Ardupilot2/libraries/AP_OpenDroneID/AP_OpenDroneID.cpp

808 lines
28 KiB
C++

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
*
* original code by:
* BlueMark Innovations BV, Roel Schiphorst
* Contributors: Tom Pittenger, Josh Henderson, Andrew Tridgell
* Parts of this code are based on/copied from the Open Drone ID project https://github.com/opendroneid/opendroneid-core-c
*
* The code has been tested with the BlueMark DroneBeacon MAVLink transponder running this command in the ArduPlane folder:
* sim_vehicle.py --console --map -A --serial1=uart:/dev/ttyUSB1:9600
* (and a DroneBeacon MAVLink transponder connected to ttyUSB1)
*
* See https://github.com/ArduPilot/ArduRemoteID for an open implementation of a transmitter module on serial
* and DroneCAN
*/
#include "AP_OpenDroneID_config.h"
#if AP_OPENDRONEID_ENABLED
#include "AP_OpenDroneID.h"
#include <AP_HAL/AP_HAL.h>
#include <GCS_MAVLink/GCS.h>
#include <AP_GPS/AP_GPS.h>
#include <AP_Baro/AP_Baro.h>
#include <AP_AHRS/AP_AHRS.h>
#include <AP_Parachute/AP_Parachute.h>
#include <AP_Vehicle/AP_Vehicle.h>
#include <AP_DroneCAN/AP_DroneCAN.h>
#include <stdio.h>
#include <GCS_MAVLink/GCS.h>
extern const AP_HAL::HAL &hal;
const AP_Param::GroupInfo AP_OpenDroneID::var_info[] = {
// @Param: ENABLE
// @DisplayName: Enable ODID subsystem
// @Description: Enable ODID subsystem
// @Values: 0:Disabled,1:Enabled
AP_GROUPINFO_FLAGS("ENABLE", 1, AP_OpenDroneID, _enable, 0, AP_PARAM_FLAG_ENABLE),
// @Param: MAVPORT
// @DisplayName: MAVLink serial port
// @Description: Serial port number to send OpenDroneID MAVLink messages to. Can be -1 if using DroneCAN.
// @Values: -1:Disabled,0:Serial0,1:Serial1,2:Serial2,3:Serial3,4:Serial4,5:Serial5,6:Serial6
AP_GROUPINFO("MAVPORT", 2, AP_OpenDroneID, _mav_port, -1),
// @Param: CANDRIVER
// @DisplayName: DroneCAN driver number
// @Description: DroneCAN driver index, 0 to disable DroneCAN
// @Values: 0:Disabled,1:Driver1,2:Driver2
AP_GROUPINFO("CANDRIVER", 3, AP_OpenDroneID, _can_driver, 0),
// @Param: OPTIONS
// @DisplayName: OpenDroneID options
// @Description: Options for OpenDroneID subsystem
// @Bitmask: 0:EnforceArming, 1:AllowNonGPSPosition, 2:LockUASIDOnFirstBasicIDRx
AP_GROUPINFO("OPTIONS", 4, AP_OpenDroneID, _options, 0),
// @Param: BARO_ACC
// @DisplayName: Barometer vertical accuraacy
// @Description: Barometer Vertical Accuracy when installed in the vehicle. Note this is dependent upon installation conditions and thus disabled by default
// @Units: m
// @User: Advanced
AP_GROUPINFO("BARO_ACC", 5, AP_OpenDroneID, _baro_accuracy, -1.0),
AP_GROUPEND
};
#if defined(OPENDRONEID_UA_TYPE)
// ensure the type is within the allowed range
#if OPENDRONEID_UA_TYPE < 0 || OPENDRONEID_UA_TYPE > 15
#error "OPENDRONEID_UA_TYPE must be between 0 and 15"
#endif
#endif
// constructor
AP_OpenDroneID::AP_OpenDroneID()
{
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
if (_singleton != nullptr) {
AP_HAL::panic("OpenDroneID must be singleton");
}
#endif
_singleton = this;
AP_Param::setup_object_defaults(this, var_info);
}
void AP_OpenDroneID::init()
{
if (_enable == 0) {
return;
}
load_UAS_ID_from_persistent_memory();
_chan = mavlink_channel_t(gcs().get_channel_from_port_number(_mav_port));
_initialised = true;
}
void AP_OpenDroneID::load_UAS_ID_from_persistent_memory()
{
id_len = sizeof(id_str);
size_t id_type_len = sizeof(id_type);
size_t ua_type_len = sizeof(ua_type);
if (hal.util->get_persistent_param_by_name("DID_UAS_ID", id_str, id_len) &&
hal.util->get_persistent_param_by_name("DID_UAS_ID_TYPE", id_type, id_type_len) &&
hal.util->get_persistent_param_by_name("DID_UA_TYPE", ua_type, ua_type_len)) {
if (id_len && id_type_len && ua_type_len) {
_options.set_and_save(_options.get() & ~LockUASIDOnFirstBasicIDRx);
_options.notify();
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "OpenDroneID: Locked UAS_ID: %s", id_str);
}
} else {
id_len = 0;
}
}
void AP_OpenDroneID::set_basic_id() {
if (pkt_basic_id.id_type != MAV_ODID_ID_TYPE_NONE) {
return;
}
if (id_len > 0) {
// prepare basic id pkt
uint8_t val = gcs().sysid_this_mav();
pkt_basic_id.target_system = val;
pkt_basic_id.target_component = MAV_COMP_ID_ODID_TXRX_1;
pkt_basic_id.id_type = atoi(id_type);
pkt_basic_id.ua_type = atoi(ua_type);
char buffer[21];
snprintf(buffer, sizeof(buffer), "%s", id_str);
memcpy(pkt_basic_id.uas_id, buffer, sizeof(pkt_basic_id.uas_id));
}
}
void AP_OpenDroneID::get_persistent_params(ExpandingString &str) const
{
if ((pkt_basic_id.id_type == MAV_ODID_ID_TYPE_SERIAL_NUMBER)
&& (_options & LockUASIDOnFirstBasicIDRx)
&& id_len == 0) {
GCS_SEND_TEXT(MAV_SEVERITY_CRITICAL, "OpenDroneID: ID is locked as %s", pkt_basic_id.uas_id);
str.printf("DID_UAS_ID=%s\nDID_UAS_ID_TYPE=%u\nDID_UA_TYPE=%u\n", pkt_basic_id.uas_id, pkt_basic_id.id_type, pkt_basic_id.ua_type);
}
}
// Perform the pre-arm checks and prevent arming if they are not satisifed
// Except in the case of an in-flight reboot
bool AP_OpenDroneID::pre_arm_check(char* failmsg, uint8_t failmsg_len)
{
WITH_SEMAPHORE(_sem);
if (!option_enabled(Options::EnforceArming)) {
return true;
}
if(_enable == 0) {
strncpy(failmsg, "DID_ENABLE must be 1", failmsg_len);
return false;
}
if (pkt_basic_id.id_type == MAV_ODID_ID_TYPE_NONE) {
strncpy(failmsg, "UA_TYPE required in BasicID", failmsg_len);
return false;
}
if (pkt_system.operator_latitude == 0 && pkt_system.operator_longitude == 0) {
strncpy(failmsg, "operator location must be set", failmsg_len);
return false;
}
const uint32_t max_age_ms = 3000;
const uint32_t now_ms = AP_HAL::millis();
if (last_arm_status_ms == 0 || now_ms - last_arm_status_ms > max_age_ms) {
strncpy(failmsg, "ARM_STATUS not available", failmsg_len);
return false;
}
if (last_system_ms == 0 ||
(now_ms - last_system_ms > max_age_ms &&
(now_ms - last_system_update_ms > max_age_ms))) {
strncpy(failmsg, "SYSTEM not available", failmsg_len);
return false;
}
if (arm_status.status != MAV_ODID_ARM_STATUS_GOOD_TO_ARM) {
strncpy(failmsg, arm_status.error, failmsg_len);
return false;
}
return true;
}
void AP_OpenDroneID::update()
{
if (_enable == 0) {
return;
}
if ((pkt_basic_id.id_type == MAV_ODID_ID_TYPE_SERIAL_NUMBER)
&& (_options & LockUASIDOnFirstBasicIDRx)
&& id_len == 0
&& !bootloader_flashed) {
hal.util->flash_bootloader();
// reset the basic id on next set_basic_id call
pkt_basic_id.id_type = MAV_ODID_ID_TYPE_NONE;
bootloader_flashed = true;
}
set_basic_id();
const bool armed = hal.util->get_soft_armed();
if (armed && !_was_armed) {
// use arm location as takeoff location
AP::ahrs().get_location(_takeoff_location);
}
_was_armed = armed;
send_dynamic_out();
send_static_out();
#if HAL_ENABLE_DRONECAN_DRIVERS
uint8_t can_num_drivers = AP::can().get_num_drivers();
for (uint8_t i = 0; i < can_num_drivers; i++) {
AP_DroneCAN *dronecan = AP_DroneCAN::get_dronecan(i);
if (dronecan == nullptr) {
continue;
}
if (dronecan->get_driver_index()+1 != _can_driver) {
continue;
}
// send messages
dronecan_send(dronecan);
}
#endif
}
// local payload space check which treats invalid channel as having space
// needed to populate the message structures for the DroneCAN backend
#define ODID_HAVE_PAYLOAD_SPACE(id) (_chan == MAV_CHAN_INVALID || HAVE_PAYLOAD_SPACE(_chan, id))
void AP_OpenDroneID::send_dynamic_out()
{
const uint32_t now = AP_HAL::millis();
if (now - _last_send_location_ms >= _mavlink_dynamic_period_ms &&
ODID_HAVE_PAYLOAD_SPACE(OPEN_DRONE_ID_LOCATION)) {
_last_send_location_ms = now;
send_location_message();
}
// operator location needs to be sent at the same rate as location for FAA compliance
if (now - _last_send_system_update_ms >= _mavlink_dynamic_period_ms &&
ODID_HAVE_PAYLOAD_SPACE(OPEN_DRONE_ID_SYSTEM_UPDATE)) {
_last_send_system_update_ms = now;
send_system_update_message();
}
}
void AP_OpenDroneID::send_static_out()
{
const uint32_t now_ms = AP_HAL::millis();
// we need to notify user if we lost the transmitter
if (now_ms - last_arm_status_ms > 5000) {
if (now_ms - last_lost_tx_ms > 5000) {
last_lost_tx_ms = now_ms;
GCS_SEND_TEXT(MAV_SEVERITY_WARNING, "ODID: lost transmitter");
}
} else if (last_lost_tx_ms != 0) {
// we're OK again
last_lost_tx_ms = 0;
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "ODID: transmitter OK");
}
// we need to notify user if we lost system msg with operator location
if (now_ms - last_system_ms > 5000 && now_ms - last_lost_operator_msg_ms > 5000) {
last_lost_operator_msg_ms = now_ms;
GCS_SEND_TEXT(MAV_SEVERITY_WARNING, "ODID: lost operator location");
}
const uint32_t msg_spacing_ms = _mavlink_static_period_ms / 4;
if (now_ms - last_msg_send_ms >= msg_spacing_ms) {
// allow update of channel during setup, this makes it easy to debug with a GCS
_chan = mavlink_channel_t(gcs().get_channel_from_port_number(_mav_port));
bool sent_ok = false;
switch (next_msg_to_send) {
case NEXT_MSG_BASIC_ID:
if (ODID_HAVE_PAYLOAD_SPACE(OPEN_DRONE_ID_BASIC_ID)) {
send_basic_id_message();
sent_ok = true;
}
break;
case NEXT_MSG_SYSTEM:
if (ODID_HAVE_PAYLOAD_SPACE(OPEN_DRONE_ID_SYSTEM)) {
send_system_message();
sent_ok = true;
}
break;
case NEXT_MSG_SELF_ID:
if (ODID_HAVE_PAYLOAD_SPACE(OPEN_DRONE_ID_SELF_ID)) {
send_self_id_message();
sent_ok = true;
}
break;
case NEXT_MSG_OPERATOR_ID:
if (ODID_HAVE_PAYLOAD_SPACE(OPEN_DRONE_ID_OPERATOR_ID)) {
send_operator_id_message();
sent_ok = true;
}
break;
case NEXT_MSG_ENUM_END:
break;
}
if (sent_ok) {
last_msg_send_ms = now_ms;
next_msg_to_send = next_msg((uint8_t(next_msg_to_send) + 1) % uint8_t(NEXT_MSG_ENUM_END));
}
}
}
// The send_location_message
// all open_drone_id send functions use data stored in the open drone id class.
// This location send function is an exception. It uses live location data from the ArduPilot system.
void AP_OpenDroneID::send_location_message()
{
auto &ahrs = AP::ahrs();
const auto &barometer = AP::baro();
const auto &gps = AP::gps();
const AP_GPS::GPS_Status gps_status = gps.status();
const bool got_bad_gps_fix = (gps_status < AP_GPS::GPS_Status::GPS_OK_FIX_3D);
const bool armed = hal.util->get_soft_armed();
Location current_location;
if (!ahrs.get_location(current_location)) {
return;
}
uint8_t uav_status = hal.util->get_soft_armed()? MAV_ODID_STATUS_AIRBORNE : MAV_ODID_STATUS_GROUND;
#if HAL_PARACHUTE_ENABLED
// set emergency status if chute is released
const auto *parachute = AP::parachute();
if (parachute != nullptr && parachute->released()) {
uav_status = MAV_ODID_STATUS_EMERGENCY;
}
#endif
if (AP::vehicle()->is_crashed()) {
// if in crashed state also declare an emergency
uav_status = MAV_ODID_STATUS_EMERGENCY;
}
// if we are armed with no GPS fix and we haven't specifically
// allowed for non-GPS operation then declare an emergency
if (got_bad_gps_fix && armed && !option_enabled(Options::AllowNonGPSPosition)) {
uav_status = MAV_ODID_STATUS_EMERGENCY;
}
// if we are disarmed and falling at over 3m/s then declare an
// emergency. This covers cases such as deliberate crash with
// advanced failsafe and an unintended reboot or in-flight disarm
if (!got_bad_gps_fix && !armed && gps.velocity().z > 3.0) {
uav_status = MAV_ODID_STATUS_EMERGENCY;
}
// if we have watchdogged while armed then declare an emergency
if (hal.util->was_watchdog_armed()) {
uav_status = MAV_ODID_STATUS_EMERGENCY;
}
float direction = ODID_INV_DIR;
if (!got_bad_gps_fix) {
direction = wrap_360(degrees(ahrs.groundspeed_vector().angle())); // heading (degrees)
}
const float speed_horizontal = create_speed_horizontal(ahrs.groundspeed());
Vector3f velNED;
UNUSED_RESULT(ahrs.get_velocity_NED(velNED));
const float climb_rate = create_speed_vertical(-velNED.z); //make sure climb_rate is within Remote ID limit
int32_t latitude = 0;
int32_t longitude = 0;
if (current_location.check_latlng()) { //set location if they are valid
latitude = current_location.lat;
longitude = current_location.lng;
}
// altitude referenced against 1013.2mb
const float base_press_mbar = 1013.2;
const float altitude_barometric = create_altitude(barometer.get_altitude_difference(base_press_mbar*100, barometer.get_pressure()));
float altitude_geodetic = -1000;
int32_t alt_amsl_cm;
float undulation;
if (current_location.get_alt_cm(Location::AltFrame::ABSOLUTE, alt_amsl_cm)) {
altitude_geodetic = alt_amsl_cm * 0.01;
}
if (gps.get_undulation(undulation)) {
altitude_geodetic -= undulation;
}
// Compute the current height above the takeoff location
float height_above_takeoff = 0; // height above takeoff (meters)
if (hal.util->get_soft_armed()) {
int32_t curr_alt_asml_cm;
int32_t takeoff_alt_asml_cm;
if (current_location.get_alt_cm(Location::AltFrame::ABSOLUTE, curr_alt_asml_cm) &&
_takeoff_location.get_alt_cm(Location::AltFrame::ABSOLUTE, takeoff_alt_asml_cm)) {
height_above_takeoff = (curr_alt_asml_cm - takeoff_alt_asml_cm) * 0.01;
}
}
// Accuracy
// If we have GPS 3D lock we presume that the accuracies of the system will track the GPS's reported accuracy
MAV_ODID_HOR_ACC horizontal_accuracy_mav = MAV_ODID_HOR_ACC_UNKNOWN;
MAV_ODID_VER_ACC vertical_accuracy_mav = MAV_ODID_VER_ACC_UNKNOWN;
MAV_ODID_SPEED_ACC speed_accuracy_mav = MAV_ODID_SPEED_ACC_UNKNOWN;
MAV_ODID_TIME_ACC timestamp_accuracy_mav = MAV_ODID_TIME_ACC_UNKNOWN;
float horizontal_accuracy;
if (gps.horizontal_accuracy(horizontal_accuracy)) {
horizontal_accuracy_mav = create_enum_horizontal_accuracy(horizontal_accuracy);
}
float vertical_accuracy;
if (gps.vertical_accuracy(vertical_accuracy)) {
vertical_accuracy_mav = create_enum_vertical_accuracy(vertical_accuracy);
}
float speed_accuracy;
if (gps.speed_accuracy(speed_accuracy)) {
speed_accuracy_mav = create_enum_speed_accuracy(speed_accuracy);
}
// if we have ever had GPS lock then we will have better than 1s
// accuracy, as we use system timer to propogate time
timestamp_accuracy_mav = create_enum_timestamp_accuracy(1.0);
// Barometer altitude accuraacy will be highly dependent on the airframe and installation of the barometer in use
// thus ArduPilot cannot reasonably fill this in.
// Instead allow a manufacturer to use a parameter to fill this in
uint8_t barometer_accuracy = MAV_ODID_VER_ACC_UNKNOWN; //ahrs class does not provide accuracy readings
if (!is_equal(_baro_accuracy.get(), -1.0f)) {
barometer_accuracy = create_enum_vertical_accuracy(_baro_accuracy);
}
// Timestamp here is the number of seconds after into the current hour referenced to UTC time (up to one hour)
// FIX we need to only set this if w have a GPS lock is 2D good enough for that?
float timestamp = ODID_INV_TIMESTAMP;
if (!got_bad_gps_fix) {
uint32_t time_week_ms = gps.time_week_ms();
timestamp = float(time_week_ms % (3600 * 1000)) * 0.001;
timestamp = create_location_timestamp(timestamp); //make sure timestamp is within Remote ID limit
}
{
WITH_SEMAPHORE(_sem);
// take semaphore so CAN gets a consistent packet
pkt_location = mavlink_open_drone_id_location_t{
latitude : latitude,
longitude : longitude,
altitude_barometric : altitude_barometric,
altitude_geodetic : altitude_geodetic,
height : height_above_takeoff,
timestamp : timestamp,
direction : uint16_t(direction * 100.0), // Heading (centi-degrees)
speed_horizontal : uint16_t(speed_horizontal * 100.0), // Ground speed (cm/s)
speed_vertical : int16_t(climb_rate * 100.0), // Climb rate (cm/s)
target_system : 0,
target_component : 0,
id_or_mac : {},
status : uint8_t(uav_status),
height_reference : MAV_ODID_HEIGHT_REF_OVER_TAKEOFF, // height reference enum: Above takeoff location or above ground
horizontal_accuracy : uint8_t(horizontal_accuracy_mav),
vertical_accuracy : uint8_t(vertical_accuracy_mav),
barometer_accuracy : barometer_accuracy,
speed_accuracy : uint8_t(speed_accuracy_mav),
timestamp_accuracy : uint8_t(timestamp_accuracy_mav)
};
need_send_location = dronecan_send_all;
}
if (_chan != MAV_CHAN_INVALID) {
mavlink_msg_open_drone_id_location_send_struct(_chan, &pkt_location);
}
}
void AP_OpenDroneID::send_basic_id_message()
{
// note that packet is filled in by the GCS
need_send_basic_id |= dronecan_send_all;
if (_chan != MAV_CHAN_INVALID) {
mavlink_msg_open_drone_id_basic_id_send_struct(_chan, &pkt_basic_id);
}
}
void AP_OpenDroneID::send_system_message()
{
// note that packet is filled in by the GCS
need_send_system |= dronecan_send_all;
if (_chan != MAV_CHAN_INVALID) {
mavlink_msg_open_drone_id_system_send_struct(_chan, &pkt_system);
}
}
void AP_OpenDroneID::send_self_id_message()
{
need_send_self_id |= dronecan_send_all;
if (_chan != MAV_CHAN_INVALID) {
mavlink_msg_open_drone_id_self_id_send_struct(_chan, &pkt_self_id);
}
}
void AP_OpenDroneID::send_system_update_message()
{
need_send_system |= dronecan_send_all;
// note that packet is filled in by the GCS
if (_chan != MAV_CHAN_INVALID) {
const auto pkt_system_update = mavlink_open_drone_id_system_update_t {
operator_latitude : pkt_system.operator_latitude,
operator_longitude : pkt_system.operator_longitude,
operator_altitude_geo : pkt_system.operator_altitude_geo,
timestamp : pkt_system.timestamp,
target_system : pkt_system.target_system,
target_component : pkt_system.target_component,
};
mavlink_msg_open_drone_id_system_update_send_struct(_chan, &pkt_system_update);
}
}
void AP_OpenDroneID::send_operator_id_message()
{
need_send_operator_id |= dronecan_send_all;
// note that packet is filled in by the GCS
if (_chan != MAV_CHAN_INVALID) {
mavlink_msg_open_drone_id_operator_id_send_struct(_chan, &pkt_operator_id);
}
}
/*
* This converts a horizontal accuracy float value to the corresponding enum
*
* @param Accuracy The horizontal accuracy in meters
* @return Enum value representing the accuracy
*/
MAV_ODID_HOR_ACC AP_OpenDroneID::create_enum_horizontal_accuracy(float accuracy) const
{
// Out of bounds return UNKNOWN flag
if (accuracy < 0.0 || accuracy >= 18520.0) {
return MAV_ODID_HOR_ACC_UNKNOWN;
}
static const struct {
float accuracy; // Accuracy bound in meters
MAV_ODID_HOR_ACC mavoutput; // mavlink enum output
} horiz_accuracy_table[] = {
{ 1.0, MAV_ODID_HOR_ACC_1_METER},
{ 3.0, MAV_ODID_HOR_ACC_3_METER},
{10.0, MAV_ODID_HOR_ACC_10_METER},
{30.0, MAV_ODID_HOR_ACC_30_METER},
{92.6, MAV_ODID_HOR_ACC_0_05NM},
{185.2, MAV_ODID_HOR_ACC_0_1NM},
{555.6, MAV_ODID_HOR_ACC_0_3NM},
{926.0, MAV_ODID_HOR_ACC_0_5NM},
{1852.0, MAV_ODID_HOR_ACC_1NM},
{3704.0, MAV_ODID_HOR_ACC_2NM},
{7408.0, MAV_ODID_HOR_ACC_4NM},
{18520.0, MAV_ODID_HOR_ACC_10NM},
};
for (auto elem : horiz_accuracy_table) {
if (accuracy < elem.accuracy) {
return elem.mavoutput;
}
}
// Should not reach this
return MAV_ODID_HOR_ACC_UNKNOWN;
}
/**
* This converts a vertical accuracy float value to the corresponding enum
*
* @param Accuracy The vertical accuracy in meters
* @return Enum value representing the accuracy
*/
MAV_ODID_VER_ACC AP_OpenDroneID::create_enum_vertical_accuracy(float accuracy) const
{
// Out of bounds return UNKNOWN flag
if (accuracy < 0.0 || accuracy >= 150.0) {
return MAV_ODID_VER_ACC_UNKNOWN;
}
static const struct {
float accuracy; // Accuracy bound in meters
MAV_ODID_VER_ACC mavoutput; // mavlink enum output
} vertical_accuracy_table[] = {
{ 1.0, MAV_ODID_VER_ACC_1_METER},
{ 3.0, MAV_ODID_VER_ACC_3_METER},
{10.0, MAV_ODID_VER_ACC_10_METER},
{25.0, MAV_ODID_VER_ACC_25_METER},
{45.0, MAV_ODID_VER_ACC_45_METER},
{150.0, MAV_ODID_VER_ACC_150_METER},
};
for (auto elem : vertical_accuracy_table) {
if (accuracy < elem.accuracy) {
return elem.mavoutput;
}
}
// Should not reach this
return MAV_ODID_VER_ACC_UNKNOWN;
}
/**
* This converts a speed accuracy float value to the corresponding enum
*
* @param Accuracy The speed accuracy in m/s
* @return Enum value representing the accuracy
*/
MAV_ODID_SPEED_ACC AP_OpenDroneID::create_enum_speed_accuracy(float accuracy) const
{
// Out of bounds return UNKNOWN flag
if (accuracy < 0.0 || accuracy >= 10.0) {
return MAV_ODID_SPEED_ACC_UNKNOWN;
}
if (accuracy < 0.3) {
return MAV_ODID_SPEED_ACC_0_3_METERS_PER_SECOND;
} else if (accuracy < 1.0) {
return MAV_ODID_SPEED_ACC_1_METERS_PER_SECOND;
} else if (accuracy < 3.0) {
return MAV_ODID_SPEED_ACC_3_METERS_PER_SECOND;
} else if (accuracy < 10.0) {
return MAV_ODID_SPEED_ACC_10_METERS_PER_SECOND;
}
// Should not reach this
return MAV_ODID_SPEED_ACC_UNKNOWN;
}
/**
* This converts a timestamp accuracy float value to the corresponding enum
*
* @param Accuracy The timestamp accuracy in seconds
* @return Enum value representing the accuracy
*/
MAV_ODID_TIME_ACC AP_OpenDroneID::create_enum_timestamp_accuracy(float accuracy) const
{
// Out of bounds return UNKNOWN flag
if (accuracy < 0.0 || accuracy >= 1.5) {
return MAV_ODID_TIME_ACC_UNKNOWN;
}
static const MAV_ODID_TIME_ACC mavoutput [15] = {
MAV_ODID_TIME_ACC_0_1_SECOND,
MAV_ODID_TIME_ACC_0_2_SECOND,
MAV_ODID_TIME_ACC_0_3_SECOND,
MAV_ODID_TIME_ACC_0_4_SECOND,
MAV_ODID_TIME_ACC_0_5_SECOND,
MAV_ODID_TIME_ACC_0_6_SECOND,
MAV_ODID_TIME_ACC_0_7_SECOND,
MAV_ODID_TIME_ACC_0_8_SECOND,
MAV_ODID_TIME_ACC_0_9_SECOND,
MAV_ODID_TIME_ACC_1_0_SECOND,
MAV_ODID_TIME_ACC_1_1_SECOND,
MAV_ODID_TIME_ACC_1_2_SECOND,
MAV_ODID_TIME_ACC_1_3_SECOND,
MAV_ODID_TIME_ACC_1_4_SECOND,
MAV_ODID_TIME_ACC_1_5_SECOND,
};
for (int8_t i = 1; i <= 15; i++) {
if (accuracy <= 0.1 * i) {
return mavoutput[i-1];
}
}
// Should not reach this
return MAV_ODID_TIME_ACC_UNKNOWN;
}
// make sure value is within limits of remote ID standard
uint16_t AP_OpenDroneID::create_speed_horizontal(uint16_t speed) const
{
if (speed > ODID_MAX_SPEED_H) { // constraint function can't be used, because out of range value is invalid
speed = ODID_INV_SPEED_H;
}
return speed;
}
// make sure value is within limits of remote ID standard
int16_t AP_OpenDroneID::create_speed_vertical(int16_t speed) const
{
if (speed > ODID_MAX_SPEED_V) { // constraint function can't be used, because out of range value is invalid
speed = ODID_INV_SPEED_V;
} else if (speed < ODID_MIN_SPEED_V) {
speed = ODID_INV_SPEED_V;
}
return speed;
}
// make sure value is within limits of remote ID standard
float AP_OpenDroneID::create_altitude(float altitude) const
{
if (altitude > ODID_MAX_ALT) { // constraint function can't be used, because out of range value is invalid
altitude = ODID_INV_ALT;
} else if (altitude < ODID_MIN_ALT) {
altitude = ODID_INV_ALT;
}
return altitude;
}
// make sure value is within limits of remote ID standard
float AP_OpenDroneID::create_location_timestamp(float timestamp) const
{
if (timestamp > ODID_MAX_TIMESTAMP) { // constraint function can't be used, because out of range value is invalid
timestamp = ODID_INV_TIMESTAMP;
} else if (timestamp < 0) {
timestamp = ODID_INV_TIMESTAMP;
}
return timestamp;
}
// handle a message from the GCS
void AP_OpenDroneID::handle_msg(mavlink_channel_t chan, const mavlink_message_t &msg)
{
if (!_initialised) {
return;
}
WITH_SEMAPHORE(_sem);
switch (msg.msgid) {
// only accept ARM_STATUS from the transmitter
case MAVLINK_MSG_ID_OPEN_DRONE_ID_ARM_STATUS: {
if (chan == _chan) {
mavlink_msg_open_drone_id_arm_status_decode(&msg, &arm_status);
last_arm_status_ms = AP_HAL::millis();
}
break;
}
// accept other messages from the GCS
case MAVLINK_MSG_ID_OPEN_DRONE_ID_OPERATOR_ID:
mavlink_msg_open_drone_id_operator_id_decode(&msg, &pkt_operator_id);
break;
case MAVLINK_MSG_ID_OPEN_DRONE_ID_SELF_ID:
mavlink_msg_open_drone_id_self_id_decode(&msg, &pkt_self_id);
break;
case MAVLINK_MSG_ID_OPEN_DRONE_ID_BASIC_ID:
if (id_len == 0) {
mavlink_msg_open_drone_id_basic_id_decode(&msg, &pkt_basic_id);
}
break;
case MAVLINK_MSG_ID_OPEN_DRONE_ID_SYSTEM:
mavlink_msg_open_drone_id_system_decode(&msg, &pkt_system);
last_system_ms = AP_HAL::millis();
break;
case MAVLINK_MSG_ID_OPEN_DRONE_ID_SYSTEM_UPDATE: {
mavlink_open_drone_id_system_update_t pkt_system_update;
mavlink_msg_open_drone_id_system_update_decode(&msg, &pkt_system_update);
pkt_system.operator_latitude = pkt_system_update.operator_latitude;
pkt_system.operator_longitude = pkt_system_update.operator_longitude;
pkt_system.operator_altitude_geo = pkt_system_update.operator_altitude_geo;
pkt_system.timestamp = pkt_system_update.timestamp;
last_system_update_ms = AP_HAL::millis();
if (last_system_ms != 0) {
// we can only mark system as updated if we have the other
// information already
last_system_ms = last_system_update_ms;
}
break;
}
}
}
// singleton instance
AP_OpenDroneID *AP_OpenDroneID::_singleton;
namespace AP
{
AP_OpenDroneID &opendroneid()
{
return *AP_OpenDroneID::get_singleton();
}
}
#endif //AP_OPENDRONEID_ENABLED