Ardupilot2/libraries/AP_HAL_ChibiOS/I2CDevice.cpp
Andy Piper 667b386356 AP_HAL_ChibiOS: port to ChibiOS 21.11.x
convert RCOutput to new virtual timer interface
cope with SDC vs SDMMC
use new SPIv3 driver. Correct clocks for SDMMCv2.
add STM32L431 support
port ChibiOS config to version 8
support SPIv3 driver model v2 on H7
use currcore in debug options
use new mmc API
disable speed optimizations in the bootloader to save a little flash
upgrade to halconf v8.4
relax constraints on QSP/flash clock.
add support for disabling QSPI reset in main firmware
2023-03-29 20:49:40 +11:00

476 lines
14 KiB
C++

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <hal.h>
#include "I2CDevice.h"
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include "Util.h"
#include "GPIO.h"
#if HAL_USE_I2C == TRUE && defined(HAL_I2C_DEVICE_LIST)
#include "Scheduler.h"
#include "hwdef/common/stm32_util.h"
#include <AP_InternalError/AP_InternalError.h>
#include "ch.h"
#include "hal.h"
static const struct I2CInfo {
I2CDriver *i2c;
uint8_t instance;
uint8_t dma_channel_rx;
uint8_t dma_channel_tx;
ioline_t scl_line;
ioline_t sda_line;
} I2CD[] = { HAL_I2C_DEVICE_LIST };
using namespace ChibiOS;
extern const AP_HAL::HAL& hal;
I2CBus I2CDeviceManager::businfo[ARRAY_SIZE(I2CD)];
#ifndef HAL_I2C_BUS_BASE
#define HAL_I2C_BUS_BASE 0
#endif
// default to 100kHz clock for maximum reliability. This can be
// changed in hwdef.dat
#ifndef HAL_I2C_MAX_CLOCK
#define HAL_I2C_MAX_CLOCK 100000
#endif
// values calculated with STM32CubeMX tool, PCLK=54MHz
#ifndef HAL_I2C_F7_100_TIMINGR
#define HAL_I2C_F7_100_TIMINGR 0x30812E3E
#endif
#ifndef HAL_I2C_F7_400_TIMINGR
#define HAL_I2C_F7_400_TIMINGR 0x6000030D
#endif
#ifndef HAL_I2C_H7_100_TIMINGR
#define HAL_I2C_H7_100_TIMINGR 0x00707CBB
#endif
#ifndef HAL_I2C_H7_400_TIMINGR
#define HAL_I2C_H7_400_TIMINGR 0x00300F38
#endif
#ifndef HAL_I2C_L4_100_TIMINGR
#define HAL_I2C_L4_100_TIMINGR 0x10909CEC
#endif
#ifndef HAL_I2C_L4_400_TIMINGR
#define HAL_I2C_L4_400_TIMINGR 0x00702991
#endif
#ifndef HAL_I2C_G4_100_TIMINGR
#define HAL_I2C_G4_100_TIMINGR 0x60505F8C
#endif
#ifndef HAL_I2C_G4_400_TIMINGR
#define HAL_I2C_G4_400_TIMINGR 0x20501E65
#endif
/*
enable clear (toggling SCL) on I2C bus timeouts which leave SDA stuck low
*/
#ifndef HAL_I2C_CLEAR_ON_TIMEOUT
#define HAL_I2C_CLEAR_ON_TIMEOUT 1
#endif
// get a handle for DMA sharing DMA channels with other subsystems
void I2CBus::dma_init(void)
{
chMtxObjectInit(&dma_lock);
dma_handle = new Shared_DMA(I2CD[busnum].dma_channel_tx, I2CD[busnum].dma_channel_rx,
FUNCTOR_BIND_MEMBER(&I2CBus::dma_allocate, void, Shared_DMA *),
FUNCTOR_BIND_MEMBER(&I2CBus::dma_deallocate, void, Shared_DMA *));
}
// Clear Bus to avoid bus lockup
void I2CBus::clear_all()
{
for (uint8_t i=0; i<ARRAY_SIZE(I2CD); i++) {
clear_bus(i);
}
}
/*
If bus exists, set its data and clock lines to floating
*/
void I2CBus::set_bus_to_floating(uint8_t busidx)
{
if (busidx < ARRAY_SIZE(I2CD)) {
const struct I2CInfo &info = I2CD[busidx];
const ioline_t sda_line = GPIO::resolve_alt_config(info.sda_line, PERIPH_TYPE::I2C_SDA, info.instance);
const ioline_t scl_line = GPIO::resolve_alt_config(info.scl_line, PERIPH_TYPE::I2C_SCL, info.instance);
palSetLineMode(sda_line, PAL_MODE_INPUT);
palSetLineMode(scl_line, PAL_MODE_INPUT);
}
}
/*
Check enabled I2C/CAN select pins against check_pins bitmask
*/
bool I2CBus::check_select_pins(uint8_t check_pins)
{
uint8_t enabled_pins = 0;
#ifdef HAL_GPIO_PIN_GPIO_CAN_I2C1_SEL
enabled_pins |= palReadLine(HAL_GPIO_PIN_GPIO_CAN_I2C1_SEL) << 0;
#endif
#ifdef HAL_GPIO_PIN_GPIO_CAN_I2C2_SEL
enabled_pins |= palReadLine(HAL_GPIO_PIN_GPIO_CAN_I2C2_SEL) << 1;
#endif
#ifdef HAL_GPIO_PIN_GPIO_CAN_I2C3_SEL
enabled_pins |= palReadLine(HAL_GPIO_PIN_GPIO_CAN_I2C3_SEL) << 2;
#endif
#ifdef HAL_GPIO_PIN_GPIO_CAN_I2C4_SEL
enabled_pins |= palReadLine(HAL_GPIO_PIN_GPIO_CAN_I2C4_SEL) << 3;
#endif
return (enabled_pins & check_pins) == check_pins;
}
/*
clear a stuck bus (bus held by a device that is holding SDA low) by
clocking out pulses on SCL to let the device complete its
transaction
*/
void I2CBus::clear_bus(uint8_t busidx)
{
#if HAL_I2C_CLEAR_ON_TIMEOUT
const struct I2CInfo &info = I2CD[busidx];
const ioline_t scl_line = GPIO::resolve_alt_config(info.scl_line, PERIPH_TYPE::I2C_SCL, info.instance);
if (scl_line == 0) {
return;
}
const iomode_t mode_saved = palReadLineMode(scl_line);
palSetLineMode(scl_line, PAL_MODE_OUTPUT_PUSHPULL);
for(uint8_t j = 0; j < 20; j++) {
palToggleLine(scl_line);
hal.scheduler->delay_microseconds(10);
}
palSetLineMode(scl_line, mode_saved);
#endif
}
#if HAL_I2C_CLEAR_ON_TIMEOUT
/*
read SDA on a bus, to check if it may be stuck
*/
uint8_t I2CBus::read_sda(uint8_t busidx)
{
const struct I2CInfo &info = I2CD[busidx];
const ioline_t sda_line = GPIO::resolve_alt_config(info.sda_line, PERIPH_TYPE::I2C_SDA, info.instance);
if (sda_line == 0) {
return 0;
}
const iomode_t mode_saved = palReadLineMode(sda_line);
palSetLineMode(sda_line, PAL_MODE_INPUT);
uint8_t ret = palReadLine(sda_line);
palSetLineMode(sda_line, mode_saved);
return ret;
}
#endif
// setup I2C buses
I2CDeviceManager::I2CDeviceManager(void)
{
for (uint8_t i=0; i<ARRAY_SIZE(I2CD); i++) {
businfo[i].busnum = i;
businfo[i].dma_init();
/*
setup default I2C config. As each device is opened we will
drop the speed to be the minimum speed requested
*/
businfo[i].busclock = HAL_I2C_MAX_CLOCK;
#if defined(STM32F7) || defined(STM32F3)
if (businfo[i].busclock <= 100000) {
businfo[i].i2ccfg.timingr = HAL_I2C_F7_100_TIMINGR;
businfo[i].busclock = 100000;
} else {
businfo[i].i2ccfg.timingr = HAL_I2C_F7_400_TIMINGR;
businfo[i].busclock = 400000;
}
#elif defined(STM32H7)
if (businfo[i].busclock <= 100000) {
businfo[i].i2ccfg.timingr = HAL_I2C_H7_100_TIMINGR;
businfo[i].busclock = 100000;
} else {
businfo[i].i2ccfg.timingr = HAL_I2C_H7_400_TIMINGR;
businfo[i].busclock = 400000;
}
#elif defined(STM32L4)
if (businfo[i].busclock <= 100000) {
businfo[i].i2ccfg.timingr = HAL_I2C_L4_100_TIMINGR;
businfo[i].busclock = 100000;
} else {
businfo[i].i2ccfg.timingr = HAL_I2C_L4_400_TIMINGR;
businfo[i].busclock = 400000;
}
#elif defined(STM32G4)
if (businfo[i].busclock <= 100000) {
businfo[i].i2ccfg.timingr = HAL_I2C_G4_100_TIMINGR;
businfo[i].busclock = 100000;
} else {
businfo[i].i2ccfg.timingr = HAL_I2C_G4_400_TIMINGR;
businfo[i].busclock = 400000;
}
#else // F1 or F4
businfo[i].i2ccfg.op_mode = OPMODE_I2C;
businfo[i].i2ccfg.clock_speed = businfo[i].busclock;
if (businfo[i].i2ccfg.clock_speed <= 100000) {
businfo[i].i2ccfg.duty_cycle = STD_DUTY_CYCLE;
} else {
businfo[i].i2ccfg.duty_cycle = FAST_DUTY_CYCLE_2;
}
#endif
}
}
I2CDevice::I2CDevice(uint8_t busnum, uint8_t address, uint32_t bus_clock, bool use_smbus, uint32_t timeout_ms) :
_retries(2),
_address(address),
_use_smbus(use_smbus),
_timeout_ms(timeout_ms),
bus(I2CDeviceManager::businfo[busnum])
{
set_device_bus(busnum+HAL_I2C_BUS_BASE);
set_device_address(address);
asprintf(&pname, "I2C:%u:%02x",
(unsigned)busnum, (unsigned)address);
if (bus_clock < bus.busclock) {
#if defined(STM32F7) || defined(STM32H7) || defined(STM32F3) || defined(STM32G4) || defined(STM32L4)
if (bus_clock <= 100000) {
bus.i2ccfg.timingr = HAL_I2C_F7_100_TIMINGR;
bus.busclock = 100000;
}
#else
bus.i2ccfg.clock_speed = bus_clock;
bus.busclock = bus_clock;
if (bus_clock <= 100000) {
bus.i2ccfg.duty_cycle = STD_DUTY_CYCLE;
}
#endif
DEV_PRINTF("I2C%u clock %ukHz\n", busnum, unsigned(bus.busclock/1000));
}
}
I2CDevice::~I2CDevice()
{
#if 0
printf("I2C device bus %u address 0x%02x closed\n",
(unsigned)bus.busnum, (unsigned)_address);
#endif
free(pname);
}
/*
allocate DMA channel, nothing to do, as we don't keep the bus active between transactions
*/
void I2CBus::dma_allocate(Shared_DMA *ctx)
{
}
/*
deallocate DMA channel
*/
void I2CBus::dma_deallocate(Shared_DMA *)
{
}
bool I2CDevice::transfer(const uint8_t *send, uint32_t send_len,
uint8_t *recv, uint32_t recv_len)
{
if (!bus.semaphore.check_owner()) {
DEV_PRINTF("I2C: not owner of 0x%x for addr 0x%02x\n", (unsigned)get_bus_id(), _address);
return false;
}
#if defined(STM32F7) || defined(STM32H7) || defined(STM32F3) || defined(STM32G4) || defined(STM32L4)
if (_use_smbus) {
bus.i2ccfg.cr1 |= I2C_CR1_SMBHEN;
} else {
bus.i2ccfg.cr1 &= ~I2C_CR1_SMBHEN;
}
#else
if (_use_smbus) {
bus.i2ccfg.op_mode = OPMODE_SMBUS_HOST;
} else {
bus.i2ccfg.op_mode = OPMODE_I2C;
}
#endif
if (_split_transfers) {
/*
splitting the transfer() into two pieces avoids a stop condition
with SCL low which is not supported on some devices (such as
LidarLite blue label)
*/
if (send && send_len) {
if (!_transfer(send, send_len, nullptr, 0)) {
return false;
}
}
if (recv && recv_len) {
if (!_transfer(nullptr, 0, recv, recv_len)) {
return false;
}
}
} else {
// combined transfer
if (!_transfer(send, send_len, recv, recv_len)) {
return false;
}
}
return true;
}
bool I2CDevice::_transfer(const uint8_t *send, uint32_t send_len,
uint8_t *recv, uint32_t recv_len)
{
i2cAcquireBus(I2CD[bus.busnum].i2c);
if (!bus.bouncebuffer_setup(send, send_len, recv, recv_len)) {
i2cReleaseBus(I2CD[bus.busnum].i2c);
return false;
}
for(uint8_t i=0 ; i <= _retries; i++) {
int ret;
// calculate a timeout as twice the expected transfer time, and set as min of 4ms
uint32_t timeout_ms = 1+2*(((8*1000000UL/bus.busclock)*(send_len+recv_len))/1000);
timeout_ms = MAX(timeout_ms, _timeout_ms);
// we get the lock and start the bus inside the retry loop to
// allow us to give up the DMA channel to an SPI device on
// retries
bus.dma_handle->lock();
i2cStart(I2CD[bus.busnum].i2c, &bus.i2ccfg);
osalDbgAssert(I2CD[bus.busnum].i2c->state == I2C_READY, "i2cStart state");
osalSysLock();
hal.util->persistent_data.i2c_count++;
osalSysUnlock();
if(send_len == 0) {
ret = i2cMasterReceiveTimeout(I2CD[bus.busnum].i2c, _address, recv, recv_len, chTimeMS2I(timeout_ms));
} else {
ret = i2cMasterTransmitTimeout(I2CD[bus.busnum].i2c, _address, send, send_len,
recv, recv_len, chTimeMS2I(timeout_ms));
}
i2cSoftStop(I2CD[bus.busnum].i2c);
osalDbgAssert(I2CD[bus.busnum].i2c->state == I2C_STOP, "i2cStart state");
bus.dma_handle->unlock();
if (I2CD[bus.busnum].i2c->errors & I2C_ISR_LIMIT) {
INTERNAL_ERROR(AP_InternalError::error_t::i2c_isr);
break;
}
#ifdef STM32_I2C_ISR_LIMIT
AP_HAL::Util::PersistentData &pd = hal.util->persistent_data;
pd.i2c_isr_count += I2CD[bus.busnum].i2c->isr_count;
#endif
if (ret == MSG_OK) {
bus.bouncebuffer_finish(send, recv, recv_len);
i2cReleaseBus(I2CD[bus.busnum].i2c);
return true;
}
#if HAL_I2C_CLEAR_ON_TIMEOUT
if (ret == MSG_TIMEOUT && I2CBus::read_sda(bus.busnum) == 0) {
I2CBus::clear_bus(bus.busnum);
}
#endif
}
bus.bouncebuffer_finish(send, recv, recv_len);
i2cReleaseBus(I2CD[bus.busnum].i2c);
return false;
}
bool I2CDevice::read_registers_multiple(uint8_t first_reg, uint8_t *recv,
uint32_t recv_len, uint8_t times)
{
return false;
}
/*
register a periodic callback
*/
AP_HAL::Device::PeriodicHandle I2CDevice::register_periodic_callback(uint32_t period_usec, AP_HAL::Device::PeriodicCb cb)
{
return bus.register_periodic_callback(period_usec, cb, this);
}
/*
adjust a periodic callback
*/
bool I2CDevice::adjust_periodic_callback(AP_HAL::Device::PeriodicHandle h, uint32_t period_usec)
{
return bus.adjust_timer(h, period_usec);
}
AP_HAL::OwnPtr<AP_HAL::I2CDevice>
I2CDeviceManager::get_device(uint8_t bus, uint8_t address,
uint32_t bus_clock,
bool use_smbus,
uint32_t timeout_ms)
{
bus -= HAL_I2C_BUS_BASE;
if (bus >= ARRAY_SIZE(I2CD)) {
return AP_HAL::OwnPtr<AP_HAL::I2CDevice>(nullptr);
}
auto dev = AP_HAL::OwnPtr<AP_HAL::I2CDevice>(new I2CDevice(bus, address, bus_clock, use_smbus, timeout_ms));
return dev;
}
/*
get mask of bus numbers for all configured I2C buses
*/
uint32_t I2CDeviceManager::get_bus_mask(void) const
{
return ((1U << ARRAY_SIZE(I2CD)) - 1) << HAL_I2C_BUS_BASE;
}
/*
get mask of bus numbers for all configured internal I2C buses
*/
uint32_t I2CDeviceManager::get_bus_mask_internal(void) const
{
// assume first bus is internal
return get_bus_mask() & HAL_I2C_INTERNAL_MASK;
}
/*
get mask of bus numbers for all configured external I2C buses
*/
uint32_t I2CDeviceManager::get_bus_mask_external(void) const
{
// assume first bus is internal
return get_bus_mask() & ~HAL_I2C_INTERNAL_MASK;
}
#endif // HAL_USE_I2C