286 lines
6.5 KiB
C++
286 lines
6.5 KiB
C++
/*
|
|
RC_Channel.cpp - Radio library for Arduino
|
|
Code by Jason Short. DIYDrones.com
|
|
|
|
This library is free software; you can redistribute it and / or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <avr/eeprom.h>
|
|
#include <APM_RC.h>
|
|
#include "WProgram.h"
|
|
#include "RC_Channel.h"
|
|
|
|
#define RC_CHANNEL_ANGLE 0
|
|
#define RC_CHANNEL_RANGE 1
|
|
#define RC_CHANNEL_ANGLE_RAW 2
|
|
|
|
|
|
// setup the control preferences
|
|
void
|
|
RC_Channel::set_range(int low, int high)
|
|
{
|
|
_type = RC_CHANNEL_RANGE;
|
|
_high = high;
|
|
_low = low;
|
|
}
|
|
|
|
void
|
|
RC_Channel::set_angle(int angle)
|
|
{
|
|
_type = RC_CHANNEL_ANGLE;
|
|
_high = angle;
|
|
}
|
|
|
|
void
|
|
RC_Channel::set_reverse(bool reverse)
|
|
{
|
|
if (reverse) _reverse = -1;
|
|
else _reverse = 1;
|
|
}
|
|
|
|
bool
|
|
RC_Channel::get_reverse(void)
|
|
{
|
|
if (_reverse==-1) return 1;
|
|
else return 0;
|
|
}
|
|
|
|
void
|
|
RC_Channel::set_filter(bool filter)
|
|
{
|
|
_filter = filter;
|
|
}
|
|
|
|
void
|
|
RC_Channel::set_type(uint8_t t)
|
|
{
|
|
_type = t;
|
|
//Serial.print("type1: ");
|
|
//Serial.println(t,DEC);
|
|
}
|
|
|
|
// call after first read
|
|
void
|
|
RC_Channel::trim()
|
|
{
|
|
radio_trim = radio_in;
|
|
}
|
|
|
|
// read input from APM_RC - create a control_in value
|
|
void
|
|
RC_Channel::set_pwm(int pwm)
|
|
{
|
|
//Serial.print(pwm,DEC);
|
|
|
|
if(_filter){
|
|
if(radio_in == 0)
|
|
radio_in = pwm;
|
|
else
|
|
radio_in = (pwm + radio_in) >> 1; // Small filtering
|
|
}else{
|
|
radio_in = pwm;
|
|
}
|
|
|
|
if(_type == RC_CHANNEL_RANGE){
|
|
//Serial.print("range ");
|
|
control_in = pwm_to_range();
|
|
control_in = (control_in < dead_zone) ? 0 : control_in;
|
|
//if (fabs(scale_output) > 0){
|
|
// control_in *= scale_output;
|
|
//}
|
|
}else{
|
|
control_in = pwm_to_angle();
|
|
control_in = (abs(control_in) < dead_zone) ? 0 : control_in;
|
|
//if (fabs(scale_output) > 0){
|
|
// control_in *= scale_output;
|
|
//}
|
|
}
|
|
}
|
|
|
|
int
|
|
RC_Channel::control_mix(float value)
|
|
{
|
|
return (1 - abs(control_in / _high)) * value + control_in;
|
|
}
|
|
|
|
// are we below a threshold?
|
|
bool
|
|
RC_Channel::get_failsafe(void)
|
|
{
|
|
return (radio_in < (radio_min - 50));
|
|
}
|
|
|
|
// returns just the PWM without the offset from radio_min
|
|
void
|
|
RC_Channel::calc_pwm(void)
|
|
{
|
|
if(_type == RC_CHANNEL_RANGE){
|
|
pwm_out = range_to_pwm();
|
|
radio_out = (_reverse >=0 ? pwm_out + radio_min : radio_max - pwm_out);
|
|
|
|
}else if(_type == RC_CHANNEL_ANGLE_RAW){
|
|
pwm_out = (float)servo_out * .1;
|
|
radio_out = (pwm_out * _reverse) + 1500;
|
|
|
|
}else{
|
|
pwm_out = angle_to_pwm();
|
|
radio_out = pwm_out + radio_trim;
|
|
}
|
|
radio_out = constrain(radio_out, radio_min.get(), radio_max.get());
|
|
}
|
|
|
|
// ------------------------------------------
|
|
|
|
void
|
|
RC_Channel::load_eeprom(void)
|
|
{
|
|
_group.load();
|
|
}
|
|
|
|
void
|
|
RC_Channel::save_eeprom(void)
|
|
{
|
|
_group.save();
|
|
}
|
|
|
|
// ------------------------------------------
|
|
|
|
void
|
|
RC_Channel::zero_min_max()
|
|
{
|
|
radio_min = radio_max = radio_in;
|
|
}
|
|
|
|
void
|
|
RC_Channel::update_min_max()
|
|
{
|
|
radio_min = min(radio_min.get(), radio_in);
|
|
radio_max = max(radio_max.get(), radio_in);
|
|
}
|
|
|
|
// ------------------------------------------
|
|
|
|
int16_t
|
|
RC_Channel::pwm_to_angle()
|
|
{
|
|
if(radio_in > radio_trim)
|
|
return _reverse * ((long)_high * (long)(radio_in - radio_trim)) / (long)(radio_max - radio_trim);
|
|
else
|
|
return _reverse * ((long)_high * (long)(radio_in - radio_trim)) / (long)(radio_trim - radio_min);
|
|
}
|
|
|
|
|
|
int16_t
|
|
RC_Channel::angle_to_pwm()
|
|
{
|
|
if((servo_out * _reverse) > 0)
|
|
return _reverse * ((long)servo_out * (long)(radio_max - radio_trim)) / (long)_high;
|
|
else
|
|
return _reverse * ((long)servo_out * (long)(radio_trim - radio_min)) / (long)_high;
|
|
}
|
|
|
|
// ------------------------------------------
|
|
|
|
int16_t
|
|
RC_Channel::pwm_to_range()
|
|
{
|
|
//return (_low + ((_high - _low) * ((float)(radio_in - radio_min) / (float)(radio_max - radio_min))));
|
|
return (_low + ((long)(_high - _low) * (long)(radio_in - radio_min)) / (long)(radio_max - radio_min));
|
|
}
|
|
|
|
int16_t
|
|
RC_Channel::range_to_pwm()
|
|
{
|
|
//return (((float)(servo_out - _low) / (float)(_high - _low)) * (float)(radio_max - radio_min));
|
|
return ((long)(servo_out - _low) * (long)(radio_max - radio_min)) / (long)(_high - _low);
|
|
}
|
|
|
|
// ------------------------------------------
|
|
|
|
float
|
|
RC_Channel::norm_input()
|
|
{
|
|
if(radio_in < radio_trim)
|
|
return _reverse * (float)(radio_in - radio_trim) / (float)(radio_trim - radio_min);
|
|
else
|
|
return _reverse * (float)(radio_in - radio_trim) / (float)(radio_max - radio_trim);
|
|
}
|
|
|
|
float
|
|
RC_Channel::norm_output()
|
|
{
|
|
if(radio_out < radio_trim)
|
|
return (float)(radio_out - radio_trim) / (float)(radio_trim - radio_min);
|
|
else
|
|
return (float)(radio_out - radio_trim) / (float)(radio_max - radio_trim);
|
|
}
|
|
|
|
int16_t
|
|
RC_Channel_aux::closest_limit(int16_t angle)
|
|
{
|
|
// Change scaling to 0.1 degrees in order to avoid overflows in the angle arithmetic
|
|
int16_t min = angle_min / 10;
|
|
int16_t max = angle_max / 10;
|
|
|
|
// Make sure the angle lies in the interval [-180 .. 180[ degrees
|
|
while (angle < -1800) angle += 3600;
|
|
while (angle >= 1800) angle -= 3600;
|
|
|
|
// Make sure the angle limits lie in the interval [-180 .. 180[ degrees
|
|
while (min < -1800) min += 3600;
|
|
while (min >= 1800) min -= 3600;
|
|
while (max < -1800) max += 3600;
|
|
while (max >= 1800) max -= 3600;
|
|
set_range(min, max);
|
|
|
|
// If the angle is outside servo limits, saturate the angle to the closest limit
|
|
// On a circle the closest angular position must be carefully calculated to account for wrap-around
|
|
if ((angle < min) && (angle > max)){
|
|
// angle error if min limit is used
|
|
int16_t err_min = min - angle + (angle<min?0:3600); // add 360 degrees if on the "wrong side"
|
|
// angle error if max limit is used
|
|
int16_t err_max = angle - max + (angle>max?0:3600); // add 360 degrees if on the "wrong side"
|
|
angle = err_min<err_max?min:max;
|
|
}
|
|
|
|
servo_out = angle;
|
|
// convert angle to PWM using a linear transformation (ignores trimming because the camera limits might not be symmetric)
|
|
calc_pwm();
|
|
|
|
return angle;
|
|
}
|
|
|
|
// map a function to a servo channel and output it
|
|
void
|
|
RC_Channel_aux::output_ch(unsigned char ch_nr)
|
|
{
|
|
switch(function)
|
|
{
|
|
case k_none: // disabled
|
|
return;
|
|
break;
|
|
case k_manual: // manual
|
|
radio_out = radio_in;
|
|
break;
|
|
case k_flap: // flaps
|
|
case k_flap_auto: // flaps automated
|
|
case k_aileron: // aileron
|
|
case k_flaperon: // flaperon (flaps and aileron combined, needs two independent servos one for each wing)
|
|
case k_mount_yaw: // mount yaw (pan)
|
|
case k_mount_pitch: // mount pitch (tilt)
|
|
case k_mount_roll: // mount roll
|
|
case k_cam_trigger: // camera trigger
|
|
case k_cam_open: // camera open
|
|
case k_egg_drop: // egg drop
|
|
case k_nr_aux_servo_functions: // dummy, just to avoid a compiler warning
|
|
break;
|
|
}
|
|
|
|
APM_RC.OutputCh(ch_nr, radio_out);
|
|
}
|