Ardupilot2/ArduPlane/test.pde
2013-10-03 11:16:22 +09:00

640 lines
18 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#if CLI_ENABLED == ENABLED
// These are function definitions so the Menu can be constructed before the functions
// are defined below. Order matters to the compiler.
static int8_t test_radio_pwm(uint8_t argc, const Menu::arg *argv);
static int8_t test_radio(uint8_t argc, const Menu::arg *argv);
static int8_t test_passthru(uint8_t argc, const Menu::arg *argv);
static int8_t test_failsafe(uint8_t argc, const Menu::arg *argv);
static int8_t test_gps(uint8_t argc, const Menu::arg *argv);
#if CONFIG_HAL_BOARD == HAL_BOARD_APM1
static int8_t test_adc(uint8_t argc, const Menu::arg *argv);
#endif
static int8_t test_ins(uint8_t argc, const Menu::arg *argv);
static int8_t test_relay(uint8_t argc, const Menu::arg *argv);
static int8_t test_wp(uint8_t argc, const Menu::arg *argv);
static int8_t test_airspeed(uint8_t argc, const Menu::arg *argv);
static int8_t test_pressure(uint8_t argc, const Menu::arg *argv);
static int8_t test_mag(uint8_t argc, const Menu::arg *argv);
static int8_t test_xbee(uint8_t argc, const Menu::arg *argv);
static int8_t test_eedump(uint8_t argc, const Menu::arg *argv);
static int8_t test_rawgps(uint8_t argc, const Menu::arg *argv);
static int8_t test_modeswitch(uint8_t argc, const Menu::arg *argv);
static int8_t test_logging(uint8_t argc, const Menu::arg *argv);
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
static int8_t test_shell(uint8_t argc, const Menu::arg *argv);
#endif
// Creates a constant array of structs representing menu options
// and stores them in Flash memory, not RAM.
// User enters the string in the console to call the functions on the right.
// See class Menu in AP_Common for implementation details
static const struct Menu::command test_menu_commands[] PROGMEM = {
{"pwm", test_radio_pwm},
{"radio", test_radio},
{"passthru", test_passthru},
{"failsafe", test_failsafe},
{"relay", test_relay},
{"waypoints", test_wp},
{"xbee", test_xbee},
{"eedump", test_eedump},
{"modeswitch", test_modeswitch},
// Tests below here are for hardware sensors only present
// when real sensors are attached or they are emulated
#if HIL_MODE == HIL_MODE_DISABLED
#if CONFIG_HAL_BOARD == HAL_BOARD_APM1
{"adc", test_adc},
#endif
{"gps", test_gps},
{"rawgps", test_rawgps},
{"ins", test_ins},
{"airspeed", test_airspeed},
{"airpressure", test_pressure},
{"compass", test_mag},
#else
{"gps", test_gps},
{"ins", test_ins},
{"compass", test_mag},
#endif
{"logging", test_logging},
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
{"shell", test_shell},
#endif
};
// A Macro to create the Menu
MENU(test_menu, "test", test_menu_commands);
static int8_t
test_mode(uint8_t argc, const Menu::arg *argv)
{
cliSerial->printf_P(PSTR("Test Mode\n\n"));
test_menu.run();
return 0;
}
static void print_hit_enter()
{
cliSerial->printf_P(PSTR("Hit Enter to exit.\n\n"));
}
static int8_t
test_eedump(uint8_t argc, const Menu::arg *argv)
{
uint16_t i, j;
// hexdump the EEPROM
for (i = 0; i < EEPROM_MAX_ADDR; i += 16) {
cliSerial->printf_P(PSTR("%04x:"), i);
for (j = 0; j < 16; j++)
cliSerial->printf_P(PSTR(" %02x"), hal.storage->read_byte(i + j));
cliSerial->println();
}
return(0);
}
static int8_t
test_radio_pwm(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
while(1) {
delay(20);
// Filters radio input - adjust filters in the radio.pde file
// ----------------------------------------------------------
read_radio();
cliSerial->printf_P(PSTR("IN:\t1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"),
(int)channel_roll->radio_in,
(int)channel_pitch->radio_in,
(int)channel_throttle->radio_in,
(int)channel_rudder->radio_in,
(int)g.rc_5.radio_in,
(int)g.rc_6.radio_in,
(int)g.rc_7.radio_in,
(int)g.rc_8.radio_in);
if(cliSerial->available() > 0) {
return (0);
}
}
}
static int8_t
test_passthru(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
while(1) {
delay(20);
// New radio frame? (we could use also if((millis()- timer) > 20)
if (hal.rcin->valid_channels() > 0) {
cliSerial->print_P(PSTR("CH:"));
for(int16_t i = 0; i < 8; i++) {
cliSerial->print(hal.rcin->read(i)); // Print channel values
print_comma();
servo_write(i, hal.rcin->read(i)); // Copy input to Servos
}
cliSerial->println();
}
if (cliSerial->available() > 0) {
return (0);
}
}
return 0;
}
static int8_t
test_radio(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
// read the radio to set trims
// ---------------------------
trim_radio();
while(1) {
delay(20);
read_radio();
channel_roll->calc_pwm();
channel_pitch->calc_pwm();
channel_throttle->calc_pwm();
channel_rudder->calc_pwm();
// write out the servo PWM values
// ------------------------------
set_servos();
cliSerial->printf_P(PSTR("IN 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"),
(int)channel_roll->control_in,
(int)channel_pitch->control_in,
(int)channel_throttle->control_in,
(int)channel_rudder->control_in,
(int)g.rc_5.control_in,
(int)g.rc_6.control_in,
(int)g.rc_7.control_in,
(int)g.rc_8.control_in);
if(cliSerial->available() > 0) {
return (0);
}
}
}
static int8_t
test_failsafe(uint8_t argc, const Menu::arg *argv)
{
uint8_t fail_test;
print_hit_enter();
for(int16_t i = 0; i < 50; i++) {
delay(20);
read_radio();
}
// read the radio to set trims
// ---------------------------
trim_radio();
oldSwitchPosition = readSwitch();
cliSerial->printf_P(PSTR("Unplug battery, throttle in neutral, turn off radio.\n"));
while(channel_throttle->control_in > 0) {
delay(20);
read_radio();
}
while(1) {
delay(20);
read_radio();
if(channel_throttle->control_in > 0) {
cliSerial->printf_P(PSTR("THROTTLE CHANGED %d \n"), (int)channel_throttle->control_in);
fail_test++;
}
if(oldSwitchPosition != readSwitch()) {
cliSerial->printf_P(PSTR("CONTROL MODE CHANGED: "));
print_flight_mode(cliSerial, readSwitch());
cliSerial->println();
fail_test++;
}
if(g.throttle_fs_enabled && channel_throttle->get_failsafe()) {
cliSerial->printf_P(PSTR("THROTTLE FAILSAFE ACTIVATED: %d, "), (int)channel_throttle->radio_in);
print_flight_mode(cliSerial, readSwitch());
cliSerial->println();
fail_test++;
}
if(fail_test > 0) {
return (0);
}
if(cliSerial->available() > 0) {
cliSerial->printf_P(PSTR("LOS caused no change in APM.\n"));
return (0);
}
}
}
static int8_t
test_relay(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
while(1) {
cliSerial->printf_P(PSTR("Relay on\n"));
relay.on();
delay(3000);
if(cliSerial->available() > 0) {
return (0);
}
cliSerial->printf_P(PSTR("Relay off\n"));
relay.off();
delay(3000);
if(cliSerial->available() > 0) {
return (0);
}
}
}
static int8_t
test_wp(uint8_t argc, const Menu::arg *argv)
{
delay(1000);
// save the alitude above home option
if (g.RTL_altitude_cm < 0) {
cliSerial->printf_P(PSTR("Hold current altitude\n"));
}else{
cliSerial->printf_P(PSTR("Hold altitude of %dm\n"), (int)g.RTL_altitude_cm/100);
}
cliSerial->printf_P(PSTR("%d waypoints\n"), (int)g.command_total);
cliSerial->printf_P(PSTR("Hit radius: %d\n"), (int)g.waypoint_radius);
cliSerial->printf_P(PSTR("Loiter radius: %d\n\n"), (int)g.loiter_radius);
for(uint8_t i = 0; i <= g.command_total; i++) {
struct Location temp = get_cmd_with_index(i);
test_wp_print(&temp, i);
}
return (0);
}
static void
test_wp_print(const struct Location *cmd, uint8_t wp_index)
{
cliSerial->printf_P(PSTR("command #: %d id:%d options:%d p1:%d p2:%ld p3:%ld p4:%ld \n"),
(int)wp_index,
(int)cmd->id,
(int)cmd->options,
(int)cmd->p1,
(long)cmd->alt,
(long)cmd->lat,
(long)cmd->lng);
}
static int8_t
test_xbee(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
cliSerial->printf_P(PSTR("Begin XBee X-CTU Range and RSSI Test:\n"));
while(1) {
if (hal.uartC->available())
hal.uartC->write(hal.uartC->read());
if(cliSerial->available() > 0) {
return (0);
}
}
}
static int8_t
test_modeswitch(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
cliSerial->printf_P(PSTR("Control CH "));
cliSerial->println(FLIGHT_MODE_CHANNEL, BASE_DEC);
while(1) {
delay(20);
uint8_t switchPosition = readSwitch();
if (oldSwitchPosition != switchPosition) {
cliSerial->printf_P(PSTR("Position %d\n"), (int)switchPosition);
oldSwitchPosition = switchPosition;
}
if(cliSerial->available() > 0) {
return (0);
}
}
}
/*
* test the dataflash is working
*/
static int8_t
test_logging(uint8_t argc, const Menu::arg *argv)
{
DataFlash.ShowDeviceInfo(cliSerial);
return 0;
}
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
/*
* run a debug shell
*/
static int8_t
test_shell(uint8_t argc, const Menu::arg *argv)
{
hal.util->run_debug_shell(cliSerial);
return 0;
}
#endif
//-------------------------------------------------------------------------------------------
// tests in this section are for real sensors or sensors that have been simulated
#if CONFIG_INS_TYPE == CONFIG_INS_OILPAN || CONFIG_HAL_BOARD == HAL_BOARD_APM1
static int8_t
test_adc(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
apm1_adc.Init();
delay(1000);
cliSerial->printf_P(PSTR("ADC\n"));
delay(1000);
while(1) {
for (int8_t i=0; i<9; i++) cliSerial->printf_P(PSTR("%.1f\t"),apm1_adc.Ch(i));
cliSerial->println();
delay(100);
if(cliSerial->available() > 0) {
return (0);
}
}
}
#endif // CONFIG_INS_TYPE
static int8_t
test_gps(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
while(1) {
delay(100);
g_gps->update();
if (g_gps->new_data) {
cliSerial->printf_P(PSTR("Lat: %ld, Lon %ld, Alt: %ldm, #sats: %d\n"),
(long)g_gps->latitude,
(long)g_gps->longitude,
(long)g_gps->altitude_cm/100,
(int)g_gps->num_sats);
}else{
cliSerial->printf_P(PSTR("."));
}
if(cliSerial->available() > 0) {
return (0);
}
}
}
static int8_t
test_ins(uint8_t argc, const Menu::arg *argv)
{
//cliSerial->printf_P(PSTR("Calibrating."));
ahrs.init();
ahrs.set_fly_forward(true);
ahrs.set_wind_estimation(true);
ins.init(AP_InertialSensor::COLD_START,
ins_sample_rate);
ahrs.reset();
print_hit_enter();
delay(1000);
uint8_t counter = 0;
while(1) {
delay(20);
if (millis() - fast_loopTimer_ms > 19) {
delta_ms_fast_loop = millis() - fast_loopTimer_ms;
G_Dt = (float)delta_ms_fast_loop / 1000.f; // used by DCM integrator
fast_loopTimer_ms = millis();
// INS
// ---
ahrs.update();
if(g.compass_enabled) {
counter++;
if(counter == 5) {
compass.read();
counter = 0;
}
}
// We are using the INS
// ---------------------
Vector3f gyros = ins.get_gyro();
Vector3f accels = ins.get_accel();
cliSerial->printf_P(PSTR("r:%4d p:%4d y:%3d g=(%5.1f %5.1f %5.1f) a=(%5.1f %5.1f %5.1f)\n"),
(int)ahrs.roll_sensor / 100,
(int)ahrs.pitch_sensor / 100,
(uint16_t)ahrs.yaw_sensor / 100,
gyros.x, gyros.y, gyros.z,
accels.x, accels.y, accels.z);
}
if(cliSerial->available() > 0) {
return (0);
}
}
}
static int8_t
test_mag(uint8_t argc, const Menu::arg *argv)
{
if (!g.compass_enabled) {
cliSerial->printf_P(PSTR("Compass: "));
print_enabled(false);
return (0);
}
if (!compass.init()) {
cliSerial->println_P(PSTR("Compass initialisation failed!"));
return 0;
}
ahrs.init();
ahrs.set_fly_forward(true);
ahrs.set_wind_estimation(true);
ahrs.set_compass(&compass);
report_compass();
// we need the AHRS initialised for this test
ins.init(AP_InertialSensor::COLD_START,
ins_sample_rate);
ahrs.reset();
uint16_t counter = 0;
float heading = 0;
print_hit_enter();
while(1) {
delay(20);
if (millis() - fast_loopTimer_ms > 19) {
delta_ms_fast_loop = millis() - fast_loopTimer_ms;
G_Dt = (float)delta_ms_fast_loop / 1000.f; // used by DCM integrator
fast_loopTimer_ms = millis();
// INS
// ---
ahrs.update();
if(counter % 5 == 0) {
if (compass.read()) {
// Calculate heading
const Matrix3f &m = ahrs.get_dcm_matrix();
heading = compass.calculate_heading(m);
compass.null_offsets();
}
}
counter++;
if (counter>20) {
if (compass.healthy) {
Vector3f maggy = compass.get_offsets();
cliSerial->printf_P(PSTR("Heading: %ld, XYZ: %d, %d, %d,\tXYZoff: %6.2f, %6.2f, %6.2f\n"),
(wrap_360_cd(ToDeg(heading) * 100)) /100,
(int)compass.mag_x,
(int)compass.mag_y,
(int)compass.mag_z,
maggy.x,
maggy.y,
maggy.z);
} else {
cliSerial->println_P(PSTR("compass not healthy"));
}
counter=0;
}
}
if (cliSerial->available() > 0) {
break;
}
}
// save offsets. This allows you to get sane offset values using
// the CLI before you go flying.
cliSerial->println_P(PSTR("saving offsets"));
compass.save_offsets();
return (0);
}
//-------------------------------------------------------------------------------------------
// real sensors that have not been simulated yet go here
#if HIL_MODE == HIL_MODE_DISABLED
static int8_t
test_airspeed(uint8_t argc, const Menu::arg *argv)
{
if (!airspeed.enabled()) {
cliSerial->printf_P(PSTR("airspeed: "));
print_enabled(false);
return (0);
}else{
print_hit_enter();
zero_airspeed();
cliSerial->printf_P(PSTR("airspeed: "));
print_enabled(true);
while(1) {
delay(20);
read_airspeed();
cliSerial->printf_P(PSTR("%.1f m/s\n"), airspeed.get_airspeed());
if(cliSerial->available() > 0) {
return (0);
}
}
}
}
static int8_t
test_pressure(uint8_t argc, const Menu::arg *argv)
{
cliSerial->printf_P(PSTR("Uncalibrated relative airpressure\n"));
print_hit_enter();
home.alt = 0;
wp_distance = 0;
init_barometer();
while(1) {
delay(100);
current_loc.alt = read_barometer() + home.alt;
if (!barometer.healthy) {
cliSerial->println_P(PSTR("not healthy"));
} else {
cliSerial->printf_P(PSTR("Alt: %0.2fm, Raw: %f Temperature: %.1f\n"),
current_loc.alt / 100.0,
barometer.get_pressure(),
barometer.get_temperature());
}
if(cliSerial->available() > 0) {
return (0);
}
}
}
static int8_t
test_rawgps(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
while(1) {
// Blink Yellow LED if we are sending data to GPS
if (hal.uartC->available()) {
hal.uartB->write(hal.uartC->read());
}
// Blink Red LED if we are receiving data from GPS
if (hal.uartB->available()) {
hal.uartC->write(hal.uartB->read());
}
if(cliSerial->available() > 0) {
return (0);
}
}
}
#endif // HIL_MODE == HIL_MODE_DISABLED
#endif // CLI_ENABLED