a1017fb815
This can be used to command multiple devices on the UAVCAN bus to update their LEDs. This will come in handy for status outputs etc. This utilizes equipment.indication.LightsCommand message. This message is not so important and therefore we limit publishing it to avoid bus overflow. The priority of the message is also low.
1344 lines
47 KiB
C++
1344 lines
47 KiB
C++
/*
|
|
* AP_UAVCAN.cpp
|
|
*
|
|
* Author: Eugene Shamaev
|
|
*/
|
|
|
|
#include <AP_Common/AP_Common.h>
|
|
#include <AP_HAL/AP_HAL.h>
|
|
|
|
#if HAL_WITH_UAVCAN
|
|
|
|
#include "AP_UAVCAN.h"
|
|
#include <GCS_MAVLink/GCS.h>
|
|
|
|
#include <AP_BoardConfig/AP_BoardConfig.h>
|
|
#include <AP_BoardConfig/AP_BoardConfig_CAN.h>
|
|
|
|
// Zubax GPS and other GPS, baro, magnetic sensors
|
|
#include <uavcan/equipment/gnss/Fix.hpp>
|
|
#include <uavcan/equipment/gnss/Auxiliary.hpp>
|
|
|
|
#include <uavcan/equipment/ahrs/MagneticFieldStrength.hpp>
|
|
#include <uavcan/equipment/ahrs/MagneticFieldStrength2.hpp>
|
|
#include <uavcan/equipment/air_data/StaticPressure.hpp>
|
|
#include <uavcan/equipment/air_data/StaticTemperature.hpp>
|
|
|
|
#include <uavcan/equipment/actuator/ArrayCommand.hpp>
|
|
#include <uavcan/equipment/actuator/Command.hpp>
|
|
#include <uavcan/equipment/actuator/Status.hpp>
|
|
|
|
#include <uavcan/equipment/esc/RawCommand.hpp>
|
|
#include <uavcan/equipment/indication/LightsCommand.hpp>
|
|
#include <uavcan/equipment/indication/SingleLightCommand.hpp>
|
|
#include <uavcan/equipment/indication/RGB565.hpp>
|
|
|
|
#include <uavcan/equipment/power/BatteryInfo.hpp>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
#define debug_uavcan(level, fmt, args...) do { if ((level) <= AP_BoardConfig_CAN::get_can_debug()) { hal.console->printf(fmt, ##args); }} while (0)
|
|
|
|
// Translation of all messages from UAVCAN structures into AP structures is done
|
|
// in AP_UAVCAN and not in corresponding drivers.
|
|
// The overhead of including definitions of DSDL is very high and it is best to
|
|
// concentrate in one place.
|
|
|
|
// TODO: temperature can come not only from baro. There should be separation on node ID
|
|
// to check where it belongs to. If it is not baro that is the source, separate layer
|
|
// of listeners/nodes should be added.
|
|
|
|
// table of user settable CAN bus parameters
|
|
const AP_Param::GroupInfo AP_UAVCAN::var_info[] = {
|
|
// @Param: NODE
|
|
// @DisplayName: UAVCAN node that is used for this network
|
|
// @Description: UAVCAN node should be set implicitly
|
|
// @Range: 1 250
|
|
// @User: Advanced
|
|
AP_GROUPINFO("NODE", 1, AP_UAVCAN, _uavcan_node, 10),
|
|
|
|
// @Param: SRV_BM
|
|
// @DisplayName: RC Out channels to be transmitted as servo over UAVCAN
|
|
// @Description: Bitmask with one set for channel to be transmitted as a servo command over UAVCAN
|
|
// @Bitmask: 0: Servo 1, 1: Servo 2, 2: Servo 3, 3: Servo 4, 4: Servo 5, 5: Servo 6, 6: Servo 7, 7: Servo 8, 8: Servo 9, 9: Servo 10, 10: Servo 11, 11: Servo 12, 12: Servo 13, 13: Servo 14, 14: Servo 15
|
|
// @User: Advanced
|
|
AP_GROUPINFO("SRV_BM", 2, AP_UAVCAN, _servo_bm, 255),
|
|
|
|
// @Param: ESC_BM
|
|
// @DisplayName: RC Out channels to be transmitted as ESC over UAVCAN
|
|
// @Description: Bitmask with one set for channel to be transmitted as a ESC command over UAVCAN
|
|
// @Bitmask: 0: ESC 1, 1: ESC 2, 2: ESC 3, 3: ESC 4, 4: ESC 5, 5: ESC 6, 6: ESC 7, 7: ESC 8, 8: ESC 9, 9: ESC 10, 10: ESC 11, 11: ESC 12, 12: ESC 13, 13: ESC 14, 14: ESC 15, 15: ESC 16
|
|
// @User: Advanced
|
|
AP_GROUPINFO("ESC_BM", 3, AP_UAVCAN, _esc_bm, 255),
|
|
|
|
AP_GROUPEND
|
|
};
|
|
|
|
static void gnss_fix_cb(const uavcan::ReceivedDataStructure<uavcan::equipment::gnss::Fix>& msg, uint8_t mgr)
|
|
{
|
|
if (hal.can_mgr[mgr] != nullptr) {
|
|
AP_UAVCAN *ap_uavcan = hal.can_mgr[mgr]->get_UAVCAN();
|
|
if (ap_uavcan != nullptr) {
|
|
AP_GPS::GPS_State *state = ap_uavcan->find_gps_node(msg.getSrcNodeID().get());
|
|
|
|
if (state != nullptr) {
|
|
bool process = false;
|
|
|
|
if (msg.status == uavcan::equipment::gnss::Fix::STATUS_NO_FIX) {
|
|
state->status = AP_GPS::GPS_Status::NO_FIX;
|
|
} else {
|
|
if (msg.status == uavcan::equipment::gnss::Fix::STATUS_TIME_ONLY) {
|
|
state->status = AP_GPS::GPS_Status::NO_FIX;
|
|
} else if (msg.status == uavcan::equipment::gnss::Fix::STATUS_2D_FIX) {
|
|
state->status = AP_GPS::GPS_Status::GPS_OK_FIX_2D;
|
|
process = true;
|
|
} else if (msg.status == uavcan::equipment::gnss::Fix::STATUS_3D_FIX) {
|
|
state->status = AP_GPS::GPS_Status::GPS_OK_FIX_3D;
|
|
process = true;
|
|
}
|
|
|
|
if (msg.gnss_time_standard == uavcan::equipment::gnss::Fix::GNSS_TIME_STANDARD_UTC) {
|
|
uint64_t epoch_ms = uavcan::UtcTime(msg.gnss_timestamp).toUSec();
|
|
epoch_ms /= 1000;
|
|
uint64_t gps_ms = epoch_ms - UNIX_OFFSET_MSEC;
|
|
state->time_week = (uint16_t)(gps_ms / AP_MSEC_PER_WEEK);
|
|
state->time_week_ms = (uint32_t)(gps_ms - (state->time_week) * AP_MSEC_PER_WEEK);
|
|
}
|
|
}
|
|
|
|
if (process) {
|
|
Location loc = { };
|
|
loc.lat = msg.latitude_deg_1e8 / 10;
|
|
loc.lng = msg.longitude_deg_1e8 / 10;
|
|
loc.alt = msg.height_msl_mm / 10;
|
|
state->location = loc;
|
|
state->location.options = 0;
|
|
|
|
if (!uavcan::isNaN(msg.ned_velocity[0])) {
|
|
Vector3f vel(msg.ned_velocity[0], msg.ned_velocity[1], msg.ned_velocity[2]);
|
|
state->velocity = vel;
|
|
state->ground_speed = norm(vel.x, vel.y);
|
|
state->ground_course = wrap_360(degrees(atan2f(vel.y, vel.x)));
|
|
state->have_vertical_velocity = true;
|
|
} else {
|
|
state->have_vertical_velocity = false;
|
|
}
|
|
|
|
float pos_cov[9];
|
|
msg.position_covariance.unpackSquareMatrix(pos_cov);
|
|
if (!uavcan::isNaN(pos_cov[8])) {
|
|
if (pos_cov[8] > 0) {
|
|
state->vertical_accuracy = sqrtf(pos_cov[8]);
|
|
state->have_vertical_accuracy = true;
|
|
} else {
|
|
state->have_vertical_accuracy = false;
|
|
}
|
|
} else {
|
|
state->have_vertical_accuracy = false;
|
|
}
|
|
|
|
const float horizontal_pos_variance = MAX(pos_cov[0], pos_cov[4]);
|
|
if (!uavcan::isNaN(horizontal_pos_variance)) {
|
|
if (horizontal_pos_variance > 0) {
|
|
state->horizontal_accuracy = sqrtf(horizontal_pos_variance);
|
|
state->have_horizontal_accuracy = true;
|
|
} else {
|
|
state->have_horizontal_accuracy = false;
|
|
}
|
|
} else {
|
|
state->have_horizontal_accuracy = false;
|
|
}
|
|
|
|
float vel_cov[9];
|
|
msg.velocity_covariance.unpackSquareMatrix(vel_cov);
|
|
if (!uavcan::isNaN(vel_cov[0])) {
|
|
state->speed_accuracy = sqrtf((vel_cov[0] + vel_cov[4] + vel_cov[8]) / 3.0);
|
|
state->have_speed_accuracy = true;
|
|
} else {
|
|
state->have_speed_accuracy = false;
|
|
}
|
|
|
|
state->num_sats = msg.sats_used;
|
|
} else {
|
|
state->have_vertical_velocity = false;
|
|
state->have_vertical_accuracy = false;
|
|
state->have_horizontal_accuracy = false;
|
|
state->have_speed_accuracy = false;
|
|
state->num_sats = 0;
|
|
}
|
|
|
|
state->last_gps_time_ms = AP_HAL::millis();
|
|
|
|
// after all is filled, update all listeners with new data
|
|
ap_uavcan->update_gps_state(msg.getSrcNodeID().get());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void gnss_fix_cb0(const uavcan::ReceivedDataStructure<uavcan::equipment::gnss::Fix>& msg)
|
|
{ gnss_fix_cb(msg, 0); }
|
|
static void gnss_fix_cb1(const uavcan::ReceivedDataStructure<uavcan::equipment::gnss::Fix>& msg)
|
|
{ gnss_fix_cb(msg, 1); }
|
|
static void (*gnss_fix_cb_arr[2])(const uavcan::ReceivedDataStructure<uavcan::equipment::gnss::Fix>& msg)
|
|
= { gnss_fix_cb0, gnss_fix_cb1 };
|
|
|
|
static void gnss_aux_cb(const uavcan::ReceivedDataStructure<uavcan::equipment::gnss::Auxiliary>& msg, uint8_t mgr)
|
|
{
|
|
if (hal.can_mgr[mgr] != nullptr) {
|
|
AP_UAVCAN *ap_uavcan = hal.can_mgr[mgr]->get_UAVCAN();
|
|
if (ap_uavcan != nullptr) {
|
|
AP_GPS::GPS_State *state = ap_uavcan->find_gps_node(msg.getSrcNodeID().get());
|
|
|
|
if (state != nullptr) {
|
|
if (!uavcan::isNaN(msg.hdop)) {
|
|
state->hdop = msg.hdop * 100.0;
|
|
}
|
|
|
|
if (!uavcan::isNaN(msg.vdop)) {
|
|
state->vdop = msg.vdop * 100.0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void gnss_aux_cb0(const uavcan::ReceivedDataStructure<uavcan::equipment::gnss::Auxiliary>& msg)
|
|
{ gnss_aux_cb(msg, 0); }
|
|
static void gnss_aux_cb1(const uavcan::ReceivedDataStructure<uavcan::equipment::gnss::Auxiliary>& msg)
|
|
{ gnss_aux_cb(msg, 1); }
|
|
static void (*gnss_aux_cb_arr[2])(const uavcan::ReceivedDataStructure<uavcan::equipment::gnss::Auxiliary>& msg)
|
|
= { gnss_aux_cb0, gnss_aux_cb1 };
|
|
|
|
static void magnetic_cb(const uavcan::ReceivedDataStructure<uavcan::equipment::ahrs::MagneticFieldStrength>& msg, uint8_t mgr)
|
|
{
|
|
if (hal.can_mgr[mgr] != nullptr) {
|
|
AP_UAVCAN *ap_uavcan = hal.can_mgr[mgr]->get_UAVCAN();
|
|
if (ap_uavcan != nullptr) {
|
|
AP_UAVCAN::Mag_Info *state = ap_uavcan->find_mag_node(msg.getSrcNodeID().get(), 0);
|
|
if (state != nullptr) {
|
|
state->mag_vector[0] = msg.magnetic_field_ga[0];
|
|
state->mag_vector[1] = msg.magnetic_field_ga[1];
|
|
state->mag_vector[2] = msg.magnetic_field_ga[2];
|
|
|
|
// after all is filled, update all listeners with new data
|
|
ap_uavcan->update_mag_state(msg.getSrcNodeID().get(), 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void magnetic_cb0(const uavcan::ReceivedDataStructure<uavcan::equipment::ahrs::MagneticFieldStrength>& msg)
|
|
{ magnetic_cb(msg, 0); }
|
|
static void magnetic_cb1(const uavcan::ReceivedDataStructure<uavcan::equipment::ahrs::MagneticFieldStrength>& msg)
|
|
{ magnetic_cb(msg, 1); }
|
|
static void (*magnetic_cb_arr[2])(const uavcan::ReceivedDataStructure<uavcan::equipment::ahrs::MagneticFieldStrength>& msg)
|
|
= { magnetic_cb0, magnetic_cb1 };
|
|
|
|
static void magnetic_cb_2(const uavcan::ReceivedDataStructure<uavcan::equipment::ahrs::MagneticFieldStrength2>& msg, uint8_t mgr)
|
|
{
|
|
if (hal.can_mgr[mgr] != nullptr) {
|
|
AP_UAVCAN *ap_uavcan = hal.can_mgr[mgr]->get_UAVCAN();
|
|
if (ap_uavcan != nullptr) {
|
|
AP_UAVCAN::Mag_Info *state = ap_uavcan->find_mag_node(msg.getSrcNodeID().get(), msg.sensor_id);
|
|
if (state != nullptr) {
|
|
state->mag_vector[0] = msg.magnetic_field_ga[0];
|
|
state->mag_vector[1] = msg.magnetic_field_ga[1];
|
|
state->mag_vector[2] = msg.magnetic_field_ga[2];
|
|
|
|
// after all is filled, update all listeners with new data
|
|
ap_uavcan->update_mag_state(msg.getSrcNodeID().get(), msg.sensor_id);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void magnetic_cb_2_0(const uavcan::ReceivedDataStructure<uavcan::equipment::ahrs::MagneticFieldStrength2>& msg)
|
|
{ magnetic_cb_2(msg, 0); }
|
|
static void magnetic_cb_2_1(const uavcan::ReceivedDataStructure<uavcan::equipment::ahrs::MagneticFieldStrength2>& msg)
|
|
{ magnetic_cb_2(msg, 1); }
|
|
static void (*magnetic_cb_2_arr[2])(const uavcan::ReceivedDataStructure<uavcan::equipment::ahrs::MagneticFieldStrength2>& msg)
|
|
= { magnetic_cb_2_0, magnetic_cb_2_1 };
|
|
|
|
static void air_data_sp_cb(const uavcan::ReceivedDataStructure<uavcan::equipment::air_data::StaticPressure>& msg, uint8_t mgr)
|
|
{
|
|
if (hal.can_mgr[mgr] != nullptr) {
|
|
AP_UAVCAN *ap_uavcan = hal.can_mgr[mgr]->get_UAVCAN();
|
|
if (ap_uavcan != nullptr) {
|
|
AP_UAVCAN::Baro_Info *state = ap_uavcan->find_baro_node(msg.getSrcNodeID().get());
|
|
|
|
if (state != nullptr) {
|
|
state->pressure = msg.static_pressure;
|
|
state->pressure_variance = msg.static_pressure_variance;
|
|
|
|
// after all is filled, update all listeners with new data
|
|
ap_uavcan->update_baro_state(msg.getSrcNodeID().get());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void air_data_sp_cb0(const uavcan::ReceivedDataStructure<uavcan::equipment::air_data::StaticPressure>& msg)
|
|
{ air_data_sp_cb(msg, 0); }
|
|
static void air_data_sp_cb1(const uavcan::ReceivedDataStructure<uavcan::equipment::air_data::StaticPressure>& msg)
|
|
{ air_data_sp_cb(msg, 1); }
|
|
static void (*air_data_sp_cb_arr[2])(const uavcan::ReceivedDataStructure<uavcan::equipment::air_data::StaticPressure>& msg)
|
|
= { air_data_sp_cb0, air_data_sp_cb1 };
|
|
|
|
// Temperature is not main parameter so do not update listeners when it is received
|
|
static void air_data_st_cb(const uavcan::ReceivedDataStructure<uavcan::equipment::air_data::StaticTemperature>& msg, uint8_t mgr)
|
|
{
|
|
if (hal.can_mgr[mgr] != nullptr) {
|
|
AP_UAVCAN *ap_uavcan = hal.can_mgr[mgr]->get_UAVCAN();
|
|
if (ap_uavcan != nullptr) {
|
|
AP_UAVCAN::Baro_Info *state = ap_uavcan->find_baro_node(msg.getSrcNodeID().get());
|
|
|
|
if (state != nullptr) {
|
|
state->temperature = msg.static_temperature;
|
|
state->temperature_variance = msg.static_temperature_variance;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void air_data_st_cb0(const uavcan::ReceivedDataStructure<uavcan::equipment::air_data::StaticTemperature>& msg)
|
|
{ air_data_st_cb(msg, 0); }
|
|
static void air_data_st_cb1(const uavcan::ReceivedDataStructure<uavcan::equipment::air_data::StaticTemperature>& msg)
|
|
{ air_data_st_cb(msg, 1); }
|
|
static void (*air_data_st_cb_arr[2])(const uavcan::ReceivedDataStructure<uavcan::equipment::air_data::StaticTemperature>& msg)
|
|
= { air_data_st_cb0, air_data_st_cb1 };
|
|
|
|
static void battery_info_st_cb(const uavcan::ReceivedDataStructure<uavcan::equipment::power::BatteryInfo>& msg, uint8_t mgr)
|
|
{
|
|
if (hal.can_mgr[mgr] != nullptr) {
|
|
AP_UAVCAN *ap_uavcan = hal.can_mgr[mgr]->get_UAVCAN();
|
|
if (ap_uavcan != nullptr) {
|
|
AP_UAVCAN::BatteryInfo_Info *state = ap_uavcan->find_bi_id((uint16_t) msg.battery_id);
|
|
|
|
if (state != nullptr) {
|
|
state->temperature = msg.temperature;
|
|
state->voltage = msg.voltage;
|
|
state->current = msg.current;
|
|
state->full_charge_capacity_wh = msg.full_charge_capacity_wh;
|
|
state->remaining_capacity_wh = msg.remaining_capacity_wh;
|
|
state->status_flags = msg.status_flags;
|
|
|
|
// after all is filled, update all listeners with new data
|
|
ap_uavcan->update_bi_state((uint16_t) msg.battery_id);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void battery_info_st_cb0(const uavcan::ReceivedDataStructure<uavcan::equipment::power::BatteryInfo>& msg)
|
|
{ battery_info_st_cb(msg, 0); }
|
|
static void battery_info_st_cb1(const uavcan::ReceivedDataStructure<uavcan::equipment::power::BatteryInfo>& msg)
|
|
{ battery_info_st_cb(msg, 1); }
|
|
static void (*battery_info_st_cb_arr[2])(const uavcan::ReceivedDataStructure<uavcan::equipment::power::BatteryInfo>& msg)
|
|
= { battery_info_st_cb0, battery_info_st_cb1 };
|
|
|
|
// publisher interfaces
|
|
static uavcan::Publisher<uavcan::equipment::actuator::ArrayCommand>* act_out_array[MAX_NUMBER_OF_CAN_DRIVERS];
|
|
static uavcan::Publisher<uavcan::equipment::esc::RawCommand>* esc_raw[MAX_NUMBER_OF_CAN_DRIVERS];
|
|
static uavcan::Publisher<uavcan::equipment::indication::LightsCommand>* rgb_led[MAX_NUMBER_OF_CAN_DRIVERS];
|
|
|
|
AP_UAVCAN::AP_UAVCAN() :
|
|
_node_allocator(
|
|
UAVCAN_NODE_POOL_SIZE, UAVCAN_NODE_POOL_SIZE)
|
|
{
|
|
AP_Param::setup_object_defaults(this, var_info);
|
|
|
|
for (uint8_t i = 0; i < UAVCAN_RCO_NUMBER; i++) {
|
|
_rco_conf[i].active = false;
|
|
}
|
|
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_GPS_NODES; i++) {
|
|
_gps_nodes[i] = UINT8_MAX;
|
|
_gps_node_taken[i] = 0;
|
|
}
|
|
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BARO_NODES; i++) {
|
|
_baro_nodes[i] = UINT8_MAX;
|
|
_baro_node_taken[i] = 0;
|
|
}
|
|
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_MAG_NODES; i++) {
|
|
_mag_nodes[i] = UINT8_MAX;
|
|
_mag_node_taken[i] = 0;
|
|
_mag_node_max_sensorid_count[i] = 1;
|
|
}
|
|
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) {
|
|
_gps_listener_to_node[i] = UINT8_MAX;
|
|
_gps_listeners[i] = nullptr;
|
|
|
|
_baro_listener_to_node[i] = UINT8_MAX;
|
|
_baro_listeners[i] = nullptr;
|
|
|
|
_mag_listener_to_node[i] = UINT8_MAX;
|
|
_mag_listeners[i] = nullptr;
|
|
_mag_listener_sensor_ids[i] = 0;
|
|
}
|
|
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BI_NUMBER; i++) {
|
|
_bi_id[i] = UINT8_MAX;
|
|
_bi_id_taken[i] = 0;
|
|
_bi_BM_listener_to_id[i] = UINT8_MAX;
|
|
_bi_BM_listeners[i] = nullptr;
|
|
}
|
|
|
|
_rc_out_sem = hal.util->new_semaphore();
|
|
_led_out_sem = hal.util->new_semaphore();
|
|
|
|
debug_uavcan(2, "AP_UAVCAN constructed\n\r");
|
|
}
|
|
|
|
AP_UAVCAN::~AP_UAVCAN()
|
|
{
|
|
}
|
|
|
|
bool AP_UAVCAN::try_init(void)
|
|
{
|
|
if (_parent_can_mgr != nullptr) {
|
|
if (_parent_can_mgr->is_initialized() && !_initialized) {
|
|
|
|
_uavcan_i = UINT8_MAX;
|
|
for (uint8_t i = 0; i < MAX_NUMBER_OF_CAN_DRIVERS; i++) {
|
|
if (_parent_can_mgr == hal.can_mgr[i]) {
|
|
_uavcan_i = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if(_uavcan_i == UINT8_MAX) {
|
|
return false;
|
|
}
|
|
|
|
auto *node = get_node();
|
|
|
|
if (node != nullptr) {
|
|
if (!node->isStarted()) {
|
|
uavcan::NodeID self_node_id(_uavcan_node);
|
|
node->setNodeID(self_node_id);
|
|
|
|
char ndname[20];
|
|
snprintf(ndname, sizeof(ndname), "org.ardupilot:%u", _uavcan_i);
|
|
|
|
uavcan::NodeStatusProvider::NodeName name(ndname);
|
|
node->setName(name);
|
|
|
|
uavcan::protocol::SoftwareVersion sw_version; // Standard type uavcan.protocol.SoftwareVersion
|
|
sw_version.major = AP_UAVCAN_SW_VERS_MAJOR;
|
|
sw_version.minor = AP_UAVCAN_SW_VERS_MINOR;
|
|
node->setSoftwareVersion(sw_version);
|
|
|
|
uavcan::protocol::HardwareVersion hw_version; // Standard type uavcan.protocol.HardwareVersion
|
|
|
|
hw_version.major = AP_UAVCAN_HW_VERS_MAJOR;
|
|
hw_version.minor = AP_UAVCAN_HW_VERS_MINOR;
|
|
node->setHardwareVersion(hw_version);
|
|
|
|
const int node_start_res = node->start();
|
|
if (node_start_res < 0) {
|
|
debug_uavcan(1, "UAVCAN: node start problem\n\r");
|
|
}
|
|
|
|
uavcan::Subscriber<uavcan::equipment::gnss::Fix> *gnss_fix;
|
|
gnss_fix = new uavcan::Subscriber<uavcan::equipment::gnss::Fix>(*node);
|
|
|
|
const int gnss_fix_start_res = gnss_fix->start(gnss_fix_cb_arr[_uavcan_i]);
|
|
if (gnss_fix_start_res < 0) {
|
|
debug_uavcan(1, "UAVCAN GNSS subscriber start problem\n\r");
|
|
return false;
|
|
}
|
|
|
|
uavcan::Subscriber<uavcan::equipment::gnss::Auxiliary> *gnss_aux;
|
|
gnss_aux = new uavcan::Subscriber<uavcan::equipment::gnss::Auxiliary>(*node);
|
|
const int gnss_aux_start_res = gnss_aux->start(gnss_aux_cb_arr[_uavcan_i]);
|
|
if (gnss_aux_start_res < 0) {
|
|
debug_uavcan(1, "UAVCAN GNSS Aux subscriber start problem\n\r");
|
|
return false;
|
|
}
|
|
|
|
uavcan::Subscriber<uavcan::equipment::ahrs::MagneticFieldStrength> *magnetic;
|
|
magnetic = new uavcan::Subscriber<uavcan::equipment::ahrs::MagneticFieldStrength>(*node);
|
|
const int magnetic_start_res = magnetic->start(magnetic_cb_arr[_uavcan_i]);
|
|
if (magnetic_start_res < 0) {
|
|
debug_uavcan(1, "UAVCAN Compass subscriber start problem\n\r");
|
|
return false;
|
|
}
|
|
|
|
uavcan::Subscriber<uavcan::equipment::ahrs::MagneticFieldStrength2> *magnetic2;
|
|
magnetic2 = new uavcan::Subscriber<uavcan::equipment::ahrs::MagneticFieldStrength2>(*node);
|
|
const int magnetic_start_res_2 = magnetic2->start(magnetic_cb_2_arr[_uavcan_i]);
|
|
if (magnetic_start_res_2 < 0) {
|
|
debug_uavcan(1, "UAVCAN Compass for multiple mags subscriber start problem\n\r");
|
|
return false;
|
|
}
|
|
|
|
uavcan::Subscriber<uavcan::equipment::air_data::StaticPressure> *air_data_sp;
|
|
air_data_sp = new uavcan::Subscriber<uavcan::equipment::air_data::StaticPressure>(*node);
|
|
const int air_data_sp_start_res = air_data_sp->start(air_data_sp_cb_arr[_uavcan_i]);
|
|
if (air_data_sp_start_res < 0) {
|
|
debug_uavcan(1, "UAVCAN Baro subscriber start problem\n\r");
|
|
return false;
|
|
}
|
|
|
|
uavcan::Subscriber<uavcan::equipment::air_data::StaticTemperature> *air_data_st;
|
|
air_data_st = new uavcan::Subscriber<uavcan::equipment::air_data::StaticTemperature>(*node);
|
|
const int air_data_st_start_res = air_data_st->start(air_data_st_cb_arr[_uavcan_i]);
|
|
if (air_data_st_start_res < 0) {
|
|
debug_uavcan(1, "UAVCAN Temperature subscriber start problem\n\r");
|
|
return false;
|
|
}
|
|
|
|
uavcan::Subscriber<uavcan::equipment::power::BatteryInfo> *battery_info_st;
|
|
battery_info_st = new uavcan::Subscriber<uavcan::equipment::power::BatteryInfo>(*node);
|
|
const int battery_info_start_res = battery_info_st->start(battery_info_st_cb_arr[_uavcan_i]);
|
|
if (battery_info_start_res < 0) {
|
|
debug_uavcan(1, "UAVCAN BatteryInfo subscriber start problem\n\r");
|
|
return false;
|
|
}
|
|
|
|
act_out_array[_uavcan_i] = new uavcan::Publisher<uavcan::equipment::actuator::ArrayCommand>(*node);
|
|
act_out_array[_uavcan_i]->setTxTimeout(uavcan::MonotonicDuration::fromMSec(20));
|
|
act_out_array[_uavcan_i]->setPriority(uavcan::TransferPriority::OneLowerThanHighest);
|
|
|
|
esc_raw[_uavcan_i] = new uavcan::Publisher<uavcan::equipment::esc::RawCommand>(*node);
|
|
esc_raw[_uavcan_i]->setTxTimeout(uavcan::MonotonicDuration::fromMSec(20));
|
|
esc_raw[_uavcan_i]->setPriority(uavcan::TransferPriority::OneLowerThanHighest);
|
|
|
|
rgb_led[_uavcan_i] = new uavcan::Publisher<uavcan::equipment::indication::LightsCommand>(*node);
|
|
rgb_led[_uavcan_i]->setTxTimeout(uavcan::MonotonicDuration::fromMSec(20));
|
|
rgb_led[_uavcan_i]->setPriority(uavcan::TransferPriority::OneHigherThanLowest);
|
|
|
|
_led_conf.devices_count = 0;
|
|
|
|
/*
|
|
* Informing other nodes that we're ready to work.
|
|
* Default mode is INITIALIZING.
|
|
*/
|
|
node->setModeOperational();
|
|
|
|
_initialized = true;
|
|
|
|
debug_uavcan(1, "UAVCAN: init done\n\r");
|
|
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (_initialized) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool AP_UAVCAN::rc_out_sem_take()
|
|
{
|
|
bool sem_ret = _rc_out_sem->take(10);
|
|
if (!sem_ret) {
|
|
debug_uavcan(1, "AP_UAVCAN RCOut semaphore fail\n\r");
|
|
}
|
|
return sem_ret;
|
|
}
|
|
|
|
void AP_UAVCAN::rc_out_sem_give()
|
|
{
|
|
_rc_out_sem->give();
|
|
}
|
|
|
|
void AP_UAVCAN::rc_out_send_servos(void)
|
|
{
|
|
uint8_t starting_servo = 0;
|
|
bool repeat_send;
|
|
|
|
do {
|
|
repeat_send = false;
|
|
uavcan::equipment::actuator::ArrayCommand msg;
|
|
|
|
uint8_t i;
|
|
// UAVCAN can hold maximum of 15 commands in one frame
|
|
for (i = 0; starting_servo < UAVCAN_RCO_NUMBER && i < 15; starting_servo++) {
|
|
uavcan::equipment::actuator::Command cmd;
|
|
|
|
/*
|
|
* Servo output uses a range of 1000-2000 PWM for scaling.
|
|
* This converts output PWM from [1000:2000] range to [-1:1] range that
|
|
* is passed to servo as unitless type via UAVCAN.
|
|
* This approach allows for MIN/TRIM/MAX values to be used fully on
|
|
* autopilot side and for servo it should have the setup to provide maximum
|
|
* physically possible throws at [-1:1] limits.
|
|
*/
|
|
|
|
if (_rco_conf[starting_servo].active && ((((uint32_t) 1) << starting_servo) & _servo_bm)) {
|
|
cmd.actuator_id = starting_servo + 1;
|
|
|
|
// TODO: other types
|
|
cmd.command_type = uavcan::equipment::actuator::Command::COMMAND_TYPE_UNITLESS;
|
|
|
|
// TODO: failsafe, safety
|
|
cmd.command_value = constrain_float(((float) _rco_conf[starting_servo].pulse - 1000.0) / 500.0 - 1.0, -1.0, 1.0);
|
|
|
|
msg.commands.push_back(cmd);
|
|
|
|
i++;
|
|
}
|
|
}
|
|
|
|
if (i > 0) {
|
|
act_out_array[_uavcan_i]->broadcast(msg);
|
|
|
|
if (i == 15) {
|
|
repeat_send = true;
|
|
}
|
|
}
|
|
} while (repeat_send);
|
|
}
|
|
|
|
void AP_UAVCAN::rc_out_send_esc(void)
|
|
{
|
|
static const int cmd_max = uavcan::equipment::esc::RawCommand::FieldTypes::cmd::RawValueType::max();
|
|
uavcan::equipment::esc::RawCommand esc_msg;
|
|
|
|
uint8_t active_esc_num = 0, max_esc_num = 0;
|
|
uint8_t k = 0;
|
|
|
|
// find out how many esc we have enabled and if they are active at all
|
|
for (uint8_t i = 0; i < UAVCAN_RCO_NUMBER; i++) {
|
|
if ((((uint32_t) 1) << i) & _esc_bm) {
|
|
max_esc_num = i + 1;
|
|
if (_rco_conf[i].active) {
|
|
active_esc_num++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// if at least one is active (update) we need to send to all
|
|
if (active_esc_num > 0) {
|
|
k = 0;
|
|
|
|
for (uint8_t i = 0; i < max_esc_num && k < 20; i++) {
|
|
uavcan::equipment::actuator::Command cmd;
|
|
|
|
if ((((uint32_t) 1) << i) & _esc_bm) {
|
|
// TODO: ESC negative scaling for reverse thrust and reverse rotation
|
|
float scaled = cmd_max * (hal.rcout->scale_esc_to_unity(_rco_conf[i].pulse) + 1.0) / 2.0;
|
|
|
|
scaled = constrain_float(scaled, 0, cmd_max);
|
|
|
|
esc_msg.cmd.push_back(static_cast<int>(scaled));
|
|
} else {
|
|
esc_msg.cmd.push_back(static_cast<unsigned>(0));
|
|
}
|
|
|
|
k++;
|
|
}
|
|
|
|
esc_raw[_uavcan_i]->broadcast(esc_msg);
|
|
}
|
|
}
|
|
|
|
void AP_UAVCAN::do_cyclic(void)
|
|
{
|
|
if (!_initialized) {
|
|
hal.scheduler->delay_microseconds(1000);
|
|
return;
|
|
}
|
|
|
|
auto *node = get_node();
|
|
|
|
const int error = node->spin(uavcan::MonotonicDuration::fromMSec(1));
|
|
|
|
if (error < 0) {
|
|
hal.scheduler->delay_microseconds(1000);
|
|
return;
|
|
}
|
|
|
|
if (rc_out_sem_take()) {
|
|
|
|
if (_rco_armed) {
|
|
|
|
// if we have any Servos in bitmask
|
|
if (_servo_bm > 0) {
|
|
rc_out_send_servos();
|
|
}
|
|
|
|
// if we have any ESC's in bitmask
|
|
if (_esc_bm > 0) {
|
|
rc_out_send_esc();
|
|
}
|
|
}
|
|
|
|
for (uint8_t i = 0; i < UAVCAN_RCO_NUMBER; i++) {
|
|
// mark as transmitted
|
|
_rco_conf[i].active = false;
|
|
}
|
|
|
|
rc_out_sem_give();
|
|
}
|
|
|
|
if (led_out_sem_take()) {
|
|
|
|
led_out_send();
|
|
led_out_sem_give();
|
|
}
|
|
|
|
}
|
|
|
|
bool AP_UAVCAN::led_out_sem_take()
|
|
{
|
|
bool sem_ret = _led_out_sem->take(10);
|
|
if (!sem_ret) {
|
|
debug_uavcan(1, "AP_UAVCAN LEDOut semaphore fail\n\r");
|
|
}
|
|
return sem_ret;
|
|
}
|
|
|
|
void AP_UAVCAN::led_out_sem_give()
|
|
{
|
|
_led_out_sem->give();
|
|
}
|
|
|
|
void AP_UAVCAN::led_out_send()
|
|
{
|
|
if (_led_conf.broadcast_enabled && ((AP_HAL::micros64() - _led_conf.last_update) > (AP_UAVCAN_LED_DELAY_MILLISECONDS * 1000))) {
|
|
uavcan::equipment::indication::LightsCommand msg;
|
|
uavcan::equipment::indication::SingleLightCommand cmd;
|
|
|
|
for (uint8_t i = 0; i < _led_conf.devices_count; i++) {
|
|
if (_led_conf.devices[i].enabled) {
|
|
cmd.light_id =_led_conf.devices[i].led_index;
|
|
cmd.color = _led_conf.devices[i].rgb565_color;
|
|
msg.commands.push_back(cmd);
|
|
}
|
|
}
|
|
|
|
rgb_led[_uavcan_i]->broadcast(msg);
|
|
_led_conf.last_update = AP_HAL::micros64();
|
|
}
|
|
}
|
|
|
|
uavcan::ISystemClock & AP_UAVCAN::get_system_clock()
|
|
{
|
|
return SystemClock::instance();
|
|
}
|
|
|
|
uavcan::ICanDriver * AP_UAVCAN::get_can_driver()
|
|
{
|
|
if (_parent_can_mgr != nullptr) {
|
|
if (_parent_can_mgr->is_initialized() == false) {
|
|
return nullptr;
|
|
} else {
|
|
return _parent_can_mgr->get_driver();
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
uavcan::Node<0> *AP_UAVCAN::get_node()
|
|
{
|
|
if (_node == nullptr && get_can_driver() != nullptr) {
|
|
_node = new uavcan::Node<0>(*get_can_driver(), get_system_clock(), _node_allocator);
|
|
}
|
|
|
|
return _node;
|
|
}
|
|
|
|
void AP_UAVCAN::rco_set_safety_pwm(uint32_t chmask, uint16_t pulse_len)
|
|
{
|
|
for (uint8_t i = 0; i < UAVCAN_RCO_NUMBER; i++) {
|
|
if (chmask & (((uint32_t) 1) << i)) {
|
|
_rco_conf[i].safety_pulse = pulse_len;
|
|
}
|
|
}
|
|
}
|
|
|
|
void AP_UAVCAN::rco_set_failsafe_pwm(uint32_t chmask, uint16_t pulse_len)
|
|
{
|
|
for (uint8_t i = 0; i < UAVCAN_RCO_NUMBER; i++) {
|
|
if (chmask & (((uint32_t) 1) << i)) {
|
|
_rco_conf[i].failsafe_pulse = pulse_len;
|
|
}
|
|
}
|
|
}
|
|
|
|
void AP_UAVCAN::rco_force_safety_on(void)
|
|
{
|
|
_rco_safety = true;
|
|
}
|
|
|
|
void AP_UAVCAN::rco_force_safety_off(void)
|
|
{
|
|
_rco_safety = false;
|
|
}
|
|
|
|
void AP_UAVCAN::rco_arm_actuators(bool arm)
|
|
{
|
|
_rco_armed = arm;
|
|
}
|
|
|
|
void AP_UAVCAN::rco_write(uint16_t pulse_len, uint8_t ch)
|
|
{
|
|
_rco_conf[ch].pulse = pulse_len;
|
|
_rco_conf[ch].active = true;
|
|
}
|
|
|
|
uint8_t AP_UAVCAN::find_gps_without_listener(void)
|
|
{
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) {
|
|
if (_gps_listeners[i] == nullptr && _gps_nodes[i] != UINT8_MAX) {
|
|
return _gps_nodes[i];
|
|
}
|
|
}
|
|
|
|
return UINT8_MAX;
|
|
}
|
|
|
|
uint8_t AP_UAVCAN::register_gps_listener(AP_GPS_Backend* new_listener, uint8_t preferred_channel)
|
|
{
|
|
uint8_t sel_place = UINT8_MAX, ret = 0;
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) {
|
|
if (_gps_listeners[i] == nullptr) {
|
|
sel_place = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (sel_place != UINT8_MAX) {
|
|
if (preferred_channel != 0) {
|
|
if (preferred_channel <= AP_UAVCAN_MAX_GPS_NODES) {
|
|
_gps_listeners[sel_place] = new_listener;
|
|
_gps_listener_to_node[sel_place] = preferred_channel - 1;
|
|
_gps_node_taken[_gps_listener_to_node[sel_place]]++;
|
|
ret = preferred_channel;
|
|
|
|
debug_uavcan(2, "reg_GPS place:%d, chan: %d\n\r", sel_place, preferred_channel);
|
|
}
|
|
} else {
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_GPS_NODES; i++) {
|
|
if (_gps_node_taken[i] == 0) {
|
|
_gps_listeners[sel_place] = new_listener;
|
|
_gps_listener_to_node[sel_place] = i;
|
|
_gps_node_taken[i]++;
|
|
ret = i + 1;
|
|
|
|
debug_uavcan(2, "reg_GPS place:%d, chan: %d\n\r", sel_place, i);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
uint8_t AP_UAVCAN::register_gps_listener_to_node(AP_GPS_Backend* new_listener, uint8_t node)
|
|
{
|
|
uint8_t sel_place = UINT8_MAX, ret = 0;
|
|
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) {
|
|
if (_gps_listeners[i] == nullptr) {
|
|
sel_place = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (sel_place != UINT8_MAX) {
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_GPS_NODES; i++) {
|
|
if (_gps_nodes[i] == node) {
|
|
_gps_listeners[sel_place] = new_listener;
|
|
_gps_listener_to_node[sel_place] = i;
|
|
_gps_node_taken[i]++;
|
|
ret = i + 1;
|
|
|
|
debug_uavcan(2, "reg_GPS place:%d, chan: %d\n\r", sel_place, i);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void AP_UAVCAN::remove_gps_listener(AP_GPS_Backend* rem_listener)
|
|
{
|
|
// Check for all listeners and compare pointers
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) {
|
|
if (_gps_listeners[i] == rem_listener) {
|
|
_gps_listeners[i] = nullptr;
|
|
|
|
// Also decrement usage counter and reset listening node
|
|
if (_gps_node_taken[_gps_listener_to_node[i]] > 0) {
|
|
_gps_node_taken[_gps_listener_to_node[i]]--;
|
|
}
|
|
_gps_listener_to_node[i] = UINT8_MAX;
|
|
}
|
|
}
|
|
}
|
|
|
|
AP_GPS::GPS_State *AP_UAVCAN::find_gps_node(uint8_t node)
|
|
{
|
|
// Check if such node is already defined
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_GPS_NODES; i++) {
|
|
if (_gps_nodes[i] == node) {
|
|
return &_gps_node_state[i];
|
|
}
|
|
}
|
|
|
|
// If not - try to find free space for it
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_GPS_NODES; i++) {
|
|
if (_gps_nodes[i] == UINT8_MAX) {
|
|
_gps_nodes[i] = node;
|
|
return &_gps_node_state[i];
|
|
}
|
|
}
|
|
|
|
// If no space is left - return nullptr
|
|
return nullptr;
|
|
}
|
|
|
|
void AP_UAVCAN::update_gps_state(uint8_t node)
|
|
{
|
|
// Go through all listeners of specified node and call their's update methods
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_GPS_NODES; i++) {
|
|
if (_gps_nodes[i] == node) {
|
|
for (uint8_t j = 0; j < AP_UAVCAN_MAX_LISTENERS; j++) {
|
|
if (_gps_listener_to_node[j] == i) {
|
|
_gps_listeners[j]->handle_gnss_msg(_gps_node_state[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
uint8_t AP_UAVCAN::register_baro_listener(AP_Baro_Backend* new_listener, uint8_t preferred_channel)
|
|
{
|
|
uint8_t sel_place = UINT8_MAX, ret = 0;
|
|
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) {
|
|
if (_baro_listeners[i] == nullptr) {
|
|
sel_place = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (sel_place != UINT8_MAX) {
|
|
if (preferred_channel != 0) {
|
|
if (preferred_channel < AP_UAVCAN_MAX_BARO_NODES) {
|
|
_baro_listeners[sel_place] = new_listener;
|
|
_baro_listener_to_node[sel_place] = preferred_channel - 1;
|
|
_baro_node_taken[_baro_listener_to_node[sel_place]]++;
|
|
ret = preferred_channel;
|
|
|
|
debug_uavcan(2, "reg_Baro place:%d, chan: %d\n\r", sel_place, preferred_channel);
|
|
}
|
|
} else {
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BARO_NODES; i++) {
|
|
if (_baro_node_taken[i] == 0) {
|
|
_baro_listeners[sel_place] = new_listener;
|
|
_baro_listener_to_node[sel_place] = i;
|
|
_baro_node_taken[i]++;
|
|
ret = i + 1;
|
|
|
|
debug_uavcan(2, "reg_BARO place:%d, chan: %d\n\r", sel_place, i);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
uint8_t AP_UAVCAN::register_baro_listener_to_node(AP_Baro_Backend* new_listener, uint8_t node)
|
|
{
|
|
uint8_t sel_place = UINT8_MAX, ret = 0;
|
|
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) {
|
|
if (_baro_listeners[i] == nullptr) {
|
|
sel_place = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (sel_place != UINT8_MAX) {
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BARO_NODES; i++) {
|
|
if (_baro_nodes[i] == node) {
|
|
_baro_listeners[sel_place] = new_listener;
|
|
_baro_listener_to_node[sel_place] = i;
|
|
_baro_node_taken[i]++;
|
|
ret = i + 1;
|
|
|
|
debug_uavcan(2, "reg_BARO place:%d, chan: %d\n\r", sel_place, i);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void AP_UAVCAN::remove_baro_listener(AP_Baro_Backend* rem_listener)
|
|
{
|
|
// Check for all listeners and compare pointers
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) {
|
|
if (_baro_listeners[i] == rem_listener) {
|
|
_baro_listeners[i] = nullptr;
|
|
|
|
// Also decrement usage counter and reset listening node
|
|
if (_baro_node_taken[_baro_listener_to_node[i]] > 0) {
|
|
_baro_node_taken[_baro_listener_to_node[i]]--;
|
|
}
|
|
_baro_listener_to_node[i] = UINT8_MAX;
|
|
}
|
|
}
|
|
}
|
|
|
|
AP_UAVCAN::Baro_Info *AP_UAVCAN::find_baro_node(uint8_t node)
|
|
{
|
|
// Check if such node is already defined
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BARO_NODES; i++) {
|
|
if (_baro_nodes[i] == node) {
|
|
return &_baro_node_state[i];
|
|
}
|
|
}
|
|
|
|
// If not - try to find free space for it
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BARO_NODES; i++) {
|
|
if (_baro_nodes[i] == UINT8_MAX) {
|
|
|
|
_baro_nodes[i] = node;
|
|
return &_baro_node_state[i];
|
|
}
|
|
}
|
|
|
|
// If no space is left - return nullptr
|
|
return nullptr;
|
|
}
|
|
|
|
void AP_UAVCAN::update_baro_state(uint8_t node)
|
|
{
|
|
// Go through all listeners of specified node and call their's update methods
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BARO_NODES; i++) {
|
|
if (_baro_nodes[i] == node) {
|
|
for (uint8_t j = 0; j < AP_UAVCAN_MAX_LISTENERS; j++) {
|
|
if (_baro_listener_to_node[j] == i) {
|
|
_baro_listeners[j]->handle_baro_msg(_baro_node_state[i].pressure, _baro_node_state[i].temperature);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Find discovered not taken baro node with smallest node ID
|
|
*/
|
|
uint8_t AP_UAVCAN::find_smallest_free_baro_node()
|
|
{
|
|
uint8_t ret = UINT8_MAX;
|
|
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BARO_NODES; i++) {
|
|
if (_baro_node_taken[i] == 0) {
|
|
ret = MIN(ret, _baro_nodes[i]);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
uint8_t AP_UAVCAN::register_mag_listener(AP_Compass_Backend* new_listener, uint8_t preferred_channel)
|
|
{
|
|
uint8_t sel_place = UINT8_MAX, ret = 0;
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) {
|
|
if (_mag_listeners[i] == nullptr) {
|
|
sel_place = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (sel_place != UINT8_MAX) {
|
|
if (preferred_channel != 0) {
|
|
if (preferred_channel < AP_UAVCAN_MAX_MAG_NODES) {
|
|
_mag_listeners[sel_place] = new_listener;
|
|
_mag_listener_to_node[sel_place] = preferred_channel - 1;
|
|
_mag_node_taken[_mag_listener_to_node[sel_place]]++;
|
|
ret = preferred_channel;
|
|
|
|
debug_uavcan(2, "reg_Compass place:%d, chan: %d\n\r", sel_place, preferred_channel);
|
|
}
|
|
} else {
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_MAG_NODES; i++) {
|
|
if (_mag_node_taken[i] == 0) {
|
|
_mag_listeners[sel_place] = new_listener;
|
|
_mag_listener_to_node[sel_place] = i;
|
|
_mag_node_taken[i]++;
|
|
ret = i + 1;
|
|
|
|
debug_uavcan(2, "reg_MAG place:%d, chan: %d\n\r", sel_place, i);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
uint8_t AP_UAVCAN::register_mag_listener_to_node(AP_Compass_Backend* new_listener, uint8_t node)
|
|
{
|
|
uint8_t sel_place = UINT8_MAX, ret = 0;
|
|
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) {
|
|
if (_mag_listeners[i] == nullptr) {
|
|
sel_place = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (sel_place != UINT8_MAX) {
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_MAG_NODES; i++) {
|
|
if (_mag_nodes[i] == node) {
|
|
_mag_listeners[sel_place] = new_listener;
|
|
_mag_listener_to_node[sel_place] = i;
|
|
_mag_listener_sensor_ids[sel_place] = 0;
|
|
_mag_node_taken[i]++;
|
|
ret = i + 1;
|
|
|
|
debug_uavcan(2, "reg_MAG place:%d, chan: %d\n\r", sel_place, i);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void AP_UAVCAN::remove_mag_listener(AP_Compass_Backend* rem_listener)
|
|
{
|
|
// Check for all listeners and compare pointers
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) {
|
|
if (_mag_listeners[i] == rem_listener) {
|
|
_mag_listeners[i] = nullptr;
|
|
|
|
// Also decrement usage counter and reset listening node
|
|
if (_mag_node_taken[_mag_listener_to_node[i]] > 0) {
|
|
_mag_node_taken[_mag_listener_to_node[i]]--;
|
|
}
|
|
_mag_listener_to_node[i] = UINT8_MAX;
|
|
}
|
|
}
|
|
}
|
|
|
|
AP_UAVCAN::Mag_Info *AP_UAVCAN::find_mag_node(uint8_t node, uint8_t sensor_id)
|
|
{
|
|
// Check if such node is already defined
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_MAG_NODES; i++) {
|
|
if (_mag_nodes[i] == node) {
|
|
if (_mag_node_max_sensorid_count[i] < sensor_id) {
|
|
_mag_node_max_sensorid_count[i] = sensor_id;
|
|
debug_uavcan(2, "AP_UAVCAN: Compass: found sensor id %d on node %d\n\r", (int)(sensor_id), (int)(node));
|
|
}
|
|
return &_mag_node_state[i];
|
|
}
|
|
}
|
|
|
|
// If not - try to find free space for it
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_MAG_NODES; i++) {
|
|
if (_mag_nodes[i] == UINT8_MAX) {
|
|
_mag_nodes[i] = node;
|
|
_mag_node_max_sensorid_count[i] = (sensor_id ? sensor_id : 1);
|
|
debug_uavcan(2, "AP_UAVCAN: Compass: register sensor id %d on node %d\n\r", (int)(sensor_id), (int)(node));
|
|
return &_mag_node_state[i];
|
|
}
|
|
}
|
|
|
|
// If no space is left - return nullptr
|
|
return nullptr;
|
|
}
|
|
|
|
/*
|
|
* Find discovered mag node with smallest node ID and which is taken N times,
|
|
* where N is less than its maximum sensor id.
|
|
* This allows multiple AP_Compass_UAVCAN instanses listening multiple compasses
|
|
* that are on one node.
|
|
*/
|
|
uint8_t AP_UAVCAN::find_smallest_free_mag_node()
|
|
{
|
|
uint8_t ret = UINT8_MAX;
|
|
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_MAG_NODES; i++) {
|
|
if (_mag_node_taken[i] < _mag_node_max_sensorid_count[i]) {
|
|
ret = MIN(ret, _mag_nodes[i]);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void AP_UAVCAN::update_mag_state(uint8_t node, uint8_t sensor_id)
|
|
{
|
|
// Go through all listeners of specified node and call their's update methods
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_MAG_NODES; i++) {
|
|
if (_mag_nodes[i] == node) {
|
|
for (uint8_t j = 0; j < AP_UAVCAN_MAX_LISTENERS; j++) {
|
|
if (_mag_listener_to_node[j] == i) {
|
|
|
|
/*If the current listener has default sensor_id,
|
|
while our sensor_id is not default, we have
|
|
to assign our sensor_id to this listener*/
|
|
if ((_mag_listener_sensor_ids[j] == 0) && (sensor_id != 0)) {
|
|
bool already_taken = false;
|
|
for (uint8_t k = 0; k < AP_UAVCAN_MAX_LISTENERS; k++) {
|
|
if (_mag_listener_sensor_ids[k] == sensor_id) {
|
|
already_taken = true;
|
|
}
|
|
}
|
|
if (!already_taken) {
|
|
debug_uavcan(2, "AP_UAVCAN: Compass: sensor_id updated to %d for listener %d\n", sensor_id, j);
|
|
_mag_listener_sensor_ids[j] = sensor_id;
|
|
}
|
|
}
|
|
|
|
/*If the current listener has the sensor_id that we have,
|
|
or our sensor_id is default, ask the listener to handle the measurements
|
|
(the default one is used for the nodes that have only one compass*/
|
|
if ((sensor_id == 0) || (_mag_listener_sensor_ids[j] == sensor_id)) {
|
|
_mag_listeners[j]->handle_mag_msg(_mag_node_state[i].mag_vector);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
uint8_t AP_UAVCAN::register_BM_bi_listener_to_id(AP_BattMonitor_Backend* new_listener, uint8_t id)
|
|
{
|
|
uint8_t sel_place = UINT8_MAX, ret = 0;
|
|
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) {
|
|
if (_bi_BM_listeners[i] == nullptr) {
|
|
sel_place = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (sel_place != UINT8_MAX) {
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BI_NUMBER; i++) {
|
|
if (_bi_id[i] == id) {
|
|
_bi_BM_listeners[sel_place] = new_listener;
|
|
_bi_BM_listener_to_id[sel_place] = i;
|
|
_bi_id_taken[i]++;
|
|
ret = i + 1;
|
|
|
|
debug_uavcan(2, "reg_BI place:%d, chan: %d\n\r", sel_place, i);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void AP_UAVCAN::remove_BM_bi_listener(AP_BattMonitor_Backend* rem_listener)
|
|
{
|
|
// Check for all listeners and compare pointers
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) {
|
|
if (_bi_BM_listeners[i] == rem_listener) {
|
|
_bi_BM_listeners[i] = nullptr;
|
|
|
|
// Also decrement usage counter and reset listening node
|
|
if (_bi_id_taken[_bi_BM_listener_to_id[i]] > 0) {
|
|
_bi_id_taken[_bi_BM_listener_to_id[i]]--;
|
|
}
|
|
_bi_BM_listener_to_id[i] = UINT8_MAX;
|
|
}
|
|
}
|
|
}
|
|
|
|
AP_UAVCAN::BatteryInfo_Info *AP_UAVCAN::find_bi_id(uint8_t id)
|
|
{
|
|
// Check if such node is already defined
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BI_NUMBER; i++) {
|
|
if (_bi_id[i] == id) {
|
|
return &_bi_id_state[i];
|
|
}
|
|
}
|
|
|
|
// If not - try to find free space for it
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BI_NUMBER; i++) {
|
|
if (_bi_id[i] == UINT8_MAX) {
|
|
_bi_id[i] = id;
|
|
return &_bi_id_state[i];
|
|
}
|
|
}
|
|
|
|
// If no space is left - return nullptr
|
|
return nullptr;
|
|
}
|
|
|
|
uint8_t AP_UAVCAN::find_smallest_free_bi_id()
|
|
{
|
|
uint8_t ret = UINT8_MAX;
|
|
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BI_NUMBER; i++) {
|
|
if (_bi_id_taken[i] == 0) {
|
|
ret = MIN(ret, _bi_id[i]);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void AP_UAVCAN::update_bi_state(uint8_t id)
|
|
{
|
|
// Go through all listeners of specified node and call their's update methods
|
|
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BI_NUMBER; i++) {
|
|
if (_bi_id[i] == id) {
|
|
for (uint8_t j = 0; j < AP_UAVCAN_MAX_LISTENERS; j++) {
|
|
if (_bi_BM_listener_to_id[j] == i) {
|
|
_bi_BM_listeners[j]->handle_bi_msg(_bi_id_state[i].voltage, _bi_id_state[i].current, _bi_id_state[i].temperature);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool AP_UAVCAN::led_write(uint8_t led_index, uint8_t red, uint8_t green, uint8_t blue) {
|
|
uavcan::equipment::indication::RGB565 color;
|
|
color.red = (red >> 3);
|
|
color.green = (green >> 2);
|
|
color.blue = (blue >> 3);
|
|
|
|
if (!led_out_sem_take()) return false;
|
|
|
|
for (uint8_t i = 0; i < _led_conf.devices_count; i++) {
|
|
if (!_led_conf.devices[i].enabled || (_led_conf.devices[i].led_index == led_index)) {
|
|
_led_conf.devices[i].led_index = led_index;
|
|
_led_conf.devices[i].rgb565_color = color;
|
|
_led_conf.devices[i].enabled = true;
|
|
_led_conf.broadcast_enabled = true;
|
|
led_out_sem_give();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (_led_conf.devices_count >= AP_UAVCAN_MAX_LED_DEVICES) {
|
|
led_out_sem_give();
|
|
return false;
|
|
}
|
|
|
|
_led_conf.devices[_led_conf.devices_count].led_index = led_index;
|
|
_led_conf.devices[_led_conf.devices_count].rgb565_color = color;
|
|
_led_conf.devices[_led_conf.devices_count].enabled = true;
|
|
_led_conf.devices_count++;
|
|
_led_conf.broadcast_enabled = true;
|
|
led_out_sem_give();
|
|
return true;
|
|
}
|
|
|
|
#endif // HAL_WITH_UAVCAN
|