Ardupilot2/libraries/AP_Compass/AP_Compass_HMC5843.cpp

591 lines
15 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* AP_Compass_HMC5843.cpp - Arduino Library for HMC5843 I2C magnetometer
* Code by Jordi Muñoz and Jose Julio. DIYDrones.com
*
* Sensor is connected to I2C port
* Sensor is initialized in Continuos mode (10Hz)
*
*/
#include <AP_HAL/AP_HAL.h>
#ifdef HAL_COMPASS_HMC5843_I2C_ADDR
#include <assert.h>
#include <utility>
#include <stdio.h>
#include <AP_Math/AP_Math.h>
#include <AP_HAL/utility/sparse-endian.h>
#include "AP_Compass_HMC5843.h"
#include <AP_InertialSensor/AP_InertialSensor.h>
#include <AP_InertialSensor/AuxiliaryBus.h>
extern const AP_HAL::HAL& hal;
/*
* Defaul address: 0x1E
*/
#define HMC5843_REG_CONFIG_A 0x00
// Valid sample averaging for 5883L
#define HMC5843_SAMPLE_AVERAGING_1 (0x00 << 5)
#define HMC5843_SAMPLE_AVERAGING_2 (0x01 << 5)
#define HMC5843_SAMPLE_AVERAGING_4 (0x02 << 5)
#define HMC5843_SAMPLE_AVERAGING_8 (0x03 << 5)
#define HMC5843_CONF_TEMP_ENABLE (0x80)
// Valid data output rates for 5883L
#define HMC5843_OSR_0_75HZ (0x00 << 2)
#define HMC5843_OSR_1_5HZ (0x01 << 2)
#define HMC5843_OSR_3HZ (0x02 << 2)
#define HMC5843_OSR_7_5HZ (0x03 << 2)
#define HMC5843_OSR_15HZ (0x04 << 2)
#define HMC5843_OSR_30HZ (0x05 << 2)
#define HMC5843_OSR_75HZ (0x06 << 2)
// Sensor operation modes
#define HMC5843_OPMODE_NORMAL 0x00
#define HMC5843_OPMODE_POSITIVE_BIAS 0x01
#define HMC5843_OPMODE_NEGATIVE_BIAS 0x02
#define HMC5843_OPMODE_MASK 0x03
#define HMC5843_REG_CONFIG_B 0x01
#define HMC5883L_GAIN_0_88_GA (0x00 << 5)
#define HMC5883L_GAIN_1_30_GA (0x01 << 5)
#define HMC5883L_GAIN_1_90_GA (0x02 << 5)
#define HMC5883L_GAIN_2_50_GA (0x03 << 5)
#define HMC5883L_GAIN_4_00_GA (0x04 << 5)
#define HMC5883L_GAIN_4_70_GA (0x05 << 5)
#define HMC5883L_GAIN_5_60_GA (0x06 << 5)
#define HMC5883L_GAIN_8_10_GA (0x07 << 5)
#define HMC5843_GAIN_0_70_GA (0x00 << 5)
#define HMC5843_GAIN_1_00_GA (0x01 << 5)
#define HMC5843_GAIN_1_50_GA (0x02 << 5)
#define HMC5843_GAIN_2_00_GA (0x03 << 5)
#define HMC5843_GAIN_3_20_GA (0x04 << 5)
#define HMC5843_GAIN_3_80_GA (0x05 << 5)
#define HMC5843_GAIN_4_50_GA (0x06 << 5)
#define HMC5843_GAIN_6_50_GA (0x07 << 5)
#define HMC5843_REG_MODE 0x02
#define HMC5843_MODE_CONTINUOUS 0x00
#define HMC5843_MODE_SINGLE 0x01
#define HMC5843_REG_DATA_OUTPUT_X_MSB 0x03
#define HMC5843_REG_ID_A 0x0A
AP_Compass_HMC5843::AP_Compass_HMC5843(AP_HMC5843_BusDriver *bus,
bool force_external, enum Rotation rotation)
: _bus(bus)
, _rotation(rotation)
, _force_external(force_external)
{
}
AP_Compass_HMC5843::~AP_Compass_HMC5843()
{
delete _bus;
}
AP_Compass_Backend *AP_Compass_HMC5843::probe(AP_HAL::OwnPtr<AP_HAL::Device> dev,
bool force_external,
enum Rotation rotation)
{
if (!dev) {
return nullptr;
}
AP_HMC5843_BusDriver *bus = new AP_HMC5843_BusDriver_HALDevice(std::move(dev));
if (!bus) {
return nullptr;
}
AP_Compass_HMC5843 *sensor = new AP_Compass_HMC5843(bus, force_external, rotation);
if (!sensor || !sensor->init()) {
delete sensor;
return nullptr;
}
return sensor;
}
AP_Compass_Backend *AP_Compass_HMC5843::probe_mpu6000(enum Rotation rotation)
{
AP_InertialSensor &ins = *AP_InertialSensor::get_singleton();
AP_HMC5843_BusDriver *bus =
new AP_HMC5843_BusDriver_Auxiliary(ins, HAL_INS_MPU60XX_SPI,
HAL_COMPASS_HMC5843_I2C_ADDR);
if (!bus) {
return nullptr;
}
AP_Compass_HMC5843 *sensor = new AP_Compass_HMC5843(bus, false, rotation);
if (!sensor || !sensor->init()) {
delete sensor;
return nullptr;
}
return sensor;
}
bool AP_Compass_HMC5843::init()
{
AP_HAL::Semaphore *bus_sem = _bus->get_semaphore();
if (!bus_sem) {
DEV_PRINTF("HMC5843: Unable to get bus semaphore\n");
return false;
}
bus_sem->take_blocking();
// high retries for init
_bus->set_retries(10);
if (!_bus->configure()) {
DEV_PRINTF("HMC5843: Could not configure the bus\n");
goto errout;
}
if (!_check_whoami()) {
goto errout;
}
if (!_calibrate()) {
DEV_PRINTF("HMC5843: Could not calibrate sensor\n");
goto errout;
}
if (!_setup_sampling_mode()) {
goto errout;
}
if (!_bus->start_measurements()) {
DEV_PRINTF("HMC5843: Could not start measurements on bus\n");
goto errout;
}
_initialised = true;
// lower retries for run
_bus->set_retries(3);
bus_sem->give();
// perform an initial read
read();
//register compass instance
_bus->set_device_type(DEVTYPE_HMC5883);
if (!register_compass(_bus->get_bus_id(), _compass_instance)) {
return false;
}
set_dev_id(_compass_instance, _bus->get_bus_id());
set_rotation(_compass_instance, _rotation);
if (_force_external) {
set_external(_compass_instance, true);
}
// read from sensor at 75Hz
_bus->register_periodic_callback(13333,
FUNCTOR_BIND_MEMBER(&AP_Compass_HMC5843::_timer, void));
DEV_PRINTF("HMC5843 found on bus 0x%x\n", (unsigned)_bus->get_bus_id());
return true;
errout:
bus_sem->give();
return false;
}
/*
* take a reading from the magnetometer
*
* bus semaphore has been taken already by HAL
*/
void AP_Compass_HMC5843::_timer()
{
bool result = _read_sample();
// always ask for a new sample
_take_sample();
if (!result) {
return;
}
// get raw_field - sensor frame, uncorrected
Vector3f raw_field = Vector3f(_mag_x, _mag_y, _mag_z);
raw_field *= _gain_scale;
// rotate to the desired orientation
if (is_external(_compass_instance)) {
raw_field.rotate(ROTATION_YAW_90);
}
// We expect to do reads at 10Hz, and we get new data at most 75Hz, so we
// don't expect to accumulate more than 8 before a read; let's make it
// 14 to give more room for the initialization phase
accumulate_sample(raw_field, _compass_instance, 14);
}
/*
* Take accumulated reads from the magnetometer or try to read once if no
* valid data
*
* bus semaphore must not be locked
*/
void AP_Compass_HMC5843::read()
{
if (!_initialised) {
// someone has tried to enable a compass for the first time
// mid-flight .... we can't do that yet (especially as we won't
// have the right orientation!)
return;
}
drain_accumulated_samples(_compass_instance, &_scaling);
}
bool AP_Compass_HMC5843::_setup_sampling_mode()
{
_gain_scale = (1.0f / 1090) * 1000;
if (!_bus->register_write(HMC5843_REG_CONFIG_A,
HMC5843_CONF_TEMP_ENABLE |
HMC5843_OSR_75HZ |
HMC5843_SAMPLE_AVERAGING_1) ||
!_bus->register_write(HMC5843_REG_CONFIG_B,
HMC5883L_GAIN_1_30_GA) ||
!_bus->register_write(HMC5843_REG_MODE,
HMC5843_MODE_SINGLE)) {
return false;
}
return true;
}
/*
* Read Sensor data - bus semaphore must be taken
*/
bool AP_Compass_HMC5843::_read_sample()
{
struct PACKED {
be16_t rx;
be16_t ry;
be16_t rz;
} val;
int16_t rx, ry, rz;
if (!_bus->block_read(HMC5843_REG_DATA_OUTPUT_X_MSB, (uint8_t *) &val, sizeof(val))){
return false;
}
rx = be16toh(val.rx);
ry = be16toh(val.rz);
rz = be16toh(val.ry);
if (rx == -4096 || ry == -4096 || rz == -4096) {
// no valid data available
return false;
}
_mag_x = -rx;
_mag_y = ry;
_mag_z = -rz;
return true;
}
/*
ask for a new oneshot sample
*/
void AP_Compass_HMC5843::_take_sample()
{
_bus->register_write(HMC5843_REG_MODE,
HMC5843_MODE_SINGLE);
}
bool AP_Compass_HMC5843::_check_whoami()
{
uint8_t id[3];
if (!_bus->block_read(HMC5843_REG_ID_A, id, 3)) {
// can't talk on bus
return false;
}
if (id[0] != 'H' ||
id[1] != '4' ||
id[2] != '3') {
// not a HMC5x83 device
return false;
}
return true;
}
bool AP_Compass_HMC5843::_calibrate()
{
uint8_t calibration_gain;
int numAttempts = 0, good_count = 0;
bool success = false;
calibration_gain = HMC5883L_GAIN_2_50_GA;
/*
* the expected values are based on observation of real sensors
*/
float expected[3] = { 1.16*600, 1.08*600, 1.16*600 };
uint8_t base_config = HMC5843_OSR_15HZ;
uint8_t num_samples = 0;
while (success == 0 && numAttempts < 25 && good_count < 5) {
numAttempts++;
// force positiveBias (compass should return 715 for all channels)
if (!_bus->register_write(HMC5843_REG_CONFIG_A,
base_config | HMC5843_OPMODE_POSITIVE_BIAS)) {
// compass not responding on the bus
continue;
}
hal.scheduler->delay(50);
// set gains
if (!_bus->register_write(HMC5843_REG_CONFIG_B, calibration_gain) ||
!_bus->register_write(HMC5843_REG_MODE, HMC5843_MODE_SINGLE)) {
continue;
}
// read values from the compass
hal.scheduler->delay(50);
if (!_read_sample()) {
// we didn't read valid values
continue;
}
num_samples++;
float cal[3];
// hal.console->printf("mag %d %d %d\n", _mag_x, _mag_y, _mag_z);
cal[0] = fabsf(expected[0] / _mag_x);
cal[1] = fabsf(expected[1] / _mag_y);
cal[2] = fabsf(expected[2] / _mag_z);
// hal.console->printf("cal=%.2f %.2f %.2f\n", cal[0], cal[1], cal[2]);
// we throw away the first two samples as the compass may
// still be changing its state from the application of the
// strap excitation. After that we accept values in a
// reasonable range
if (numAttempts <= 2) {
continue;
}
#define IS_CALIBRATION_VALUE_VALID(val) (val > 0.7f && val < 1.35f)
if (IS_CALIBRATION_VALUE_VALID(cal[0]) &&
IS_CALIBRATION_VALUE_VALID(cal[1]) &&
IS_CALIBRATION_VALUE_VALID(cal[2])) {
// hal.console->printf("car=%.2f %.2f %.2f good\n", cal[0], cal[1], cal[2]);
good_count++;
_scaling[0] += cal[0];
_scaling[1] += cal[1];
_scaling[2] += cal[2];
}
#undef IS_CALIBRATION_VALUE_VALID
#if 0
/* useful for debugging */
hal.console->printf("MagX: %d MagY: %d MagZ: %d\n", (int)_mag_x, (int)_mag_y, (int)_mag_z);
hal.console->printf("CalX: %.2f CalY: %.2f CalZ: %.2f\n", cal[0], cal[1], cal[2]);
#endif
}
_bus->register_write(HMC5843_REG_CONFIG_A, base_config);
if (good_count >= 5) {
_scaling[0] = _scaling[0] / good_count;
_scaling[1] = _scaling[1] / good_count;
_scaling[2] = _scaling[2] / good_count;
success = true;
} else {
/* best guess */
_scaling[0] = 1.0;
_scaling[1] = 1.0;
_scaling[2] = 1.0;
if (num_samples > 5) {
// a sensor can be broken for calibration but still
// otherwise workable, accept it if we are reading samples
success = true;
}
}
#if 0
printf("scaling: %.2f %.2f %.2f\n",
_scaling[0], _scaling[1], _scaling[2]);
#endif
return success;
}
/* AP_HAL::Device implementation of the HMC5843 */
AP_HMC5843_BusDriver_HALDevice::AP_HMC5843_BusDriver_HALDevice(AP_HAL::OwnPtr<AP_HAL::Device> dev)
: _dev(std::move(dev))
{
// set read and auto-increment flags on SPI
if (_dev->bus_type() == AP_HAL::Device::BUS_TYPE_SPI) {
_dev->set_read_flag(0xC0);
}
}
bool AP_HMC5843_BusDriver_HALDevice::block_read(uint8_t reg, uint8_t *buf, uint32_t size)
{
return _dev->read_registers(reg, buf, size);
}
bool AP_HMC5843_BusDriver_HALDevice::register_read(uint8_t reg, uint8_t *val)
{
return _dev->read_registers(reg, val, 1);
}
bool AP_HMC5843_BusDriver_HALDevice::register_write(uint8_t reg, uint8_t val)
{
return _dev->write_register(reg, val);
}
AP_HAL::Semaphore *AP_HMC5843_BusDriver_HALDevice::get_semaphore()
{
return _dev->get_semaphore();
}
AP_HAL::Device::PeriodicHandle AP_HMC5843_BusDriver_HALDevice::register_periodic_callback(uint32_t period_usec, AP_HAL::Device::PeriodicCb cb)
{
return _dev->register_periodic_callback(period_usec, cb);
}
/* HMC5843 on an auxiliary bus of IMU driver */
AP_HMC5843_BusDriver_Auxiliary::AP_HMC5843_BusDriver_Auxiliary(AP_InertialSensor &ins, uint8_t backend_id,
uint8_t addr)
{
/*
* Only initialize members. Fails are handled by configure or while
* getting the semaphore
*/
#if AP_INERTIALSENSOR_ENABLED
_bus = ins.get_auxiliary_bus(backend_id);
if (!_bus) {
return;
}
_slave = _bus->request_next_slave(addr);
#endif
}
AP_HMC5843_BusDriver_Auxiliary::~AP_HMC5843_BusDriver_Auxiliary()
{
/* After started it's owned by AuxiliaryBus */
if (!_started) {
delete _slave;
}
}
bool AP_HMC5843_BusDriver_Auxiliary::block_read(uint8_t reg, uint8_t *buf, uint32_t size)
{
if (_started) {
/*
* We can only read a block when reading the block of sample values -
* calling with any other value is a mistake
*/
if (reg != HMC5843_REG_DATA_OUTPUT_X_MSB) {
return false;
}
int n = _slave->read(buf);
return n == static_cast<int>(size);
}
int r = _slave->passthrough_read(reg, buf, size);
return r > 0 && static_cast<uint32_t>(r) == size;
}
bool AP_HMC5843_BusDriver_Auxiliary::register_read(uint8_t reg, uint8_t *val)
{
return _slave->passthrough_read(reg, val, 1) == 1;
}
bool AP_HMC5843_BusDriver_Auxiliary::register_write(uint8_t reg, uint8_t val)
{
return _slave->passthrough_write(reg, val) == 1;
}
AP_HAL::Semaphore *AP_HMC5843_BusDriver_Auxiliary::get_semaphore()
{
return _bus->get_semaphore();
}
bool AP_HMC5843_BusDriver_Auxiliary::configure()
{
if (!_bus || !_slave) {
return false;
}
return true;
}
bool AP_HMC5843_BusDriver_Auxiliary::start_measurements()
{
if (_bus->register_periodic_read(_slave, HMC5843_REG_DATA_OUTPUT_X_MSB, 6) < 0) {
return false;
}
_started = true;
return true;
}
AP_HAL::Device::PeriodicHandle AP_HMC5843_BusDriver_Auxiliary::register_periodic_callback(uint32_t period_usec, AP_HAL::Device::PeriodicCb cb)
{
return _bus->register_periodic_callback(period_usec, cb);
}
// set device type within a device class
void AP_HMC5843_BusDriver_Auxiliary::set_device_type(uint8_t devtype)
{
_bus->set_device_type(devtype);
}
// return 24 bit bus identifier
uint32_t AP_HMC5843_BusDriver_Auxiliary::get_bus_id(void) const
{
return _bus->get_bus_id();
}
#endif