Ardupilot2/ArduSub/ArduSub.cpp
2022-05-03 08:20:13 +09:00

357 lines
12 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// ArduSub scheduling, originally copied from ArduCopter
#include "Sub.h"
#define SCHED_TASK(func, rate_hz, max_time_micros, priority) SCHED_TASK_CLASS(Sub, &sub, func, rate_hz, max_time_micros, priority)
#define FAST_TASK(func) FAST_TASK_CLASS(Sub, &sub, func)
/*
scheduler table - all tasks should be listed here.
All entries in this table must be ordered by priority.
This table is interleaved with the table in AP_Vehicle to determine
the order in which tasks are run. Convenience methods SCHED_TASK
and SCHED_TASK_CLASS are provided to build entries in this structure:
SCHED_TASK arguments:
- name of static function to call
- rate (in Hertz) at which the function should be called
- expected time (in MicroSeconds) that the function should take to run
- priority (0 through 255, lower number meaning higher priority)
SCHED_TASK_CLASS arguments:
- class name of method to be called
- instance on which to call the method
- method to call on that instance
- rate (in Hertz) at which the method should be called
- expected time (in MicroSeconds) that the method should take to run
- priority (0 through 255, lower number meaning higher priority)
*/
const AP_Scheduler::Task Sub::scheduler_tasks[] = {
// update INS immediately to get current gyro data populated
FAST_TASK_CLASS(AP_InertialSensor, &sub.ins, update),
// run low level rate controllers that only require IMU data
FAST_TASK(run_rate_controller),
// send outputs to the motors library immediately
FAST_TASK(motors_output),
// run EKF state estimator (expensive)
FAST_TASK(read_AHRS),
// Inertial Nav
FAST_TASK(read_inertia),
// check if ekf has reset target heading
FAST_TASK(check_ekf_yaw_reset),
// run the attitude controllers
FAST_TASK(update_flight_mode),
// update home from EKF if necessary
FAST_TASK(update_home_from_EKF),
// check if we've reached the surface or bottom
FAST_TASK(update_surface_and_bottom_detector),
#if HAL_MOUNT_ENABLED
// camera mount's fast update
FAST_TASK_CLASS(AP_Mount, &sub.camera_mount, update_fast),
#endif
// log sensor health
FAST_TASK(Log_Sensor_Health),
SCHED_TASK(fifty_hz_loop, 50, 75, 3),
SCHED_TASK_CLASS(AP_GPS, &sub.gps, update, 50, 200, 6),
#if AP_OPTICALFLOW_ENABLED
SCHED_TASK_CLASS(OpticalFlow, &sub.optflow, update, 200, 160, 9),
#endif
SCHED_TASK(update_batt_compass, 10, 120, 12),
SCHED_TASK(read_rangefinder, 20, 100, 15),
SCHED_TASK(update_altitude, 10, 100, 18),
SCHED_TASK(three_hz_loop, 3, 75, 21),
SCHED_TASK(update_turn_counter, 10, 50, 24),
SCHED_TASK_CLASS(AP_Baro, &sub.barometer, accumulate, 50, 90, 27),
SCHED_TASK_CLASS(AP_Notify, &sub.notify, update, 50, 90, 30),
SCHED_TASK(one_hz_loop, 1, 100, 33),
SCHED_TASK_CLASS(GCS, (GCS*)&sub._gcs, update_receive, 400, 180, 36),
SCHED_TASK_CLASS(GCS, (GCS*)&sub._gcs, update_send, 400, 550, 39),
#if AC_FENCE == ENABLED
SCHED_TASK_CLASS(AC_Fence, &sub.fence, update, 10, 100, 42),
#endif
#if HAL_MOUNT_ENABLED
SCHED_TASK_CLASS(AP_Mount, &sub.camera_mount, update, 50, 75, 45),
#endif
#if CAMERA == ENABLED
SCHED_TASK_CLASS(AP_Camera, &sub.camera, update, 50, 75, 48),
#endif
SCHED_TASK(ten_hz_logging_loop, 10, 350, 51),
SCHED_TASK(twentyfive_hz_logging, 25, 110, 54),
SCHED_TASK_CLASS(AP_Logger, &sub.logger, periodic_tasks, 400, 300, 57),
SCHED_TASK_CLASS(AP_InertialSensor, &sub.ins, periodic, 400, 50, 60),
SCHED_TASK_CLASS(AP_Scheduler, &sub.scheduler, update_logging, 0.1, 75, 63),
#if RPM_ENABLED == ENABLED
SCHED_TASK_CLASS(AP_RPM, &sub.rpm_sensor, update, 10, 200, 66),
#endif
SCHED_TASK_CLASS(Compass, &sub.compass, cal_update, 100, 100, 69),
SCHED_TASK(terrain_update, 10, 100, 72),
#if GRIPPER_ENABLED == ENABLED
SCHED_TASK_CLASS(AP_Gripper, &sub.g2.gripper, update, 10, 75, 75),
#endif
#ifdef USERHOOK_FASTLOOP
SCHED_TASK(userhook_FastLoop, 100, 75, 78),
#endif
#ifdef USERHOOK_50HZLOOP
SCHED_TASK(userhook_50Hz, 50, 75, 81),
#endif
#ifdef USERHOOK_MEDIUMLOOP
SCHED_TASK(userhook_MediumLoop, 10, 75, 84),
#endif
#ifdef USERHOOK_SLOWLOOP
SCHED_TASK(userhook_SlowLoop, 3.3, 75, 87),
#endif
#ifdef USERHOOK_SUPERSLOWLOOP
SCHED_TASK(userhook_SuperSlowLoop, 1, 75, 90),
#endif
};
void Sub::get_scheduler_tasks(const AP_Scheduler::Task *&tasks,
uint8_t &task_count,
uint32_t &log_bit)
{
tasks = &scheduler_tasks[0];
task_count = ARRAY_SIZE(scheduler_tasks);
log_bit = MASK_LOG_PM;
}
constexpr int8_t Sub::_failsafe_priorities[5];
void Sub::run_rate_controller()
{
//don't run rate controller in manual or motordetection modes
if (control_mode != MANUAL && control_mode != MOTOR_DETECT) {
// run low level rate controllers that only require IMU data
attitude_control.rate_controller_run();
}
}
// 50 Hz tasks
void Sub::fifty_hz_loop()
{
// check pilot input failsafe
failsafe_pilot_input_check();
failsafe_crash_check();
failsafe_ekf_check();
failsafe_sensors_check();
// Update rc input/output
rc().read_input();
SRV_Channels::output_ch_all();
}
// update_batt_compass - read battery and compass
// should be called at 10hz
void Sub::update_batt_compass()
{
// read battery before compass because it may be used for motor interference compensation
battery.read();
if (AP::compass().available()) {
// update compass with throttle value - used for compassmot
compass.set_throttle(motors.get_throttle());
compass.read();
}
}
// ten_hz_logging_loop
// should be run at 10hz
void Sub::ten_hz_logging_loop()
{
// log attitude data if we're not already logging at the higher rate
if (should_log(MASK_LOG_ATTITUDE_MED) && !should_log(MASK_LOG_ATTITUDE_FAST)) {
Log_Write_Attitude();
ahrs_view.Write_Rate(motors, attitude_control, pos_control);
if (should_log(MASK_LOG_PID)) {
logger.Write_PID(LOG_PIDR_MSG, attitude_control.get_rate_roll_pid().get_pid_info());
logger.Write_PID(LOG_PIDP_MSG, attitude_control.get_rate_pitch_pid().get_pid_info());
logger.Write_PID(LOG_PIDY_MSG, attitude_control.get_rate_yaw_pid().get_pid_info());
logger.Write_PID(LOG_PIDA_MSG, pos_control.get_accel_z_pid().get_pid_info());
}
}
if (should_log(MASK_LOG_MOTBATT)) {
motors.Log_Write();
}
if (should_log(MASK_LOG_RCIN)) {
logger.Write_RCIN();
}
if (should_log(MASK_LOG_RCOUT)) {
logger.Write_RCOUT();
}
if (should_log(MASK_LOG_NTUN) && (mode_requires_GPS(control_mode) || !mode_has_manual_throttle(control_mode))) {
pos_control.write_log();
}
if (should_log(MASK_LOG_IMU) || should_log(MASK_LOG_IMU_FAST) || should_log(MASK_LOG_IMU_RAW)) {
AP::ins().Write_Vibration();
}
if (should_log(MASK_LOG_CTUN)) {
attitude_control.control_monitor_log();
}
}
// twentyfive_hz_logging_loop
// should be run at 25hz
void Sub::twentyfive_hz_logging()
{
if (should_log(MASK_LOG_ATTITUDE_FAST)) {
Log_Write_Attitude();
ahrs_view.Write_Rate(motors, attitude_control, pos_control);
if (should_log(MASK_LOG_PID)) {
logger.Write_PID(LOG_PIDR_MSG, attitude_control.get_rate_roll_pid().get_pid_info());
logger.Write_PID(LOG_PIDP_MSG, attitude_control.get_rate_pitch_pid().get_pid_info());
logger.Write_PID(LOG_PIDY_MSG, attitude_control.get_rate_yaw_pid().get_pid_info());
logger.Write_PID(LOG_PIDA_MSG, pos_control.get_accel_z_pid().get_pid_info());
}
}
// log IMU data if we're not already logging at the higher rate
if (should_log(MASK_LOG_IMU) && !should_log(MASK_LOG_IMU_RAW)) {
AP::ins().Write_IMU();
}
}
// three_hz_loop - 3.3hz loop
void Sub::three_hz_loop()
{
leak_detector.update();
failsafe_leak_check();
failsafe_internal_pressure_check();
failsafe_internal_temperature_check();
// check if we've lost contact with the ground station
failsafe_gcs_check();
// check if we've lost terrain data
failsafe_terrain_check();
#if AC_FENCE == ENABLED
// check if we have breached a fence
fence_check();
#endif // AC_FENCE_ENABLED
ServoRelayEvents.update_events();
}
// one_hz_loop - runs at 1Hz
void Sub::one_hz_loop()
{
bool arm_check = arming.pre_arm_checks(false);
ap.pre_arm_check = arm_check;
AP_Notify::flags.pre_arm_check = arm_check;
AP_Notify::flags.pre_arm_gps_check = position_ok();
AP_Notify::flags.flying = motors.armed();
if (should_log(MASK_LOG_ANY)) {
Log_Write_Data(LogDataID::AP_STATE, ap.value);
}
if (!motors.armed()) {
// make it possible to change ahrs orientation at runtime during initial config
ahrs.update_orientation();
motors.update_throttle_range();
}
// update assigned functions and enable auxiliary servos
SRV_Channels::enable_aux_servos();
// update position controller alt limits
update_poscon_alt_max();
// log terrain data
terrain_logging();
// need to set "likely flying" when armed to allow for compass
// learning to run
set_likely_flying(hal.util->get_soft_armed());
}
void Sub::read_AHRS()
{
// Perform IMU calculations and get attitude info
//-----------------------------------------------
// <true> tells AHRS to skip INS update as we have already done it in fast_loop()
ahrs.update(true);
ahrs_view.update();
}
// read baro and rangefinder altitude at 10hz
void Sub::update_altitude()
{
// read in baro altitude
read_barometer();
if (should_log(MASK_LOG_CTUN)) {
Log_Write_Control_Tuning();
AP::ins().write_notch_log_messages();
#if HAL_GYROFFT_ENABLED
gyro_fft.write_log_messages();
#endif
}
}
bool Sub::control_check_barometer()
{
#if CONFIG_HAL_BOARD != HAL_BOARD_SITL
if (!ap.depth_sensor_present) { // can't hold depth without a depth sensor
gcs().send_text(MAV_SEVERITY_WARNING, "Depth sensor is not connected.");
return false;
} else if (failsafe.sensor_health) {
gcs().send_text(MAV_SEVERITY_WARNING, "Depth sensor error.");
return false;
}
#endif
return true;
}
// vehicle specific waypoint info helpers
bool Sub::get_wp_distance_m(float &distance) const
{
// see GCS_MAVLINK_Sub::send_nav_controller_output()
distance = sub.wp_nav.get_wp_distance_to_destination() * 0.01;
return true;
}
// vehicle specific waypoint info helpers
bool Sub::get_wp_bearing_deg(float &bearing) const
{
// see GCS_MAVLINK_Sub::send_nav_controller_output()
bearing = sub.wp_nav.get_wp_bearing_to_destination() * 0.01;
return true;
}
// vehicle specific waypoint info helpers
bool Sub::get_wp_crosstrack_error_m(float &xtrack_error) const
{
// no crosstrack error reported, see GCS_MAVLINK_Sub::send_nav_controller_output()
xtrack_error = 0;
return true;
}
AP_HAL_MAIN_CALLBACKS(&sub);