a = _register_read(0x02);
_register_write(0x02, (0x10 | a));
a = _register_read(0x02);
_register_write(0x02, (0xF7 & a));
a = _register_read(0x15);
_register_write(0x15, (0x80 | a));
a = _register_read(0x02);
_register_write(0x02, (0xE7 & a));
}
uint8_t AP_InertialSensor_LSM303D::accel_set_range(uint8_t max_g)
{
uint8_t setbits = 0;
uint8_t clearbits = REG2_FULL_SCALE_BITS_A;
float new_scale_g_digit = 0.0f;
if (max_g == 0)
max_g = 16;
if (max_g <= 2) {
_accel_range_m_s2 = 2.0f*LSM303D_ONE_G;
setbits |= REG2_FULL_SCALE_2G_A;
new_scale_g_digit = 0.061e-3f;
} else if (max_g <= 4) {
_accel_range_m_s2 = 4.0f*LSM303D_ONE_G;
setbits |= REG2_FULL_SCALE_4G_A;
new_scale_g_digit = 0.122e-3f;
} else if (max_g <= 6) {
_accel_range_m_s2 = 6.0f*LSM303D_ONE_G;
setbits |= REG2_FULL_SCALE_6G_A;
new_scale_g_digit = 0.183e-3f;
} else if (max_g <= 8) {
_accel_range_m_s2 = 8.0f*LSM303D_ONE_G;
setbits |= REG2_FULL_SCALE_8G_A;
new_scale_g_digit = 0.244e-3f;
} else if (max_g <= 16) {
_accel_range_m_s2 = 16.0f*LSM303D_ONE_G;
setbits |= REG2_FULL_SCALE_16G_A;
new_scale_g_digit = 0.732e-3f;
} else {
return -1;
}
_accel_range_scale = new_scale_g_digit * LSM303D_ONE_G;
_register_modify(ADDR_CTRL_REG2, clearbits, setbits);
return 0;
}
uint8_t AP_InertialSensor_LSM303D::accel_set_samplerate(uint8_t frequency)
{
uint8_t setbits = 0;
uint8_t clearbits = REG1_RATE_BITS_A;
if (frequency == 0)
frequency = 1600;
if (frequency <= 100) {
setbits |= REG1_RATE_100HZ_A;
_accel_samplerate = 100;
} else if (frequency <= 200) {
setbits |= REG1_RATE_200HZ_A;
_accel_samplerate = 200;
} else if (frequency <= 400) {
setbits |= REG1_RATE_400HZ_A;
_accel_samplerate = 400;
} else if (frequency <= 800) {
setbits |= REG1_RATE_800HZ_A;
_accel_samplerate = 800;
} else if (frequency <= 1600) {
setbits |= REG1_RATE_1600HZ_A;
_accel_samplerate = 1600;
} else {
return -1;
}
_register_modify(ADDR_CTRL_REG1, clearbits, setbits);
_reg1_expected = (_reg1_expected & ~clearbits) | setbits;
return 0;
}
uint8_t AP_InertialSensor_LSM303D::accel_set_onchip_lowpass_filter_bandwidth(uint8_t bandwidth)
{
uint8_t setbits = 0;
uint8_t clearbits = REG2_ANTIALIAS_FILTER_BW_BITS_A;
if (bandwidth == 0)
bandwidth = 773;
if (bandwidth <= 50) {
setbits |= REG2_AA_FILTER_BW_50HZ_A;
_accel_onchip_filter_bandwith = 50;
} else if (bandwidth <= 194) {
setbits |= REG2_AA_FILTER_BW_194HZ_A;
_accel_onchip_filter_bandwith = 194;
} else if (bandwidth <= 362) {
setbits |= REG2_AA_FILTER_BW_362HZ_A;
_accel_onchip_filter_bandwith = 362;
} else if (bandwidth <= 773) {
setbits |= REG2_AA_FILTER_BW_773HZ_A;
_accel_onchip_filter_bandwith = 773;
} else {
return -1;
}
_register_modify(ADDR_CTRL_REG2, clearbits, setbits);
return 0;
}
uint8_t AP_InertialSensor_LSM303D::mag_set_range(uint8_t max_ga)
{
uint8_t setbits = 0;
uint8_t clearbits = REG6_FULL_SCALE_BITS_M;
float new_scale_ga_digit = 0.0f;
if (max_ga == 0)
max_ga = 12;
if (max_ga <= 2) {
_mag_range_ga = 2;
setbits |= REG6_FULL_SCALE_2GA_M;
new_scale_ga_digit = 0.080e-3f;
} else if (max_ga <= 4) {
_mag_range_ga = 4;
setbits |= REG6_FULL_SCALE_4GA_M;
new_scale_ga_digit = 0.160e-3f;
} else if (max_ga <= 8) {
_mag_range_ga = 8;
setbits |= REG6_FULL_SCALE_8GA_M;
new_scale_ga_digit = 0.320e-3f;
} else if (max_ga <= 12) {
_mag_range_ga = 12;
setbits |= REG6_FULL_SCALE_12GA_M;
new_scale_ga_digit = 0.479e-3f;
} else {
return -1;
}
_mag_range_scale = new_scale_ga_digit;
_register_modify(ADDR_CTRL_REG6, clearbits, setbits);
return 0;
}
uint8_t AP_InertialSensor_LSM303D::mag_set_samplerate(uint8_t frequency)
{
uint8_t setbits = 0;
uint8_t clearbits = REG5_RATE_BITS_M;
if (frequency == 0)
frequency = 100;
if (frequency <= 25) {
setbits |= REG5_RATE_25HZ_M;
_mag_samplerate = 25;
} else if (frequency <= 50) {
setbits |= REG5_RATE_50HZ_M;
_mag_samplerate = 50;
} else if (frequency <= 100) {
setbits |= REG5_RATE_100HZ_M;
_mag_samplerate = 100;
} else {
return -1;
}
_register_modify(ADDR_CTRL_REG5, clearbits, setbits);
return 0;
}
bool AP_InertialSensor_LSM303D::_hardware_init(Sample_rate sample_rate)
{
if (!_spi_sem->take(100)) {
hal.scheduler->panic(PSTR("LSM303D: Unable to get semaphore"));
}
// initially run the bus at low speed
_spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_LOW);
// ensure the chip doesn't interpret any other bus traffic as I2C
disable_i2c();
/* enable accel*/
_reg1_expected = REG1_X_ENABLE_A | REG1_Y_ENABLE_A | REG1_Z_ENABLE_A | REG1_BDU_UPDATE | REG1_RATE_800HZ_A;
_register_write(ADDR_CTRL_REG1, _reg1_expected);
/* enable mag */
_reg7_expected = REG7_CONT_MODE_M;
_register_write(ADDR_CTRL_REG7, _reg7_expected);
_register_write(ADDR_CTRL_REG5, REG5_RES_HIGH_M);
_register_write(ADDR_CTRL_REG3, 0x04); // DRDY on ACCEL on INT1
_register_write(ADDR_CTRL_REG4, 0x04); // DRDY on MAG on INT2
accel_set_range(LSM303D_ACCEL_DEFAULT_RANGE_G);
accel_set_samplerate(LSM303D_ACCEL_DEFAULT_RATE);
// Hardware filtering
// we setup the anti-alias on-chip filter as 50Hz. We believe
// this operates in the analog domain, and is critical for
// anti-aliasing. The 2 pole software filter is designed to
// operate in conjunction with this on-chip filter
accel_set_onchip_lowpass_filter_bandwidth(LSM303D_ACCEL_DEFAULT_ONCHIP_FILTER_FREQ);
mag_set_range(LSM303D_MAG_DEFAULT_RANGE_GA);
mag_set_samplerate(LSM303D_MAG_DEFAULT_RATE);
// TODO: Software filtering
// accel_set_driver_lowpass_filter((float)LSM303D_ACCEL_DEFAULT_RATE, (float)LSM303D_ACCEL_DEFAULT_DRIVER_FILTER_FREQ);
// uint8_t default_filter;
// // sample rate and filtering
// // to minimise the effects of aliasing we choose a filter
// // that is less than half of the sample rate
// switch (sample_rate) {
// case RATE_50HZ:
// // this is used for plane and rover, where noise resistance is
// // more important than update rate. Tests on an aerobatic plane
// // show that 10Hz is fine, and makes it very noise resistant
// default_filter = BITS_DLPF_CFG_10HZ;
// _sample_shift = 2;
// break;
// case RATE_100HZ:
// default_filter = BITS_DLPF_CFG_20HZ;
// _sample_shift = 1;
// break;
// case RATE_200HZ:
// default:
// default_filter = BITS_DLPF_CFG_20HZ;
// _sample_shift = 0;
// break;
// }
// _set_filter_register(_LSM303D_filter, default_filter);
// now that we have initialised, we set the SPI bus speed to high
_spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_HIGH);
_spi_sem->give();
return true;
}
// return true if a sample is available
bool AP_InertialSensor_LSM303D::_sample_available()
{
_poll_data();
// return (_sum_count >> _sample_shift) > 0;
return (_sum_count) > 0;
}
// TODO fix dump registers
#if LSM303D_DEBUG
// dump all config registers - used for debug
void AP_InertialSensor_LSM303D::_dump_registers(void)
{
hal.console->println_P(PSTR("LSM303D registers"));
if (_spi_sem->take(100)) {
for (uint8_t reg=ADDR_WHO_AM_I; reg<=56; reg++) { // 0x38 = 56
uint8_t v = _register_read(reg);
hal.console->printf_P(PSTR("%02x:%02x "), (unsigned)reg, (unsigned)v);
if ((reg - (ADDR_WHO_AM_I-1)) % 16 == 0) {
hal.console->println();
}
}
hal.console->println();
_spi_sem->give();
}
}
#endif
// get_delta_time returns the time period in seconds overwhich the sensor data was collected
float AP_InertialSensor_LSM303D::get_delta_time() const
{
// the sensor runs at 200Hz
return 0.005 * _num_samples;
}