Ardupilot2/ArduCopter/toy_mode.cpp
2018-03-20 08:13:06 +09:00

1077 lines
38 KiB
C++

#include "Copter.h"
#if TOY_MODE_ENABLED == ENABLED
// times in 0.1s units
#define TOY_COMMAND_DELAY 15
#define TOY_LONG_PRESS_COUNT 15
#define TOY_LAND_MANUAL_DISARM_COUNT 40
#define TOY_LAND_DISARM_COUNT 1
#define TOY_LAND_ARM_COUNT 1
#define TOY_RIGHT_PRESS_COUNT 1
#define TOY_ACTION_DELAY_MS 200
#define TOY_DESCENT_SLOW_HEIGHT 5
#define TOY_DESCENT_SLOW_RAMP 3
#define TOY_DESCENT_SLOW_MIN 300
#define TOY_RESET_TURTLE_TIME 5000
#define ENABLE_LOAD_TEST 0
const AP_Param::GroupInfo ToyMode::var_info[] = {
// @Param: _ENABLE
// @DisplayName: tmode enable
// @Description: tmode (or "toy" mode) gives a simplified user interface designed for mass market drones. Version1 is for the SkyViper V2450GPS. Version2 is for the F412 based boards
// @Values: 0:Disabled,1:EnableVersion1,2:EnableVersion2
// @User: Advanced
AP_GROUPINFO_FLAGS("_ENABLE", 1, ToyMode, enable, 0, AP_PARAM_FLAG_ENABLE),
// @Param: _MODE1
// @DisplayName: Tmode first mode
// @Description: This is the initial mode when the vehicle is first turned on. This mode is assumed to not require GPS
// @Values: 0:Stabilize,1:Acro,2:AltHold,3:Auto,4:Guided,5:Loiter,6:RTL,7:Circle,9:Land,11:Drift,13:Sport,14:Flip,15:AutoTune,16:PosHold,17:Brake,18:Throw,19:Avoid_ADSB,20:Guided_NoGPS,21:FlowHold
// @User: Standard
AP_GROUPINFO("_MODE1", 2, ToyMode, primary_mode[0], ALT_HOLD),
// @Param: _MODE2
// @DisplayName: Tmode second mode
// @Description: This is the secondary mode. This mode is assumed to require GPS
// @Values: 0:Stabilize,1:Acro,2:AltHold,3:Auto,4:Guided,5:Loiter,6:RTL,7:Circle,9:Land,11:Drift,13:Sport,14:Flip,15:AutoTune,16:PosHold,17:Brake,18:Throw,19:Avoid_ADSB,20:Guided_NoGPS,21:FlowHold
// @User: Standard
AP_GROUPINFO("_MODE2", 3, ToyMode, primary_mode[1], LOITER),
// @Param: _ACTION1
// @DisplayName: Tmode action 1
// @Description: This is the action taken for the left action button
// @Values: 0:None,1:TakePhoto,2:ToggleVideo,3:ModeAcro,4:ModeAltHold,5:ModeAuto,6:ModeLoiter,7:ModeRTL,8:ModeCircle,9:ModeLand,10:ModeDrift,11:ModeSport,12:ModeAutoTune,13:ModePosHold,14:ModeBrake,15:ModeThrow,16:Flip,17:ModeStabilize,18:Disarm,19:ToggleMode,20:Arm-Land-RTL,21:ToggleSimpleMode,22:ToggleSuperSimpleMode,23:MotorLoadTest,24:ModeFlowHold
// @User: Standard
AP_GROUPINFO("_ACTION1", 4, ToyMode, actions[0], ACTION_TOGGLE_VIDEO),
// @Param: _ACTION2
// @DisplayName: Tmode action 2
// @Description: This is the action taken for the right action button
// @Values: 0:None,1:TakePhoto,2:ToggleVideo,3:ModeAcro,4:ModeAltHold,5:ModeAuto,6:ModeLoiter,7:ModeRTL,8:ModeCircle,9:ModeLand,10:ModeDrift,11:ModeSport,12:ModeAutoTune,13:ModePosHold,14:ModeBrake,15:ModeThrow,16:Flip,17:ModeStabilize,18:Disarm,19:ToggleMode,20:Arm-Land-RTL,21:ToggleSimpleMode,22:ToggleSuperSimpleMode,23:MotorLoadTest,24:ModeFlowHold
// @User: Standard
AP_GROUPINFO("_ACTION2", 5, ToyMode, actions[1], ACTION_TAKE_PHOTO),
// @Param: _ACTION3
// @DisplayName: Tmode action 3
// @Description: This is the action taken for the power button
// @Values: 0:None,1:TakePhoto,2:ToggleVideo,3:ModeAcro,4:ModeAltHold,5:ModeAuto,6:ModeLoiter,7:ModeRTL,8:ModeCircle,9:ModeLand,10:ModeDrift,11:ModeSport,12:ModeAutoTune,13:ModePosHold,14:ModeBrake,15:ModeThrow,16:Flip,17:ModeStabilize,18:Disarm,19:ToggleMode,20:Arm-Land-RTL,21:ToggleSimpleMode,22:ToggleSuperSimpleMode,23:MotorLoadTest,24:ModeFlowHold
// @User: Standard
AP_GROUPINFO("_ACTION3", 6, ToyMode, actions[2], ACTION_DISARM),
// @Param: _ACTION4
// @DisplayName: Tmode action 4
// @Description: This is the action taken for the left action button while the mode button is pressed
// @Values: 0:None,1:TakePhoto,2:ToggleVideo,3:ModeAcro,4:ModeAltHold,5:ModeAuto,6:ModeLoiter,7:ModeRTL,8:ModeCircle,9:ModeLand,10:ModeDrift,11:ModeSport,12:ModeAutoTune,13:ModePosHold,14:ModeBrake,15:ModeThrow,16:Flip,17:ModeStabilize,18:Disarm,19:ToggleMode,20:Arm-Land-RTL,21:ToggleSimpleMode,22:ToggleSuperSimpleMode,23:MotorLoadTest,24:ModeFlowHold
// @User: Standard
AP_GROUPINFO("_ACTION4", 7, ToyMode, actions[3], ACTION_NONE),
// @Param: _ACTION5
// @DisplayName: Tmode action 5
// @Description: This is the action taken for the right action button while the mode button is pressed
// @Values: 0:None,1:TakePhoto,2:ToggleVideo,3:ModeAcro,4:ModeAltHold,5:ModeAuto,6:ModeLoiter,7:ModeRTL,8:ModeCircle,9:ModeLand,10:ModeDrift,11:ModeSport,12:ModeAutoTune,13:ModePosHold,14:ModeBrake,15:ModeThrow,16:Flip,17:ModeStabilize,18:Disarm,19:ToggleMode,20:Arm-Land-RTL,21:ToggleSimpleMode,22:ToggleSuperSimpleMode,23:MotorLoadTest,24:ModeFlowHold
// @User: Standard
AP_GROUPINFO("_ACTION5", 8, ToyMode, actions[4], ACTION_NONE),
// @Param: _ACTION6
// @DisplayName: Tmode action 6
// @Description: This is the action taken for the power button while the mode button is pressed
// @Values: 0:None,1:TakePhoto,2:ToggleVideo,3:ModeAcro,4:ModeAltHold,5:ModeAuto,6:ModeLoiter,7:ModeRTL,8:ModeCircle,9:ModeLand,10:ModeDrift,11:ModeSport,12:ModeAutoTune,13:ModePosHold,14:ModeBrake,15:ModeThrow,16:Flip,17:ModeStabilize,18:Disarm,19:ToggleMode,20:Arm-Land-RTL,21:ToggleSimpleMode,22:ToggleSuperSimpleMode,23:MotorLoadTest,24:ModeFlowHold
// @User: Standard
AP_GROUPINFO("_ACTION6", 9, ToyMode, actions[5], ACTION_NONE),
// @Param: _LEFT
// @DisplayName: Tmode left action
// @Description: This is the action taken for the left button (mode button) being pressed
// @Values: 0:None,1:TakePhoto,2:ToggleVideo,3:ModeAcro,4:ModeAltHold,5:ModeAuto,6:ModeLoiter,7:ModeRTL,8:ModeCircle,9:ModeLand,10:ModeDrift,11:ModeSport,12:ModeAutoTune,13:ModePosHold,14:ModeBrake,15:ModeThrow,16:Flip,17:ModeStabilize,18:Disarm,19:ToggleMode,20:Arm-Land-RTL,21:ToggleSimpleMode,22:ToggleSuperSimpleMode,23:MotorLoadTest,24:ModeFlowHold
// @User: Standard
AP_GROUPINFO("_LEFT", 10, ToyMode, actions[6], ACTION_TOGGLE_MODE),
// @Param: _LEFT_LONG
// @DisplayName: Tmode left long action
// @Description: This is the action taken for a long press of the left button (home button)
// @Values: 0:None,1:TakePhoto,2:ToggleVideo,3:ModeAcro,4:ModeAltHold,5:ModeAuto,6:ModeLoiter,7:ModeRTL,8:ModeCircle,9:ModeLand,10:ModeDrift,11:ModeSport,12:ModeAutoTune,13:ModePosHold,14:ModeBrake,15:ModeThrow,16:Flip,17:ModeStabilize,18:Disarm,19:ToggleMode,20:Arm-Land-RTL,21:ToggleSimpleMode,22:ToggleSuperSimpleMode,23:MotorLoadTest,24:ModeFlowHold
// @User: Standard
AP_GROUPINFO("_LEFT_LONG", 11, ToyMode, actions[7], ACTION_NONE),
// @Param: _TRIM_AUTO
// @DisplayName: Stick auto trim limit
// @Description: This is the amount of automatic stick trim that can be applied when disarmed with sticks not moving. It is a PWM limit value away from 1500
// @Range: 0 100
// @User: Standard
AP_GROUPINFO("_TRIM_AUTO", 12, ToyMode, trim_auto, 50),
// @Param: _RIGHT
// @DisplayName: Tmode right action
// @Description: This is the action taken for the right button (RTL) being pressed
// @Values: 0:None,1:TakePhoto,2:ToggleVideo,3:ModeAcro,4:ModeAltHold,5:ModeAuto,6:ModeLoiter,7:ModeRTL,8:ModeCircle,9:ModeLand,10:ModeDrift,11:ModeSport,12:ModeAutoTune,13:ModePosHold,14:ModeBrake,15:ModeThrow,16:Flip,17:ModeStabilize,18:Disarm,19:ToggleMode,20:Arm-Land-RTL,21:ToggleSimpleMode,22:ToggleSuperSimpleMode,23:MotorLoadTest
// @User: Standard
AP_GROUPINFO("_RIGHT", 13, ToyMode, actions[8], ACTION_ARM_LAND_RTL),
// @Param: _FLAGS
// @DisplayName: Tmode flags
// @Description: Bitmask of flags to change the behaviour of tmode. DisarmOnLowThrottle means to disarm if throttle is held down for 1 second when landed. ArmOnHighThrottle means to arm if throttle is above 80% for 1 second. UpgradeToLoiter means to allow takeoff in LOITER mode by switching to ALT_HOLD, then auto-upgrading to LOITER once GPS is available. RTLStickCancel means that on large stick inputs in RTL mode that LOITER mode is engaged
// @Bitmask: 0:DisarmOnLowThrottle,1:ArmOnHighThrottle,2:UpgradeToLoiter,3:RTLStickCancel
// @User: Standard
AP_GROUPINFO("_FLAGS", 14, ToyMode, flags, FLAG_THR_DISARM),
// @Param: _VMIN
// @DisplayName: Min voltage for output limiting
// @Description: This is the battery voltage below which no output limiting is done
// @Range: 0 5
// @Increment: 0.01
// @User: Advanced
AP_GROUPINFO("_VMIN", 15, ToyMode, filter.volt_min, 3.5),
// @Param: _VMAX
// @DisplayName: Max voltage for output limiting
// @Description: This is the battery voltage above which thrust min is used
// @Range: 0 5
// @Increment: 0.01
// @User: Advanced
AP_GROUPINFO("_VMAX", 16, ToyMode, filter.volt_max, 3.8),
// @Param: _TMIN
// @DisplayName: Min thrust multiplier
// @Description: This sets the thrust multiplier when voltage is high
// @Range: 0 1
// @Increment: 0.01
// @User: Advanced
AP_GROUPINFO("_TMIN", 17, ToyMode, filter.thrust_min, 1.0),
// @Param: _TMAX
// @DisplayName: Max thrust multiplier
// @Description: This sets the thrust multiplier when voltage is low
// @Range: 0 1
// @Increment: 0.01
// @User: Advanced
AP_GROUPINFO("_TMAX", 18, ToyMode, filter.thrust_max, 1.0),
#if ENABLE_LOAD_TEST
// @Param: _LOAD_MUL
// @DisplayName: Load test multiplier
// @Description: This scales the load test output, as a value between 0 and 1
// @Range: 0 1
// @Increment: 0.01
// @User: Advanced
AP_GROUPINFO("_LOAD_MUL", 19, ToyMode, load_test.load_mul, 1.0),
// @Param: _LOAD_FILT
// @DisplayName: Load test filter
// @Description: This filters the load test output. A value of 1 means no filter. 2 means values are repeated once. 3 means values are repeated 3 times, etc
// @Range: 0 100
// @User: Advanced
AP_GROUPINFO("_LOAD_FILT", 20, ToyMode, load_test.load_filter, 1),
// @Param: _LOAD_TYPE
// @DisplayName: Load test type
// @Description: This sets the type of load test
// @Values: 0:ConstantThrust,1:LogReplay1,2:LogReplay2
// @User: Advanced
AP_GROUPINFO("_LOAD_TYPE", 21, ToyMode, load_test.load_type, LOAD_TYPE_LOG1),
#endif
AP_GROUPEND
};
ToyMode::ToyMode()
{
AP_Param::setup_object_defaults(this, var_info);
}
/*
special mode handling for toys
*/
void ToyMode::update()
{
if (!enable) {
// not enabled
return;
}
#if ENABLE_LOAD_TEST
if (!copter.motors->armed()) {
load_test.running = false;
}
#endif
// keep filtered battery voltage for thrust limiting
filtered_voltage = 0.99 * filtered_voltage + 0.01 * copter.battery.voltage();
// update LEDs
blink_update();
if (!done_first_update) {
done_first_update = true;
copter.set_mode(control_mode_t(primary_mode[0].get()), MODE_REASON_TMODE);
copter.motors->set_thrust_compensation_callback(FUNCTOR_BIND_MEMBER(&ToyMode::thrust_limiting, void, float *, uint8_t));
}
// check if we should auto-trim
if (trim_auto > 0) {
trim_update();
}
// set ALT_HOLD as indoors for the EKF (disables GPS vertical velocity fusion)
#if 0
copter.ahrs.set_indoor_mode(copter.control_mode == ALT_HOLD || copter.control_mode == FLOWHOLD);
#endif
bool left_button = false;
bool right_button = false;
bool left_action_button = false;
bool right_action_button = false;
bool power_button = false;
bool left_change = false;
uint16_t ch5_in = hal.rcin->read(CH_5);
uint16_t ch6_in = hal.rcin->read(CH_6);
uint16_t ch7_in = hal.rcin->read(CH_7);
if (copter.failsafe.radio || ch5_in < 900) {
// failsafe handling is outside the scope of toy mode, it does
// normal failsafe actions, just setup a blink pattern
green_blink_pattern = BLINK_NO_RX;
red_blink_pattern = BLINK_NO_RX;
red_blink_index = green_blink_index;
return;
}
uint32_t now = AP_HAL::millis();
if (is_v2450_buttons()) {
// V2450 button mapping from cypress radio. It maps the
// buttons onto channels 5, 6 and 7 in a complex way, with the
// left button latching
left_change = ((ch5_in > 1700 && last_ch5 <= 1700) || (ch5_in <= 1700 && last_ch5 > 1700));
last_ch5 = ch5_in;
// get buttons from channels
left_button = (ch5_in > 2050 || (ch5_in > 1050 && ch5_in < 1150));
right_button = (ch6_in > 1500);
uint8_t ch7_bits = (ch7_in>1000)?uint8_t((ch7_in-1000)/100):0;
left_action_button = (ch7_bits&1) != 0;
right_action_button = (ch7_bits&2) != 0;
power_button = (ch7_bits&4) != 0;
} else if (is_f412_buttons()) {
// F412 button setup for cc2500 radio. This maps the 6 buttons
// onto channels 5 and 6, with no latching
uint8_t ch5_bits = (ch5_in>1000)?uint8_t((ch5_in-1000)/100):0;
uint8_t ch6_bits = (ch6_in>1000)?uint8_t((ch6_in-1000)/100):0;
left_button = (ch5_bits & 4) != 0;
right_button = (ch5_bits & 2) != 0;
right_action_button = (ch6_bits & 1) != 0;
left_action_button = (ch6_bits & 2) != 0;
power_button = (ch6_bits & 4) != 0;
left_change = (left_button != last_left_button);
last_left_button = left_button;
}
// decode action buttons into an action
uint8_t action_input = 0;
if (left_action_button) {
action_input = 1;
} else if (right_action_button) {
action_input = 2;
} else if (power_button) {
action_input = 3;
}
if (action_input != 0 && left_button) {
// combined button actions
action_input += 3;
left_press_counter = 0;
} else if (left_button) {
left_press_counter++;
} else {
left_press_counter = 0;
}
bool reset_combination = left_action_button && right_action_button;
if (reset_combination && abs(copter.ahrs.roll_sensor) > 160) {
/*
if both shoulder buttons are pressed at the same time for 5
seconds while the vehicle is inverted then we send a
WIFIRESET message to the sonix to reset SSID and password
*/
if (reset_turtle_start_ms == 0) {
reset_turtle_start_ms = now;
}
if (now - reset_turtle_start_ms > TOY_RESET_TURTLE_TIME) {
gcs().send_text(MAV_SEVERITY_INFO, "Tmode: WiFi reset");
reset_turtle_start_ms = 0;
send_named_int("WIFIRESET", 1);
}
} else {
reset_turtle_start_ms = 0;
}
if (reset_combination) {
// don't act on buttons when combination pressed
action_input = 0;
left_press_counter = 0;
}
/*
work out commanded action, if any
*/
enum toy_action action = action_input?toy_action(actions[action_input-1].get()):ACTION_NONE;
// check for long left button press
if (action == ACTION_NONE && left_press_counter > TOY_LONG_PRESS_COUNT) {
left_press_counter = -TOY_COMMAND_DELAY;
action = toy_action(actions[7].get());
ignore_left_change = true;
}
// cope with long left press triggering a left change
if (ignore_left_change && left_change) {
left_change = false;
ignore_left_change = false;
}
if (is_v2450_buttons()) {
// check for left button latching change
if (action == ACTION_NONE && left_change) {
action = toy_action(actions[6].get());
}
} else if (is_f412_buttons()) {
if (action == ACTION_NONE && left_change && !left_button) {
// left release
action = toy_action(actions[6].get());
}
}
// check for right button
if (action == ACTION_NONE && right_button) {
right_press_counter++;
if (right_press_counter >= TOY_RIGHT_PRESS_COUNT) {
action = toy_action(actions[8].get());
right_press_counter = -TOY_COMMAND_DELAY;
}
} else {
right_press_counter = 0;
}
/*
some actions shouldn't repeat too fast
*/
switch (action) {
case ACTION_TOGGLE_VIDEO:
case ACTION_TOGGLE_MODE:
case ACTION_TOGGLE_SIMPLE:
case ACTION_TOGGLE_SSIMPLE:
case ACTION_ARM_LAND_RTL:
case ACTION_LOAD_TEST:
case ACTION_MODE_FLOW:
if (last_action == action ||
now - last_action_ms < TOY_ACTION_DELAY_MS) {
// for the above actions, button must be released before
// it will activate again
last_action = action;
action = ACTION_NONE;
}
break;
case ACTION_TAKE_PHOTO:
// allow photo continuous shooting
if (now - last_action_ms < TOY_ACTION_DELAY_MS) {
last_action = action;
action = ACTION_NONE;
}
break;
default:
last_action = action;
break;
}
if (action != ACTION_NONE) {
gcs().send_text(MAV_SEVERITY_INFO, "Tmode: action %u", action);
last_action_ms = now;
}
// we use 150 for throttle_at_min to cope with varying stick throws
bool throttle_at_min =
copter.channel_throttle->get_control_in() < 150;
// throttle threshold for throttle arming
bool throttle_near_max =
copter.channel_throttle->get_control_in() > 700;
/*
disarm if throttle is low for 1 second when landed
*/
if ((flags & FLAG_THR_DISARM) && throttle_at_min && copter.motors->armed() && copter.ap.land_complete) {
throttle_low_counter++;
const uint8_t disarm_limit = copter.flightmode->has_manual_throttle()?TOY_LAND_MANUAL_DISARM_COUNT:TOY_LAND_DISARM_COUNT;
if (throttle_low_counter >= disarm_limit) {
gcs().send_text(MAV_SEVERITY_INFO, "Tmode: throttle disarm");
copter.init_disarm_motors();
}
} else {
throttle_low_counter = 0;
}
/*
arm if throttle is high for 1 second when landed
*/
if ((flags & FLAG_THR_ARM) && throttle_near_max && !copter.motors->armed()) {
throttle_high_counter++;
if (throttle_high_counter >= TOY_LAND_ARM_COUNT) {
gcs().send_text(MAV_SEVERITY_INFO, "Tmode: throttle arm");
arm_check_compass();
if (!copter.init_arm_motors(true) && (flags & FLAG_UPGRADE_LOITER) && copter.control_mode == LOITER) {
/*
support auto-switching to ALT_HOLD, then upgrade to LOITER once GPS available
*/
if (set_and_remember_mode(ALT_HOLD, MODE_REASON_TMODE)) {
gcs().send_text(MAV_SEVERITY_INFO, "Tmode: ALT_HOLD update arm");
#if AC_FENCE == ENABLED
copter.fence.enable(false);
#endif
if (!copter.init_arm_motors(true)) {
// go back to LOITER
gcs().send_text(MAV_SEVERITY_ERROR, "Tmode: ALT_HOLD arm failed");
set_and_remember_mode(LOITER, MODE_REASON_TMODE);
} else {
upgrade_to_loiter = true;
#if 0
AP_Notify::flags.hybrid_loiter = true;
#endif
}
}
} else {
throttle_arm_ms = AP_HAL::millis();
}
}
} else {
throttle_high_counter = 0;
}
if (upgrade_to_loiter) {
if (!copter.motors->armed() || copter.control_mode != ALT_HOLD) {
upgrade_to_loiter = false;
#if 0
AP_Notify::flags.hybrid_loiter = false;
#endif
} else if (copter.position_ok() && set_and_remember_mode(LOITER, MODE_REASON_TMODE)) {
#if AC_FENCE == ENABLED
copter.fence.enable(true);
#endif
gcs().send_text(MAV_SEVERITY_INFO, "Tmode: LOITER update");
}
}
if (copter.control_mode == RTL && (flags & FLAG_RTL_CANCEL) && throttle_near_max) {
gcs().send_text(MAV_SEVERITY_INFO, "Tmode: RTL cancel");
set_and_remember_mode(LOITER, MODE_REASON_TMODE);
}
enum control_mode_t old_mode = copter.control_mode;
enum control_mode_t new_mode = old_mode;
/*
implement actions
*/
switch (action) {
case ACTION_NONE:
break;
case ACTION_TAKE_PHOTO:
send_named_int("SNAPSHOT", 1);
break;
case ACTION_TOGGLE_VIDEO:
send_named_int("VIDEOTOG", 1);
break;
case ACTION_MODE_ACRO:
#if MODE_ACRO_ENABLED == ENABLED
new_mode = ACRO;
#else
gcs().send_text(MAV_SEVERITY_ERROR, "Tmode: ACRO is disabled");
#endif
break;
case ACTION_MODE_ALTHOLD:
new_mode = ALT_HOLD;
break;
case ACTION_MODE_AUTO:
new_mode = AUTO;
break;
case ACTION_MODE_LOITER:
new_mode = LOITER;
break;
case ACTION_MODE_RTL:
new_mode = RTL;
break;
case ACTION_MODE_CIRCLE:
new_mode = CIRCLE;
break;
case ACTION_MODE_LAND:
new_mode = LAND;
break;
case ACTION_MODE_DRIFT:
new_mode = DRIFT;
break;
case ACTION_MODE_SPORT:
new_mode = SPORT;
break;
case ACTION_MODE_AUTOTUNE:
new_mode = AUTOTUNE;
break;
case ACTION_MODE_POSHOLD:
new_mode = POSHOLD;
break;
case ACTION_MODE_BRAKE:
new_mode = BRAKE;
break;
case ACTION_MODE_THROW:
#if MODE_THROW_ENABLED == ENABLED
new_mode = THROW;
#else
gcs().send_text(MAV_SEVERITY_ERROR, "Tmode: THROW is disabled");
#endif
break;
case ACTION_MODE_FLIP:
new_mode = FLIP;
break;
case ACTION_MODE_STAB:
new_mode = STABILIZE;
break;
case ACTION_MODE_FLOW:
// toggle flow hold
if (old_mode != FLOWHOLD) {
new_mode = FLOWHOLD;
} else {
new_mode = ALT_HOLD;
}
break;
case ACTION_DISARM:
if (copter.motors->armed()) {
gcs().send_text(MAV_SEVERITY_ERROR, "Tmode: Force disarm");
copter.init_disarm_motors();
}
break;
case ACTION_TOGGLE_MODE:
last_mode_choice = (last_mode_choice+1) % 2;
new_mode = control_mode_t(primary_mode[last_mode_choice].get());
break;
case ACTION_TOGGLE_SIMPLE:
copter.set_simple_mode(copter.ap.simple_mode?0:1);
break;
case ACTION_TOGGLE_SSIMPLE:
copter.set_simple_mode(copter.ap.simple_mode?0:2);
break;
case ACTION_ARM_LAND_RTL:
if (!copter.motors->armed()) {
action_arm();
} else if (old_mode == RTL) {
// switch between RTL and LOITER when in GPS modes
new_mode = LOITER;
} else if (old_mode == LAND) {
if (last_set_mode == LAND || !copter.position_ok()) {
// this is a land that we asked for, or we don't have good positioning
new_mode = ALT_HOLD;
} else if (copter.landing_with_GPS()) {
new_mode = LOITER;
} else {
new_mode = ALT_HOLD;
}
} else if (copter.flightmode->requires_GPS()) {
// if we're in a GPS mode, then RTL
new_mode = RTL;
} else {
// if we're in a non-GPS mode, then LAND
new_mode = LAND;
}
break;
case ACTION_LOAD_TEST:
#if ENABLE_LOAD_TEST
if (copter.motors->armed() && !load_test.running) {
break;
}
if (load_test.running) {
load_test.running = false;
gcs().send_text(MAV_SEVERITY_INFO, "Tmode: load_test off");
copter.init_disarm_motors();
copter.set_mode(ALT_HOLD, MODE_REASON_TMODE);
} else {
copter.set_mode(ALT_HOLD, MODE_REASON_TMODE);
#if AC_FENCE == ENABLED
copter.fence.enable(false);
#endif
if (copter.init_arm_motors(true)) {
load_test.running = true;
gcs().send_text(MAV_SEVERITY_INFO, "Tmode: load_test on");
} else {
gcs().send_text(MAV_SEVERITY_INFO, "Tmode: load_test failed");
}
}
#endif
break;
}
if (!copter.motors->armed() && (copter.control_mode == LAND || copter.control_mode == RTL)) {
// revert back to last primary flight mode if disarmed after landing
new_mode = control_mode_t(primary_mode[last_mode_choice].get());
}
if (new_mode != copter.control_mode) {
load_test.running = false;
#if AC_FENCE == ENABLED
copter.fence.enable(false);
#endif
if (set_and_remember_mode(new_mode, MODE_REASON_TX_COMMAND)) {
gcs().send_text(MAV_SEVERITY_INFO, "Tmode: mode %s", copter.flightmode->name4());
// force fence on in all GPS flight modes
#if AC_FENCE == ENABLED
if (copter.flightmode->requires_GPS()) {
copter.fence.enable(true);
}
#endif
} else {
gcs().send_text(MAV_SEVERITY_ERROR, "Tmode: %u FAILED", (unsigned)new_mode);
if (new_mode == RTL) {
// if we can't RTL then land
gcs().send_text(MAV_SEVERITY_ERROR, "Tmode: LANDING");
set_and_remember_mode(LAND, MODE_REASON_TMODE);
#if AC_FENCE == ENABLED
if (copter.landing_with_GPS()) {
copter.fence.enable(true);
}
#endif
}
}
}
}
/*
set a mode, remembering what mode we set, and the previous mode we were in
*/
bool ToyMode::set_and_remember_mode(control_mode_t mode, mode_reason_t reason)
{
if (copter.control_mode == mode) {
return true;
}
if (!copter.set_mode(mode, reason)) {
return false;
}
last_set_mode = mode;
return true;
}
/*
automatic stick trimming. This works while disarmed by looking for
zero rc-input changes for 4 seconds, and assuming sticks are
centered. Trim is saved
*/
void ToyMode::trim_update(void)
{
if (hal.util->get_soft_armed() || copter.failsafe.radio) {
// only when disarmed and with RC link
trim.start_ms = 0;
return;
}
// get throttle mid from channel trim
uint16_t throttle_trim = copter.channel_throttle->get_radio_trim();
if (abs(throttle_trim - 1500) <= trim_auto) {
RC_Channel *ch = copter.channel_throttle;
uint16_t ch_min = ch->get_radio_min();
uint16_t ch_max = ch->get_radio_max();
// remember the throttle midpoint
int16_t new_value = 1000UL * (throttle_trim - ch_min) / (ch_max - ch_min);
if (new_value != throttle_mid) {
throttle_mid = new_value;
gcs().send_text(MAV_SEVERITY_ERROR, "Tmode: thr mid %d\n",
throttle_mid);
}
}
uint16_t chan[4];
if (hal.rcin->read(chan, 4) != 4) {
trim.start_ms = 0;
return;
}
const uint16_t noise_limit = 2;
for (uint8_t i=0; i<4; i++) {
if (abs(chan[i] - 1500) > trim_auto) {
// not within limit
trim.start_ms = 0;
return;
}
}
uint32_t now = AP_HAL::millis();
if (trim.start_ms == 0) {
// start timer
memcpy(trim.chan, chan, 4*sizeof(uint16_t));
trim.start_ms = now;
return;
}
for (uint8_t i=0; i<4; i++) {
if (abs(trim.chan[i] - chan[i]) > noise_limit) {
// detected stick movement
memcpy(trim.chan, chan, 4*sizeof(uint16_t));
trim.start_ms = now;
return;
}
}
if (now - trim.start_ms < 4000) {
// not steady for long enough yet
return;
}
// reset timer so we don't trigger too often
trim.start_ms = 0;
uint8_t need_trim = 0;
for (uint8_t i=0; i<4; i++) {
RC_Channel *ch = RC_Channels::rc_channel(i);
if (ch && abs(chan[i] - ch->get_radio_trim()) > noise_limit) {
need_trim |= 1U<<i;
}
}
if (need_trim == 0) {
return;
}
for (uint8_t i=0; i<4; i++) {
if (need_trim & (1U<<i)) {
RC_Channel *ch = RC_Channels::rc_channel(i);
ch->set_and_save_radio_trim(chan[i]);
}
}
gcs().send_text(MAV_SEVERITY_ERROR, "Tmode: trim %u %u %u %u\n",
chan[0], chan[1], chan[2], chan[3]);
}
/*
handle arming action
*/
void ToyMode::action_arm(void)
{
bool needs_gps = copter.flightmode->requires_GPS();
// don't arm if sticks aren't in deadzone, to prevent pot problems
// on TX causing flight control issues
bool sticks_centered =
copter.channel_roll->get_control_in() == 0 &&
copter.channel_pitch->get_control_in() == 0 &&
copter.channel_yaw->get_control_in() == 0;
if (!sticks_centered) {
gcs().send_text(MAV_SEVERITY_ERROR, "Tmode: sticks not centered\n");
return;
}
arm_check_compass();
if (needs_gps && copter.arming.gps_checks(false)) {
#if AC_FENCE == ENABLED
// we want GPS and checks are passing, arm and enable fence
copter.fence.enable(true);
#endif
copter.init_arm_motors(false);
if (!copter.motors->armed()) {
AP_Notify::events.arming_failed = true;
gcs().send_text(MAV_SEVERITY_ERROR, "Tmode: GPS arming failed");
} else {
gcs().send_text(MAV_SEVERITY_ERROR, "Tmode: GPS armed motors");
}
} else if (needs_gps) {
// notify of arming fail
AP_Notify::events.arming_failed = true;
gcs().send_text(MAV_SEVERITY_ERROR, "Tmode: GPS arming failed");
} else {
#if AC_FENCE == ENABLED
// non-GPS mode
copter.fence.enable(false);
#endif
copter.init_arm_motors(false);
if (!copter.motors->armed()) {
AP_Notify::events.arming_failed = true;
gcs().send_text(MAV_SEVERITY_ERROR, "Tmode: non-GPS arming failed");
} else {
gcs().send_text(MAV_SEVERITY_ERROR, "Tmode: non-GPS armed motors");
}
}
}
/*
adjust throttle for throttle takeoff
This prevents sudden climbs when using throttle for arming
*/
void ToyMode::throttle_adjust(float &throttle_control)
{
uint32_t now = AP_HAL::millis();
const uint32_t soft_start_ms = 5000;
const uint16_t throttle_start = 600 + copter.g.throttle_deadzone;
if (!copter.motors->armed() && (flags & FLAG_THR_ARM)) {
throttle_control = MIN(throttle_control, 500);
} else if (now - throttle_arm_ms < soft_start_ms) {
float p = (now - throttle_arm_ms) / float(soft_start_ms);
throttle_control = MIN(throttle_control, throttle_start + p * (1000 - throttle_start));
}
// limit descent rate close to the ground
float height = copter.inertial_nav.get_altitude() * 0.01 - copter.arming_altitude_m;
if (throttle_control < 500 &&
height < TOY_DESCENT_SLOW_HEIGHT + TOY_DESCENT_SLOW_RAMP &&
copter.motors->armed() && !copter.ap.land_complete) {
float limit = linear_interpolate(TOY_DESCENT_SLOW_MIN, 0, height,
TOY_DESCENT_SLOW_HEIGHT, TOY_DESCENT_SLOW_HEIGHT+TOY_DESCENT_SLOW_RAMP);
if (throttle_control < limit) {
// limit descent rate close to the ground
throttle_control = limit;
}
}
}
/*
update blinking. Blinking is done with a 16 bit pattern for each
LED. A count can be set for a pattern, which makes the pattern
persist until the count is zero. When it is zero the normal pattern
settings based on system status are used
*/
void ToyMode::blink_update(void)
{
if (red_blink_pattern & (1U<<red_blink_index)) {
copter.relay.on(1);
} else {
copter.relay.off(1);
}
if (green_blink_pattern & (1U<<green_blink_index)) {
copter.relay.on(0);
} else {
copter.relay.off(0);
}
green_blink_index = (green_blink_index+1) % 16;
red_blink_index = (red_blink_index+1) % 16;
if (green_blink_index == 0 && green_blink_count > 0) {
green_blink_count--;
}
if (red_blink_index == 0 && red_blink_count > 0) {
red_blink_count--;
}
// let the TX know we are recording video
uint32_t now = AP_HAL::millis();
if (now - last_video_ms < 1000) {
AP_Notify::flags.video_recording = 1;
} else {
AP_Notify::flags.video_recording = 0;
}
if (red_blink_count > 0 && green_blink_count > 0) {
return;
}
// setup normal patterns based on flight mode and arming
uint16_t pattern = 0;
// full on when we can see the TX, except for battery failsafe,
// when we blink rapidly
if (copter.motors->armed() && AP_Notify::flags.failsafe_battery) {
pattern = BLINK_8;
} else if (!copter.motors->armed() && (blink_disarm > 0)) {
pattern = BLINK_8;
blink_disarm--;
} else {
pattern = BLINK_FULL;
}
if (copter.motors->armed()) {
blink_disarm = 4;
}
if (red_blink_count == 0) {
red_blink_pattern = pattern;
}
if (green_blink_count == 0) {
green_blink_pattern = pattern;
}
if (red_blink_count == 0 && green_blink_count == 0) {
// get LEDs in sync
red_blink_index = green_blink_index;
}
}
// handle a mavlink message
void ToyMode::handle_message(mavlink_message_t *msg)
{
if (msg->msgid != MAVLINK_MSG_ID_NAMED_VALUE_INT) {
return;
}
mavlink_named_value_int_t m;
mavlink_msg_named_value_int_decode(msg, &m);
if (strncmp(m.name, "BLINKR", 10) == 0) {
red_blink_pattern = (uint16_t)m.value;
red_blink_count = m.value >> 16;
red_blink_index = 0;
} else if (strncmp(m.name, "BLINKG", 10) == 0) {
green_blink_pattern = (uint16_t)m.value;
green_blink_count = m.value >> 16;
green_blink_index = 0;
} else if (strncmp(m.name, "VNOTIFY", 10) == 0) {
// taking photos or video
if (green_blink_pattern != BLINK_2) {
green_blink_index = 0;
}
green_blink_pattern = BLINK_2;
green_blink_count = 1;
last_video_ms = AP_HAL::millis();
// immediately update AP_Notify recording flag
AP_Notify::flags.video_recording = 1;
} else if (strncmp(m.name, "WIFICHAN", 10) == 0) {
#ifdef HAL_RCINPUT_WITH_AP_RADIO
AP_Radio *radio = AP_Radio::instance();
if (radio) {
radio->set_wifi_channel(m.value);
}
#endif
} else if (strncmp(m.name, "LOGDISARM", 10) == 0) {
enum ap_var_type vtype;
AP_Int8 *log_disarmed = (AP_Int8 *)AP_Param::find("LOG_DISARMED", &vtype);
if (log_disarmed) {
log_disarmed->set(int8_t(m.value));
}
}
}
/*
send a named int to primary telem channel
*/
void ToyMode::send_named_int(const char *name, int32_t value)
{
mavlink_msg_named_value_int_send(MAVLINK_COMM_1, AP_HAL::millis(), name, value);
}
/*
limit maximum thrust based on voltage
*/
void ToyMode::thrust_limiting(float *thrust, uint8_t num_motors)
{
float thrust_mul = linear_interpolate(filter.thrust_max, filter.thrust_min, filtered_voltage, filter.volt_min, filter.volt_max);
for (uint8_t i=0; i<num_motors; i++) {
thrust[i] *= thrust_mul;
}
uint16_t pwm[4];
hal.rcout->read(pwm, 4);
if (motor_log_counter++ % 10 == 0) {
DataFlash_Class::instance()->Log_Write("THST", "TimeUS,Vol,Mul,M1,M2,M3,M4", "QffHHHH",
AP_HAL::micros64(),
(double)filtered_voltage,
(double)thrust_mul,
pwm[0], pwm[1], pwm[2], pwm[3]);
}
}
#if ENABLE_LOAD_TEST
/*
run a motor load test - used for endurance checking in factory tests
*/
void ToyMode::load_test_run(void)
{
uint16_t pwm[4] {};
switch ((enum load_type)load_test.load_type.get()) {
case LOAD_TYPE_LOG1:
for (uint8_t i=0; i<4; i++) {
pwm[i] = load_data1[load_test.row].m[i];
}
load_test.filter_counter++;
if (load_test.filter_counter >= load_test.load_filter.get()) {
load_test.filter_counter = 0;
load_test.row = (load_test.row + 1) % ARRAY_SIZE(load_data1);
}
break;
case LOAD_TYPE_LOG2:
// like log1, but all the same
for (uint8_t i=0; i<4; i++) {
pwm[i] = load_data1[load_test.row].m[0];
}
load_test.filter_counter++;
if (load_test.filter_counter >= load_test.load_filter.get()) {
load_test.filter_counter = 0;
load_test.row = (load_test.row + 1) % ARRAY_SIZE(load_data1);
}
break;
case LOAD_TYPE_CONSTANT:
for (uint8_t i=0; i<4; i++) {
pwm[i] = 500;
}
break;
default:
return;
}
for (uint8_t i=0; i<4; i++) {
pwm[i] *= load_test.load_mul;
// write, with conversion to 1000 to 2000 range
hal.rcout->write(i, 1000 + pwm[i]*2);
}
if (copter.failsafe.battery) {
gcs().send_text(MAV_SEVERITY_INFO, "Tmode: load_test off (battery)");
copter.init_disarm_motors();
load_test.running = false;
}
}
#endif // ENABLE_LOAD_TEST
/*
if we try to arm and the compass is out of range then we enable
inflight compass learning
*/
void ToyMode::arm_check_compass(void)
{
// check for unreasonable compass offsets
Vector3f offsets = copter.compass.get_offsets();
float field = copter.compass.get_field().length();
if (offsets.length() > copter.compass.get_offsets_max() ||
field < 200 || field > 800 ||
!copter.compass.configured()) {
if (copter.compass.get_learn_type() != Compass::LEARN_INFLIGHT) {
gcs().send_text(MAV_SEVERITY_INFO, "Tmode: enable compass learning");
copter.compass.set_learn_type(Compass::LEARN_INFLIGHT, false);
}
}
}
#endif // TOY_MODE_ENABLED