Ardupilot2/libraries/AP_Baro/AP_Baro_DroneCAN.cpp
Thomas Watson def199e61f AP_Baro: optimize DroneCAN subscription process
* remove unnecessary nullptr check, these are always called from an
  initialized AP_DroneCAN so if it's nullptr something has gone
  horrifically wrong

* pass in driver index instead of repeatedly calling function to get it

* simplify error handling; knowing exactly which allocation failed is not
  super helpful and one failing likely means subsequent ones will too,
  as it can only fail due to being out of memory
2024-11-18 10:30:29 +11:00

173 lines
5.7 KiB
C++

#include "AP_Baro_DroneCAN.h"
#if AP_BARO_DRONECAN_ENABLED
#include <AP_CANManager/AP_CANManager.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
#include "AP_Baro_SITL.h"
#include <AP_Vehicle/AP_Vehicle_Type.h>
extern const AP_HAL::HAL& hal;
#define LOG_TAG "Baro"
AP_Baro_DroneCAN::DetectedModules AP_Baro_DroneCAN::_detected_modules[];
HAL_Semaphore AP_Baro_DroneCAN::_sem_registry;
/*
constructor - registers instance at top Baro driver
*/
AP_Baro_DroneCAN::AP_Baro_DroneCAN(AP_Baro &baro) :
AP_Baro_Backend(baro)
{}
bool AP_Baro_DroneCAN::subscribe_msgs(AP_DroneCAN* ap_dronecan)
{
const auto driver_index = ap_dronecan->get_driver_index();
return (Canard::allocate_sub_arg_callback(ap_dronecan, &handle_pressure, driver_index) != nullptr)
&& (Canard::allocate_sub_arg_callback(ap_dronecan, &handle_temperature, driver_index) != nullptr)
;
}
AP_Baro_Backend* AP_Baro_DroneCAN::probe(AP_Baro &baro)
{
WITH_SEMAPHORE(_sem_registry);
AP_Baro_DroneCAN* backend = nullptr;
for (uint8_t i = 0; i < BARO_MAX_DRIVERS; i++) {
if (_detected_modules[i].driver == nullptr && _detected_modules[i].ap_dronecan != nullptr) {
backend = NEW_NOTHROW AP_Baro_DroneCAN(baro);
if (backend == nullptr) {
AP::can().log_text(AP_CANManager::LOG_ERROR,
LOG_TAG,
"Failed register DroneCAN Baro Node %d on Bus %d\n",
_detected_modules[i].node_id,
_detected_modules[i].ap_dronecan->get_driver_index());
} else {
_detected_modules[i].driver = backend;
backend->_pressure = 0;
backend->_pressure_count = 0;
backend->_ap_dronecan = _detected_modules[i].ap_dronecan;
backend->_node_id = _detected_modules[i].node_id;
backend->_instance = backend->_frontend.register_sensor();
backend->set_bus_id(backend->_instance, AP_HAL::Device::make_bus_id(AP_HAL::Device::BUS_TYPE_UAVCAN,
_detected_modules[i].ap_dronecan->get_driver_index(),
backend->_node_id, 0));
AP::can().log_text(AP_CANManager::LOG_INFO,
LOG_TAG,
"Registered DroneCAN Baro Node %d on Bus %d\n",
_detected_modules[i].node_id,
_detected_modules[i].ap_dronecan->get_driver_index());
}
break;
}
}
return backend;
}
AP_Baro_DroneCAN* AP_Baro_DroneCAN::get_dronecan_backend(AP_DroneCAN* ap_dronecan, uint8_t node_id, bool create_new)
{
if (ap_dronecan == nullptr) {
return nullptr;
}
for (uint8_t i = 0; i < BARO_MAX_DRIVERS; i++) {
if (_detected_modules[i].driver != nullptr &&
_detected_modules[i].ap_dronecan == ap_dronecan &&
_detected_modules[i].node_id == node_id) {
return _detected_modules[i].driver;
}
}
if (create_new) {
bool already_detected = false;
//Check if there's an empty spot for possible registration
for (uint8_t i = 0; i < BARO_MAX_DRIVERS; i++) {
if (_detected_modules[i].ap_dronecan == ap_dronecan && _detected_modules[i].node_id == node_id) {
//Already Detected
already_detected = true;
break;
}
}
if (!already_detected) {
for (uint8_t i = 0; i < BARO_MAX_DRIVERS; i++) {
if (_detected_modules[i].ap_dronecan == nullptr) {
_detected_modules[i].ap_dronecan = ap_dronecan;
_detected_modules[i].node_id = node_id;
break;
}
}
}
}
return nullptr;
}
void AP_Baro_DroneCAN::_update_and_wrap_accumulator(float *accum, float val, uint8_t *count, const uint8_t max_count)
{
*accum += val;
*count += 1;
if (*count == max_count) {
*count = max_count / 2;
*accum = *accum / 2;
}
}
void AP_Baro_DroneCAN::handle_pressure(AP_DroneCAN *ap_dronecan, const CanardRxTransfer& transfer, const uavcan_equipment_air_data_StaticPressure &msg)
{
AP_Baro_DroneCAN* driver;
{
WITH_SEMAPHORE(_sem_registry);
driver = get_dronecan_backend(ap_dronecan, transfer.source_node_id, true);
if (driver == nullptr) {
return;
}
}
{
WITH_SEMAPHORE(driver->_sem_baro);
_update_and_wrap_accumulator(&driver->_pressure, msg.static_pressure, &driver->_pressure_count, 32);
driver->new_pressure = true;
}
}
void AP_Baro_DroneCAN::handle_temperature(AP_DroneCAN *ap_dronecan, const CanardRxTransfer& transfer, const uavcan_equipment_air_data_StaticTemperature &msg)
{
AP_Baro_DroneCAN* driver;
{
WITH_SEMAPHORE(_sem_registry);
driver = get_dronecan_backend(ap_dronecan, transfer.source_node_id, false);
if (driver == nullptr) {
return;
}
}
{
WITH_SEMAPHORE(driver->_sem_baro);
driver->_temperature = KELVIN_TO_C(msg.static_temperature);
}
}
// Read the sensor
void AP_Baro_DroneCAN::update(void)
{
float pressure = 0;
WITH_SEMAPHORE(_sem_baro);
if (new_pressure) {
if (_pressure_count != 0) {
pressure = _pressure / _pressure_count;
_pressure_count = 0;
_pressure = 0;
}
_copy_to_frontend(_instance, pressure, _temperature);
_frontend.set_external_temperature(_temperature);
new_pressure = false;
}
}
#endif // AP_BARO_DRONECAN_ENABLED