Ardupilot2/ArduCopter/Copter.h
2016-06-22 11:38:15 +09:00

1093 lines
44 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
/*
This is the main Copter class
*/
////////////////////////////////////////////////////////////////////////////////
// Header includes
////////////////////////////////////////////////////////////////////////////////
#include <cmath>
#include <stdio.h>
#include <stdarg.h>
#include <AP_HAL/AP_HAL.h>
// Common dependencies
#include <AP_Common/AP_Common.h>
#include <AP_Common/Location.h>
#include <AP_Menu/AP_Menu.h>
#include <AP_Param/AP_Param.h>
#include <StorageManager/StorageManager.h>
// Application dependencies
#include <GCS_MAVLink/GCS.h>
#include <AP_SerialManager/AP_SerialManager.h> // Serial manager library
#include <AP_GPS/AP_GPS.h> // ArduPilot GPS library
#include <DataFlash/DataFlash.h> // ArduPilot Mega Flash Memory Library
#include <AP_ADC/AP_ADC.h> // ArduPilot Mega Analog to Digital Converter Library
#include <AP_Baro/AP_Baro.h>
#include <AP_Compass/AP_Compass.h> // ArduPilot Mega Magnetometer Library
#include <AP_Math/AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
#include <AP_AccelCal/AP_AccelCal.h> // interface and maths for accelerometer calibration
#include <AP_InertialSensor/AP_InertialSensor.h> // ArduPilot Mega Inertial Sensor (accel & gyro) Library
#include <AP_AHRS/AP_AHRS.h>
#include <AP_NavEKF/AP_NavEKF.h>
#include <AP_NavEKF2/AP_NavEKF2.h>
#include <AP_Mission/AP_Mission.h> // Mission command library
#include <AP_Rally/AP_Rally.h> // Rally point library
#include <AC_PID/AC_PID.h> // PID library
#include <AC_PID/AC_PI_2D.h> // PID library (2-axis)
#include <AC_PID/AC_HELI_PID.h> // Heli specific Rate PID library
#include <AC_PID/AC_P.h> // P library
#include <AC_AttitudeControl/AC_AttitudeControl_Multi.h> // Attitude control library
#include <AC_AttitudeControl/AC_AttitudeControl_Heli.h> // Attitude control library for traditional helicopter
#include <AC_AttitudeControl/AC_PosControl.h> // Position control library
#include <RC_Channel/RC_Channel.h> // RC Channel Library
#include <AP_Motors/AP_Motors.h> // AP Motors library
#include <AP_RangeFinder/AP_RangeFinder.h> // Range finder library
#include <AP_OpticalFlow/AP_OpticalFlow.h> // Optical Flow library
#include <AP_RSSI/AP_RSSI.h> // RSSI Library
#include <Filter/Filter.h> // Filter library
#include <AP_Buffer/AP_Buffer.h> // APM FIFO Buffer
#include <AP_Relay/AP_Relay.h> // APM relay
#include <AP_ServoRelayEvents/AP_ServoRelayEvents.h>
#include <AP_Camera/AP_Camera.h> // Photo or video camera
#include <AP_Mount/AP_Mount.h> // Camera/Antenna mount
#include <AP_Airspeed/AP_Airspeed.h> // needed for AHRS build
#include <AP_Vehicle/AP_Vehicle.h> // needed for AHRS build
#include <AP_InertialNav/AP_InertialNav.h> // ArduPilot Mega inertial navigation library
#include <AC_WPNav/AC_WPNav.h> // ArduCopter waypoint navigation library
#include <AC_WPNav/AC_Circle.h> // circle navigation library
#include <AP_Declination/AP_Declination.h> // ArduPilot Mega Declination Helper Library
#include <AC_Fence/AC_Fence.h> // Arducopter Fence library
#include <AC_Avoidance/AC_Avoid.h> // Arducopter stop at fence library
#include <AP_Scheduler/AP_Scheduler.h> // main loop scheduler
#include <AP_RCMapper/AP_RCMapper.h> // RC input mapping library
#include <AP_Notify/AP_Notify.h> // Notify library
#include <AP_BattMonitor/AP_BattMonitor.h> // Battery monitor library
#include <AP_BoardConfig/AP_BoardConfig.h> // board configuration library
#include <AP_Frsky_Telem/AP_Frsky_Telem.h>
#include <AP_LandingGear/AP_LandingGear.h> // Landing Gear library
#include <AP_Terrain/AP_Terrain.h>
#include <AP_ADSB/AP_ADSB.h>
#include <AP_RPM/AP_RPM.h>
#include <AC_InputManager/AC_InputManager.h> // Pilot input handling library
#include <AC_InputManager/AC_InputManager_Heli.h> // Heli specific pilot input handling library
// Configuration
#include "defines.h"
#include "config.h"
#include "GCS_Mavlink.h"
// libraries which are dependent on #defines in defines.h and/or config.h
#if SPRAYER == ENABLED
#include <AC_Sprayer/AC_Sprayer.h> // crop sprayer library
#endif
#if EPM_ENABLED == ENABLED
#include <AP_EPM/AP_EPM.h> // EPM cargo gripper stuff
#endif
#if PARACHUTE == ENABLED
#include <AP_Parachute/AP_Parachute.h> // Parachute release library
#endif
#if PRECISION_LANDING == ENABLED
#include <AC_PrecLand/AC_PrecLand.h>
#include <AP_IRLock/AP_IRLock.h>
#endif
// Local modules
#include "Parameters.h"
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
#include <SITL/SITL.h>
#endif
class Copter : public AP_HAL::HAL::Callbacks {
public:
friend class GCS_MAVLINK_Copter;
friend class Parameters;
Copter(void);
// HAL::Callbacks implementation.
void setup() override;
void loop() override;
private:
// key aircraft parameters passed to multiple libraries
AP_Vehicle::MultiCopter aparm;
// cliSerial isn't strictly necessary - it is an alias for hal.console. It may
// be deprecated in favor of hal.console in later releases.
AP_HAL::BetterStream* cliSerial;
// Global parameters are all contained within the 'g' class.
Parameters g;
// main loop scheduler
AP_Scheduler scheduler;
// AP_Notify instance
AP_Notify notify;
// used to detect MAVLink acks from GCS to stop compassmot
uint8_t command_ack_counter;
// has a log download started?
bool in_log_download;
// primary input control channels
RC_Channel *channel_roll;
RC_Channel *channel_pitch;
RC_Channel *channel_throttle;
RC_Channel *channel_yaw;
// Dataflash
DataFlash_Class DataFlash;
AP_GPS gps;
// flight modes convenience array
AP_Int8 *flight_modes;
AP_Baro barometer;
Compass compass;
AP_InertialSensor ins;
RangeFinder rangefinder {serial_manager};
struct {
bool enabled:1;
bool alt_healthy:1; // true if we can trust the altitude from the rangefinder
int16_t alt_cm; // tilt compensated altitude (in cm) from rangefinder
uint32_t last_healthy_ms;
LowPassFilterFloat alt_cm_filt; // altitude filter
} rangefinder_state = { false, false, 0, 0 };
AP_RPM rpm_sensor;
// Inertial Navigation EKF
NavEKF EKF{&ahrs, barometer, rangefinder};
NavEKF2 EKF2{&ahrs, barometer, rangefinder};
AP_AHRS_NavEKF ahrs{ins, barometer, gps, rangefinder, EKF, EKF2, AP_AHRS_NavEKF::FLAG_ALWAYS_USE_EKF};
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
SITL::SITL sitl;
#endif
// Mission library
AP_Mission mission;
// Optical flow sensor
#if OPTFLOW == ENABLED
OpticalFlow optflow{ahrs};
#endif
// gnd speed limit required to observe optical flow sensor limits
float ekfGndSpdLimit;
// scale factor applied to velocity controller gain to prevent optical flow noise causing excessive angle demand noise
float ekfNavVelGainScaler;
// system time in milliseconds of last recorded yaw reset from ekf
uint32_t ekfYawReset_ms = 0;
// GCS selection
AP_SerialManager serial_manager;
static const uint8_t num_gcs = MAVLINK_COMM_NUM_BUFFERS;
GCS_MAVLINK_Copter gcs[MAVLINK_COMM_NUM_BUFFERS];
// User variables
#ifdef USERHOOK_VARIABLES
# include USERHOOK_VARIABLES
#endif
// Documentation of GLobals:
union {
struct {
uint8_t unused1 : 1; // 0
uint8_t simple_mode : 2; // 1,2 // This is the state of simple mode : 0 = disabled ; 1 = SIMPLE ; 2 = SUPERSIMPLE
uint8_t pre_arm_rc_check : 1; // 3 // true if rc input pre-arm checks have been completed successfully
uint8_t pre_arm_check : 1; // 4 // true if all pre-arm checks (rc, accel calibration, gps lock) have been performed
uint8_t auto_armed : 1; // 5 // stops auto missions from beginning until throttle is raised
uint8_t logging_started : 1; // 6 // true if dataflash logging has started
uint8_t land_complete : 1; // 7 // true if we have detected a landing
uint8_t new_radio_frame : 1; // 8 // Set true if we have new PWM data to act on from the Radio
uint8_t usb_connected : 1; // 9 // true if APM is powered from USB connection
uint8_t rc_receiver_present : 1; // 10 // true if we have an rc receiver present (i.e. if we've ever received an update
uint8_t compass_mot : 1; // 11 // true if we are currently performing compassmot calibration
uint8_t motor_test : 1; // 12 // true if we are currently performing the motors test
uint8_t initialised : 1; // 13 // true once the init_ardupilot function has completed. Extended status to GCS is not sent until this completes
uint8_t land_complete_maybe : 1; // 14 // true if we may have landed (less strict version of land_complete)
uint8_t throttle_zero : 1; // 15 // true if the throttle stick is at zero, debounced, determines if pilot intends shut-down when not using motor interlock
uint8_t system_time_set : 1; // 16 // true if the system time has been set from the GPS
uint8_t gps_base_pos_set : 1; // 17 // true when the gps base position has been set (used for RTK gps only)
enum HomeState home_state : 2; // 18,19 // home status (unset, set, locked)
uint8_t using_interlock : 1; // 20 // aux switch motor interlock function is in use
uint8_t motor_emergency_stop: 1; // 21 // motor estop switch, shuts off motors when enabled
uint8_t land_repo_active : 1; // 22 // true if the pilot is overriding the landing position
};
uint32_t value;
} ap;
// This is the state of the flight control system
// There are multiple states defined such as STABILIZE, ACRO,
control_mode_t control_mode;
mode_reason_t control_mode_reason = MODE_REASON_UNKNOWN;
control_mode_t prev_control_mode;
mode_reason_t prev_control_mode_reason = MODE_REASON_UNKNOWN;
// Structure used to detect changes in the flight mode control switch
struct {
int8_t debounced_switch_position; // currently used switch position
int8_t last_switch_position; // switch position in previous iteration
uint32_t last_edge_time_ms; // system time that switch position was last changed
} control_switch_state;
struct {
bool running;
float max_speed;
float alt_delta;
uint32_t start_ms;
} takeoff_state;
RCMapper rcmap;
// board specific config
AP_BoardConfig BoardConfig;
// receiver RSSI
uint8_t receiver_rssi;
// Failsafe
struct {
uint8_t rc_override_active : 1; // 0 // true if rc control are overwritten by ground station
uint8_t radio : 1; // 1 // A status flag for the radio failsafe
uint8_t battery : 1; // 2 // A status flag for the battery failsafe
uint8_t gcs : 1; // 4 // A status flag for the ground station failsafe
uint8_t ekf : 1; // 5 // true if ekf failsafe has occurred
uint8_t terrain : 1; // 6 // true if the missing terrain data failsafe has occurred
int8_t radio_counter; // number of iterations with throttle below throttle_fs_value
uint32_t last_heartbeat_ms; // the time when the last HEARTBEAT message arrived from a GCS - used for triggering gcs failsafe
uint32_t terrain_first_failure_ms; // the first time terrain data access failed - used to calculate the duration of the failure
uint32_t terrain_last_failure_ms; // the most recent time terrain data access failed
} failsafe;
// sensor health for logging
struct {
uint8_t baro : 1; // true if baro is healthy
uint8_t compass : 1; // true if compass is healthy
} sensor_health;
// Motor Output
#if FRAME_CONFIG == QUAD_FRAME
#define MOTOR_CLASS AP_MotorsQuad
#elif FRAME_CONFIG == TRI_FRAME
#define MOTOR_CLASS AP_MotorsTri
#elif FRAME_CONFIG == HEXA_FRAME
#define MOTOR_CLASS AP_MotorsHexa
#elif FRAME_CONFIG == Y6_FRAME
#define MOTOR_CLASS AP_MotorsY6
#elif FRAME_CONFIG == OCTA_FRAME
#define MOTOR_CLASS AP_MotorsOcta
#elif FRAME_CONFIG == OCTA_QUAD_FRAME
#define MOTOR_CLASS AP_MotorsOctaQuad
#elif FRAME_CONFIG == HELI_FRAME
#define MOTOR_CLASS AP_MotorsHeli_Single
#elif FRAME_CONFIG == SINGLE_FRAME
#define MOTOR_CLASS AP_MotorsSingle
#elif FRAME_CONFIG == COAX_FRAME
#define MOTOR_CLASS AP_MotorsCoax
#else
#error Unrecognised frame type
#endif
MOTOR_CLASS motors;
// GPS variables
// Sometimes we need to remove the scaling for distance calcs
float scaleLongDown;
// Location & Navigation
int32_t wp_bearing;
// The location of home in relation to the copter in centi-degrees
int32_t home_bearing;
// distance between plane and home in cm
int32_t home_distance;
// distance between plane and next waypoint in cm.
uint32_t wp_distance;
uint8_t land_state; // records state of land (flying to location, descending)
// Auto
AutoMode auto_mode; // controls which auto controller is run
// Guided
GuidedMode guided_mode; // controls which controller is run (pos or vel)
// RTL
RTLState rtl_state; // records state of rtl (initial climb, returning home, etc)
bool rtl_state_complete; // set to true if the current state is completed
struct {
// NEU w/ Z element alt-above-ekf-origin unless use_terrain is true in which case Z element is alt-above-terrain
Location_Class origin_point;
Location_Class climb_target;
Location_Class return_target;
Location_Class descent_target;
bool land;
bool terrain_used;
} rtl_path;
// Circle
bool circle_pilot_yaw_override; // true if pilot is overriding yaw
// SIMPLE Mode
// Used to track the orientation of the copter for Simple mode. This value is reset at each arming
// or in SuperSimple mode when the copter leaves a 20m radius from home.
float simple_cos_yaw;
float simple_sin_yaw;
int32_t super_simple_last_bearing;
float super_simple_cos_yaw;
float super_simple_sin_yaw;
// Stores initial bearing when armed - initial simple bearing is modified in super simple mode so not suitable
int32_t initial_armed_bearing;
// Throttle variables
int16_t desired_climb_rate; // pilot desired climb rate - for logging purposes only
// Loiter control
uint16_t loiter_time_max; // How long we should stay in Loiter Mode for mission scripting (time in seconds)
uint32_t loiter_time; // How long have we been loitering - The start time in millis
// Brake
uint32_t brake_timeout_start;
uint32_t brake_timeout_ms;
// Delay the next navigation command
int32_t nav_delay_time_max; // used for delaying the navigation commands (eg land,takeoff etc.)
uint32_t nav_delay_time_start;
// Flip
Vector3f flip_orig_attitude; // original copter attitude before flip
// Throw
bool throw_early_exit_interlock = true; // value of the throttle interlock that must be restored when exiting throw mode early
bool throw_flight_commenced = false; // true when the throw has been detected and the motors and control loops are running
uint32_t throw_free_fall_start_ms = 0; // system time free fall was detected
float throw_free_fall_start_velz = 0.0f;// vertical velocity when free fall was detected
// Battery Sensors
AP_BattMonitor battery;
// FrSky telemetry support
#if FRSKY_TELEM_ENABLED == ENABLED
AP_Frsky_Telem frsky_telemetry;
#endif
// Altitude
// The cm/s we are moving up or down based on filtered data - Positive = UP
int16_t climb_rate;
float target_rangefinder_alt; // desired altitude in cm above the ground
int32_t baro_alt; // barometer altitude in cm above home
float baro_climbrate; // barometer climbrate in cm/s
LowPassFilterVector3f land_accel_ef_filter; // accelerations for land and crash detector tests
// filtered pilot's throttle input used to cancel landing if throttle held high
LowPassFilterFloat rc_throttle_control_in_filter;
// 3D Location vectors
// Current location of the copter (altitude is relative to home)
Location_Class current_loc;
// Navigation Yaw control
// auto flight mode's yaw mode
uint8_t auto_yaw_mode;
// Yaw will point at this location if auto_yaw_mode is set to AUTO_YAW_ROI
Vector3f roi_WP;
// bearing from current location to the yaw_look_at_WP
float yaw_look_at_WP_bearing;
// yaw used for YAW_LOOK_AT_HEADING yaw_mode
int32_t yaw_look_at_heading;
// Deg/s we should turn
int16_t yaw_look_at_heading_slew;
// heading when in yaw_look_ahead_bearing
float yaw_look_ahead_bearing;
// Delay Mission Scripting Command
int32_t condition_value; // used in condition commands (eg delay, change alt, etc.)
uint32_t condition_start;
// IMU variables
// Integration time (in seconds) for the gyros (DCM algorithm)
// Updated with the fast loop
float G_Dt;
// Inertial Navigation
AP_InertialNav_NavEKF inertial_nav;
// Attitude, Position and Waypoint navigation objects
// To-Do: move inertial nav up or other navigation variables down here
#if FRAME_CONFIG == HELI_FRAME
AC_AttitudeControl_Heli attitude_control;
#else
AC_AttitudeControl_Multi attitude_control;
#endif
AC_PosControl pos_control;
AC_Avoid avoid;
AC_WPNav wp_nav;
AC_Circle circle_nav;
// Performance monitoring
int16_t pmTest1;
// System Timers
// --------------
// Time in microseconds of main control loop
uint32_t fast_loopTimer;
// Counter of main loop executions. Used for performance monitoring and failsafe processing
uint16_t mainLoop_count;
// Loiter timer - Records how long we have been in loiter
uint32_t rtl_loiter_start_time;
// Used to exit the roll and pitch auto trim function
uint8_t auto_trim_counter;
// Reference to the relay object
AP_Relay relay;
// handle repeated servo and relay events
AP_ServoRelayEvents ServoRelayEvents;
// Reference to the camera object (it uses the relay object inside it)
#if CAMERA == ENABLED
AP_Camera camera;
#endif
// Camera/Antenna mount tracking and stabilisation stuff
#if MOUNT == ENABLED
// current_loc uses the baro/gps soloution for altitude rather than gps only.
AP_Mount camera_mount;
#endif
// AC_Fence library to reduce fly-aways
#if AC_FENCE == ENABLED
AC_Fence fence;
#endif
// Rally library
#if AC_RALLY == ENABLED
AP_Rally rally;
#endif
// RSSI
AP_RSSI rssi;
// Crop Sprayer
#if SPRAYER == ENABLED
AC_Sprayer sprayer;
#endif
// EPM Cargo Griper
#if EPM_ENABLED == ENABLED
AP_EPM epm;
#endif
// Parachute release
#if PARACHUTE == ENABLED
AP_Parachute parachute;
#endif
// Landing Gear Controller
AP_LandingGear landinggear;
// terrain handling
#if AP_TERRAIN_AVAILABLE && AC_TERRAIN
AP_Terrain terrain;
#endif
// Precision Landing
#if PRECISION_LANDING == ENABLED
AC_PrecLand precland;
#endif
// Pilot Input Management Library
// Only used for Helicopter for AC3.3, to be expanded to include Multirotor
// child class for AC3.4
#if FRAME_CONFIG == HELI_FRAME
AC_InputManager_Heli input_manager;
#endif
AP_ADSB adsb {ahrs};
// use this to prevent recursion during sensor init
bool in_mavlink_delay;
// true if we are out of time in our event timeslice
bool gcs_out_of_time;
// Top-level logic
// setup the var_info table
AP_Param param_loader;
#if FRAME_CONFIG == HELI_FRAME
// Mode filter to reject RC Input glitches. Filter size is 5, and it draws the 4th element, so it can reject 3 low glitches,
// and 1 high glitch. This is because any "off" glitches can be highly problematic for a helicopter running an ESC
// governor. Even a single "off" frame can cause the rotor to slow dramatically and take a long time to restart.
ModeFilterInt16_Size5 rotor_speed_deglitch_filter {4};
// Tradheli flags
struct {
uint8_t dynamic_flight : 1; // 0 // true if we are moving at a significant speed (used to turn on/off leaky I terms)
uint8_t init_targets_on_arming : 1; // 1 // true if we have been disarmed, and need to reset rate controller targets when we arm
} heli_flags;
#endif
#if GNDEFFECT_COMPENSATION == ENABLED
// ground effect detector
struct {
bool takeoff_expected;
bool touchdown_expected;
uint32_t takeoff_time_ms;
float takeoff_alt_cm;
} gndeffect_state;
#endif // GNDEFFECT_COMPENSATION == ENABLED
static const AP_Scheduler::Task scheduler_tasks[];
static const AP_Param::Info var_info[];
static const struct LogStructure log_structure[];
void compass_accumulate(void);
void compass_cal_update(void);
void barometer_accumulate(void);
void perf_update(void);
void fast_loop();
void rc_loop();
void throttle_loop();
void update_mount();
void update_trigger(void);
void update_batt_compass(void);
void ten_hz_logging_loop();
void twentyfive_hz_logging();
void three_hz_loop();
void one_hz_loop();
void update_GPS(void);
void init_simple_bearing();
void update_simple_mode(void);
void update_super_simple_bearing(bool force_update);
void read_AHRS(void);
void update_altitude();
void set_home_state(enum HomeState new_home_state);
bool home_is_set();
void set_auto_armed(bool b);
void set_simple_mode(uint8_t b);
void set_failsafe_radio(bool b);
void set_failsafe_battery(bool b);
void set_failsafe_gcs(bool b);
void set_land_complete(bool b);
void set_land_complete_maybe(bool b);
void set_pre_arm_check(bool b);
void set_pre_arm_rc_check(bool b);
void update_using_interlock();
void set_motor_emergency_stop(bool b);
float get_smoothing_gain();
void get_pilot_desired_lean_angles(float roll_in, float pitch_in, float &roll_out, float &pitch_out, float angle_max);
float get_pilot_desired_yaw_rate(int16_t stick_angle);
void check_ekf_yaw_reset();
float get_roi_yaw();
float get_look_ahead_yaw();
void update_throttle_hover();
void set_throttle_takeoff();
float get_pilot_desired_throttle(int16_t throttle_control);
float get_pilot_desired_climb_rate(float throttle_control);
float get_non_takeoff_throttle();
float get_takeoff_trigger_throttle();
float get_throttle_pre_takeoff(float input_thr);
float get_surface_tracking_climb_rate(int16_t target_rate, float current_alt_target, float dt);
void set_accel_throttle_I_from_pilot_throttle(float pilot_throttle);
void update_poscon_alt_max();
void rotate_body_frame_to_NE(float &x, float &y);
void gcs_send_heartbeat(void);
void gcs_send_deferred(void);
void send_heartbeat(mavlink_channel_t chan);
void send_attitude(mavlink_channel_t chan);
void send_limits_status(mavlink_channel_t chan);
void send_extended_status1(mavlink_channel_t chan);
void send_location(mavlink_channel_t chan);
void send_nav_controller_output(mavlink_channel_t chan);
void send_simstate(mavlink_channel_t chan);
void send_hwstatus(mavlink_channel_t chan);
void send_servo_out(mavlink_channel_t chan);
void send_radio_out(mavlink_channel_t chan);
void send_vfr_hud(mavlink_channel_t chan);
void send_current_waypoint(mavlink_channel_t chan);
void send_rangefinder(mavlink_channel_t chan);
void send_rpm(mavlink_channel_t chan);
void rpm_update();
void send_pid_tuning(mavlink_channel_t chan);
void gcs_send_message(enum ap_message id);
void gcs_send_mission_item_reached_message(uint16_t mission_index);
void gcs_data_stream_send(void);
void gcs_check_input(void);
void gcs_send_text(MAV_SEVERITY severity, const char *str);
void do_erase_logs(void);
void Log_Write_AutoTune(uint8_t axis, uint8_t tune_step, float meas_target, float meas_min, float meas_max, float new_gain_rp, float new_gain_rd, float new_gain_sp, float new_ddt);
void Log_Write_AutoTuneDetails(float angle_cd, float rate_cds);
void Log_Write_Current();
void Log_Write_Optflow();
void Log_Write_Nav_Tuning();
void Log_Write_Control_Tuning();
void Log_Write_Performance();
void Log_Write_Attitude();
void Log_Write_MotBatt();
void Log_Write_Startup();
void Log_Write_Event(uint8_t id);
void Log_Write_Data(uint8_t id, int32_t value);
void Log_Write_Data(uint8_t id, uint32_t value);
void Log_Write_Data(uint8_t id, int16_t value);
void Log_Write_Data(uint8_t id, uint16_t value);
void Log_Write_Data(uint8_t id, float value);
void Log_Write_Error(uint8_t sub_system, uint8_t error_code);
void Log_Write_Baro(void);
void Log_Write_Parameter_Tuning(uint8_t param, float tuning_val, int16_t control_in, int16_t tune_low, int16_t tune_high);
void Log_Write_Home_And_Origin();
void Log_Sensor_Health();
#if FRAME_CONFIG == HELI_FRAME
void Log_Write_Heli(void);
#endif
void Log_Write_Precland();
void Log_Write_GuidedTarget(uint8_t target_type, const Vector3f& pos_target, const Vector3f& vel_target);
void Log_Write_Vehicle_Startup_Messages();
void Log_Read(uint16_t log_num, uint16_t start_page, uint16_t end_page);
void start_logging() ;
void load_parameters(void);
void convert_pid_parameters(void);
void userhook_init();
void userhook_FastLoop();
void userhook_50Hz();
void userhook_MediumLoop();
void userhook_SlowLoop();
void userhook_SuperSlowLoop();
void update_home_from_EKF();
void set_home_to_current_location_inflight();
bool set_home_to_current_location();
bool set_home_to_current_location_and_lock();
bool set_home_and_lock(const Location& loc);
bool set_home(const Location& loc);
bool far_from_EKF_origin(const Location& loc);
void set_system_time_from_GPS();
void exit_mission();
void do_RTL(void);
bool verify_takeoff();
bool verify_land();
bool verify_loiter_unlimited();
bool verify_loiter_time();
bool verify_RTL();
bool verify_wait_delay();
bool verify_within_distance();
bool verify_yaw();
void do_take_picture();
void log_picture();
uint8_t mavlink_compassmot(mavlink_channel_t chan);
void delay(uint32_t ms);
bool acro_init(bool ignore_checks);
void acro_run();
void get_pilot_desired_angle_rates(int16_t roll_in, int16_t pitch_in, int16_t yaw_in, float &roll_out, float &pitch_out, float &yaw_out);
bool althold_init(bool ignore_checks);
void althold_run();
bool auto_init(bool ignore_checks);
void auto_run();
void auto_takeoff_start(const Location& dest_loc);
void auto_takeoff_run();
void auto_wp_start(const Vector3f& destination);
void auto_wp_start(const Location_Class& dest_loc);
void auto_wp_run();
void auto_spline_run();
void auto_land_start();
void auto_land_start(const Vector3f& destination);
void auto_land_run();
void auto_rtl_start();
void auto_rtl_run();
void auto_circle_movetoedge_start(const Location_Class &circle_center, float radius_m);
void auto_circle_start();
void auto_circle_run();
void auto_nav_guided_start();
void auto_nav_guided_run();
bool auto_loiter_start();
void auto_loiter_run();
uint8_t get_default_auto_yaw_mode(bool rtl);
void set_auto_yaw_mode(uint8_t yaw_mode);
void set_auto_yaw_look_at_heading(float angle_deg, float turn_rate_dps, int8_t direction, uint8_t relative_angle);
void set_auto_yaw_roi(const Location &roi_location);
float get_auto_heading(void);
bool autotune_init(bool ignore_checks);
void autotune_stop();
bool autotune_start(bool ignore_checks);
void autotune_run();
void autotune_attitude_control();
void autotune_backup_gains_and_initialise();
void autotune_load_orig_gains();
void autotune_load_tuned_gains();
void autotune_load_intra_test_gains();
void autotune_load_twitch_gains();
void autotune_save_tuning_gains();
void autotune_update_gcs(uint8_t message_id);
bool autotune_roll_enabled();
bool autotune_pitch_enabled();
bool autotune_yaw_enabled();
void autotune_twitching_test(float measurement, float target, float &measurement_min, float &measurement_max);
void autotune_updating_d_up(float &tune_d, float tune_d_min, float tune_d_max, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float target, float measurement_min, float measurement_max);
void autotune_updating_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float target, float measurement_min, float measurement_max);
void autotune_updating_p_down(float &tune_p, float tune_p_min, float tune_p_step_ratio, float target, float measurement_max);
void autotune_updating_p_up(float &tune_p, float tune_p_max, float tune_p_step_ratio, float target, float measurement_max);
void autotune_updating_p_up_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float target, float measurement_min, float measurement_max);
void autotune_twitching_measure_acceleration(float &rate_of_change, float rate_measurement, float &rate_measurement_max);
void adsb_update(void);
void adsb_handle_vehicle_threats(void);
bool brake_init(bool ignore_checks);
void brake_run();
void brake_timeout_to_loiter_ms(uint32_t timeout_ms);
bool circle_init(bool ignore_checks);
void circle_run();
bool drift_init(bool ignore_checks);
void drift_run();
float get_throttle_assist(float velz, float pilot_throttle_scaled);
bool flip_init(bool ignore_checks);
void flip_run();
bool guided_init(bool ignore_checks);
bool guided_takeoff_start(float final_alt_above_home);
void guided_pos_control_start();
void guided_vel_control_start();
void guided_posvel_control_start();
void guided_angle_control_start();
bool guided_set_destination(const Vector3f& destination);
bool guided_set_destination(const Location_Class& dest_loc);
void guided_set_velocity(const Vector3f& velocity);
void guided_set_destination_posvel(const Vector3f& destination, const Vector3f& velocity);
void guided_set_angle(const Quaternion &q, float climb_rate_cms);
void guided_run();
void guided_takeoff_run();
void guided_pos_control_run();
void guided_vel_control_run();
void guided_posvel_control_run();
void guided_angle_control_run();
void guided_limit_clear();
void guided_limit_set(uint32_t timeout_ms, float alt_min_cm, float alt_max_cm, float horiz_max_cm);
void guided_limit_init_time_and_pos();
bool guided_limit_check();
bool land_init(bool ignore_checks);
void land_run();
void land_gps_run();
void land_nogps_run();
float get_land_descent_speed();
void land_do_not_use_GPS();
void set_mode_land_with_pause(mode_reason_t reason);
bool landing_with_GPS();
bool loiter_init(bool ignore_checks);
void loiter_run();
bool poshold_init(bool ignore_checks);
void poshold_run();
void poshold_update_pilot_lean_angle(float &lean_angle_filtered, float &lean_angle_raw);
int16_t poshold_mix_controls(float mix_ratio, int16_t first_control, int16_t second_control);
void poshold_update_brake_angle_from_velocity(int16_t &brake_angle, float velocity);
void poshold_update_wind_comp_estimate();
void poshold_get_wind_comp_lean_angles(int16_t &roll_angle, int16_t &pitch_angle);
void poshold_roll_controller_to_pilot_override();
void poshold_pitch_controller_to_pilot_override();
// Throw to launch functionality
bool throw_init(bool ignore_checks);
void throw_exit();
void throw_run();
bool throw_detected();
bool throw_attitude_good();
bool throw_height_good();
bool rtl_init(bool ignore_checks);
void rtl_restart_without_terrain();
void rtl_run();
void rtl_climb_start();
void rtl_return_start();
void rtl_climb_return_run();
void rtl_loiterathome_start();
void rtl_loiterathome_run();
void rtl_descent_start();
void rtl_descent_run();
void rtl_land_start();
void rtl_land_run();
void rtl_build_path(bool terrain_following_allowed);
void rtl_compute_return_alt(const Location_Class &rtl_origin_point, Location_Class &rtl_return_target, bool terrain_following_allowed);
bool sport_init(bool ignore_checks);
void sport_run();
bool stabilize_init(bool ignore_checks);
void stabilize_run();
void crash_check();
void parachute_check();
void parachute_release();
void parachute_manual_release();
void ekf_check();
bool ekf_over_threshold();
void failsafe_ekf_event();
void failsafe_ekf_off_event(void);
void esc_calibration_startup_check();
void esc_calibration_passthrough();
void esc_calibration_auto();
bool should_disarm_on_failsafe();
void failsafe_radio_on_event();
void failsafe_radio_off_event();
void failsafe_battery_event(void);
void failsafe_gcs_check();
void failsafe_gcs_off_event(void);
void failsafe_terrain_check();
void failsafe_terrain_set_status(bool data_ok);
void failsafe_terrain_on_event();
void set_mode_RTL_or_land_with_pause(mode_reason_t reason);
void update_events();
void failsafe_enable();
void failsafe_disable();
void fence_check();
void fence_send_mavlink_status(mavlink_channel_t chan);
bool set_mode(control_mode_t mode, mode_reason_t reason);
bool gcs_set_mode(uint8_t mode) { return set_mode((control_mode_t)mode, MODE_REASON_GCS_COMMAND); }
void update_flight_mode();
void exit_mode(control_mode_t old_control_mode, control_mode_t new_control_mode);
bool mode_requires_GPS(control_mode_t mode);
bool mode_has_manual_throttle(control_mode_t mode);
bool mode_allows_arming(control_mode_t mode, bool arming_from_gcs);
void notify_flight_mode(control_mode_t mode);
void heli_init();
void check_dynamic_flight(void);
void update_heli_control_dynamics(void);
void heli_update_landing_swash();
void heli_update_rotor_speed_targets();
bool heli_acro_init(bool ignore_checks);
void heli_acro_run();
bool heli_stabilize_init(bool ignore_checks);
void heli_stabilize_run();
void read_inertia();
bool land_complete_maybe();
void update_land_and_crash_detectors();
void update_land_detector();
void update_throttle_thr_mix();
#if GNDEFFECT_COMPENSATION == ENABLED
void update_ground_effect_detector(void);
#endif // GNDEFFECT_COMPENSATION == ENABLED
void landinggear_update();
void update_notify();
void motor_test_output();
bool mavlink_motor_test_check(mavlink_channel_t chan, bool check_rc);
uint8_t mavlink_motor_test_start(mavlink_channel_t chan, uint8_t motor_seq, uint8_t throttle_type, uint16_t throttle_value, float timeout_sec);
void motor_test_stop();
void arm_motors_check();
void auto_disarm_check();
bool init_arm_motors(bool arming_from_gcs);
void update_arming_checks(void);
bool all_arming_checks_passing(bool arming_from_gcs);
bool pre_arm_checks(bool display_failure);
void pre_arm_rc_checks();
bool pre_arm_gps_checks(bool display_failure);
bool pre_arm_ekf_attitude_check();
bool pre_arm_terrain_check(bool display_failure);
bool arm_checks(bool display_failure, bool arming_from_gcs);
void init_disarm_motors();
void motors_output();
void lost_vehicle_check();
void run_nav_updates(void);
void calc_distance_and_bearing();
void calc_wp_distance();
void calc_wp_bearing();
void calc_home_distance_and_bearing();
void run_autopilot();
void perf_info_reset();
void perf_ignore_this_loop();
void perf_info_check_loop_time(uint32_t time_in_micros);
uint16_t perf_info_get_num_loops();
uint32_t perf_info_get_max_time();
uint32_t perf_info_get_min_time();
uint16_t perf_info_get_num_long_running();
uint32_t perf_info_get_num_dropped();
Vector3f pv_location_to_vector(const Location& loc);
float pv_alt_above_origin(float alt_above_home_cm);
float pv_alt_above_home(float alt_above_origin_cm);
float pv_get_bearing_cd(const Vector3f &origin, const Vector3f &destination);
float pv_get_horizontal_distance_cm(const Vector3f &origin, const Vector3f &destination);
float pv_distance_to_home_cm(const Vector3f &destination);
void default_dead_zones();
void init_rc_in();
void init_rc_out();
void enable_motor_output();
void read_radio();
void set_throttle_and_failsafe(uint16_t throttle_pwm);
void set_throttle_zero_flag(int16_t throttle_control);
void radio_passthrough_to_motors();
void init_barometer(bool full_calibration);
void read_barometer(void);
void init_rangefinder(void);
void read_rangefinder(void);
bool rangefinder_alt_ok();
void init_compass();
void init_optflow();
void update_optical_flow(void);
void init_precland();
void update_precland();
void read_battery(void);
void read_receiver_rssi(void);
void epm_update();
void terrain_update();
void terrain_logging();
bool terrain_use();
void report_batt_monitor();
void report_frame();
void report_radio();
void report_ins();
void report_flight_modes();
void report_optflow();
void print_radio_values();
void print_switch(uint8_t p, uint8_t m, bool b);
void print_accel_offsets_and_scaling(void);
void print_gyro_offsets(void);
void report_compass();
void print_blanks(int16_t num);
void print_divider(void);
void print_enabled(bool b);
void report_version();
void read_control_switch();
bool check_if_auxsw_mode_used(uint8_t auxsw_mode_check);
bool check_duplicate_auxsw(void);
void reset_control_switch();
uint8_t read_3pos_switch(int16_t radio_in);
void read_aux_switches();
void init_aux_switches();
void init_aux_switch_function(int8_t ch_option, uint8_t ch_flag);
void do_aux_switch_function(int8_t ch_function, uint8_t ch_flag);
void save_trim();
void auto_trim();
void init_ardupilot();
void startup_INS_ground();
bool calibrate_gyros();
bool position_ok();
bool ekf_position_ok();
bool optflow_position_ok();
void update_auto_armed();
void check_usb_mux(void);
void frsky_telemetry_send(void);
bool should_log(uint32_t mask);
bool current_mode_has_user_takeoff(bool must_navigate);
bool do_user_takeoff(float takeoff_alt_cm, bool must_navigate);
void takeoff_timer_start(float alt_cm);
void takeoff_stop();
void takeoff_get_climb_rates(float& pilot_climb_rate, float& takeoff_climb_rate);
void print_hit_enter();
void tuning();
void gcs_send_text_fmt(MAV_SEVERITY severity, const char *fmt, ...);
bool start_command(const AP_Mission::Mission_Command& cmd);
bool verify_command(const AP_Mission::Mission_Command& cmd);
bool verify_command_callback(const AP_Mission::Mission_Command& cmd);
bool do_guided(const AP_Mission::Mission_Command& cmd);
void do_takeoff(const AP_Mission::Mission_Command& cmd);
void do_nav_wp(const AP_Mission::Mission_Command& cmd);
void do_land(const AP_Mission::Mission_Command& cmd);
void do_loiter_unlimited(const AP_Mission::Mission_Command& cmd);
void do_circle(const AP_Mission::Mission_Command& cmd);
void do_loiter_time(const AP_Mission::Mission_Command& cmd);
void do_spline_wp(const AP_Mission::Mission_Command& cmd);
#if NAV_GUIDED == ENABLED
void do_nav_guided_enable(const AP_Mission::Mission_Command& cmd);
void do_guided_limits(const AP_Mission::Mission_Command& cmd);
#endif
void do_nav_delay(const AP_Mission::Mission_Command& cmd);
void do_wait_delay(const AP_Mission::Mission_Command& cmd);
void do_within_distance(const AP_Mission::Mission_Command& cmd);
void do_yaw(const AP_Mission::Mission_Command& cmd);
void do_change_speed(const AP_Mission::Mission_Command& cmd);
void do_set_home(const AP_Mission::Mission_Command& cmd);
void do_roi(const AP_Mission::Mission_Command& cmd);
void do_mount_control(const AP_Mission::Mission_Command& cmd);
#if CAMERA == ENABLED
void do_digicam_configure(const AP_Mission::Mission_Command& cmd);
void do_digicam_control(const AP_Mission::Mission_Command& cmd);
#endif
#if PARACHUTE == ENABLED
void do_parachute(const AP_Mission::Mission_Command& cmd);
#endif
#if EPM_ENABLED == ENABLED
void do_gripper(const AP_Mission::Mission_Command& cmd);
#endif
bool verify_nav_wp(const AP_Mission::Mission_Command& cmd);
bool verify_circle(const AP_Mission::Mission_Command& cmd);
bool verify_spline_wp(const AP_Mission::Mission_Command& cmd);
#if NAV_GUIDED == ENABLED
bool verify_nav_guided_enable(const AP_Mission::Mission_Command& cmd);
#endif
bool verify_nav_delay(const AP_Mission::Mission_Command& cmd);
void auto_spline_start(const Location_Class& destination, bool stopped_at_start, AC_WPNav::spline_segment_end_type seg_end_type, const Location_Class& next_destination);
void print_flight_mode(AP_HAL::BetterStream *port, uint8_t mode);
void log_init(void);
void run_cli(AP_HAL::UARTDriver *port);
void init_capabilities(void);
void dataflash_periodic(void);
void accel_cal_update(void);
public:
void mavlink_delay_cb();
void failsafe_check();
int8_t dump_log(uint8_t argc, const Menu::arg *argv);
int8_t erase_logs(uint8_t argc, const Menu::arg *argv);
int8_t select_logs(uint8_t argc, const Menu::arg *argv);
bool print_log_menu(void);
int8_t process_logs(uint8_t argc, const Menu::arg *argv);
int8_t main_menu_help(uint8_t, const Menu::arg*);
int8_t setup_mode(uint8_t argc, const Menu::arg *argv);
int8_t setup_factory(uint8_t argc, const Menu::arg *argv);
int8_t setup_set(uint8_t argc, const Menu::arg *argv);
int8_t setup_show(uint8_t argc, const Menu::arg *argv);
int8_t esc_calib(uint8_t argc, const Menu::arg *argv);
int8_t test_mode(uint8_t argc, const Menu::arg *argv);
int8_t test_baro(uint8_t argc, const Menu::arg *argv);
int8_t test_compass(uint8_t argc, const Menu::arg *argv);
int8_t test_ins(uint8_t argc, const Menu::arg *argv);
int8_t test_optflow(uint8_t argc, const Menu::arg *argv);
int8_t test_relay(uint8_t argc, const Menu::arg *argv);
int8_t test_shell(uint8_t argc, const Menu::arg *argv);
int8_t test_rangefinder(uint8_t argc, const Menu::arg *argv);
int8_t reboot_board(uint8_t argc, const Menu::arg *argv);
};
#define MENU_FUNC(func) FUNCTOR_BIND(&copter, &Copter::func, int8_t, uint8_t, const Menu::arg *)
extern const AP_HAL::HAL& hal;
extern Copter copter;
using AP_HAL::millis;
using AP_HAL::micros;