Ardupilot2/Tools/scripts/uploader.py
2021-09-01 17:10:53 +10:00

1152 lines
43 KiB
Python
Executable File

#!/usr/bin/env python
############################################################################
#
# Copyright (c) 2012-2017 PX4 Development Team. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
# 3. Neither the name PX4 nor the names of its contributors may be
# used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
# OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
# AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
############################################################################
#
# Serial firmware uploader for the PX4FMU bootloader
#
# The PX4 firmware file is a JSON-encoded Python object, containing
# metadata fields and a zlib-compressed base64-encoded firmware image.
#
# The uploader uses the following fields from the firmware file:
#
# image
# The firmware that will be uploaded.
# image_size
# The size of the firmware in bytes.
# board_id
# The board for which the firmware is intended.
# board_revision
# Currently only used for informational purposes.
#
# AP_FLAKE8_CLEAN
# for python2.7 compatibility
from __future__ import print_function
import sys
import argparse
import binascii
import serial
import struct
import json
import zlib
import base64
import time
import array
import os
import platform
import re
from sys import platform as _platform
is_WSL = bool("Microsoft" in platform.uname()[2])
# default list of port names to look for autopilots
default_ports = ['/dev/serial/by-id/usb-Ardu*',
'/dev/serial/by-id/usb-3D*',
'/dev/serial/by-id/usb-APM*',
'/dev/serial/by-id/usb-Radio*',
'/dev/serial/by-id/usb-*_3DR_*',
'/dev/serial/by-id/usb-Hex_Technology_Limited*',
'/dev/serial/by-id/usb-Hex_ProfiCNC*',
'/dev/serial/by-id/usb-Holybro*',
'/dev/serial/by-id/usb-mRo*',
'/dev/tty.usbmodem*']
if "cygwin" in _platform or is_WSL:
default_ports += ['/dev/ttyS*']
# Detect python version
if sys.version_info[0] < 3:
runningPython3 = False
else:
runningPython3 = True
# dictionary of bootloader {boardID: (firmware boardID, boardname), ...}
# designating firmware builds compatible with multiple boardIDs
compatible_IDs = {33: (9, 'AUAVX2.1')}
# CRC equivalent to crc_crc32() in AP_Math/crc.cpp
crctab = array.array('I', [
0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3,
0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91,
0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5,
0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f,
0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d,
0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457,
0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb,
0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9,
0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad,
0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683,
0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7,
0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79,
0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f,
0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21,
0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45,
0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db,
0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf,
0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d])
def crc32(bytes, state=0):
'''crc32 exposed for use by chibios.py'''
for byte in bytes:
index = (state ^ byte) & 0xff
state = crctab[index] ^ (state >> 8)
return state
class firmware(object):
'''Loads a firmware file'''
desc = {}
image = bytes()
crcpad = bytearray(b'\xff\xff\xff\xff')
def __init__(self, path):
# read the file
f = open(path, "r")
self.desc = json.load(f)
f.close()
self.image = bytearray(zlib.decompress(base64.b64decode(self.desc['image'])))
self.extf_image = bytearray(zlib.decompress(base64.b64decode(self.desc['extf_image'])))
# pad image to 4-byte length
while ((len(self.image) % 4) != 0):
self.image.append('\xff')
# pad image to 4-byte length
while ((len(self.extf_image) % 4) != 0):
self.extf_image.append('\xff')
def property(self, propname):
return self.desc[propname]
def extf_crc(self, size):
state = crc32(self.extf_image[:size], int(0))
return state
def crc(self, padlen):
state = crc32(self.image, int(0))
for i in range(len(self.image), (padlen - 1), 4):
state = crc32(self.crcpad, state)
return state
class uploader(object):
'''Uploads a firmware file to the PX FMU bootloader'''
# protocol bytes
INSYNC = b'\x12'
EOC = b'\x20'
# reply bytes
OK = b'\x10'
FAILED = b'\x11'
INVALID = b'\x13' # rev3+
BAD_SILICON_REV = b'\x14' # rev5+
# command bytes
NOP = b'\x00' # guaranteed to be discarded by the bootloader
GET_SYNC = b'\x21'
GET_DEVICE = b'\x22'
CHIP_ERASE = b'\x23'
CHIP_VERIFY = b'\x24' # rev2 only
PROG_MULTI = b'\x27'
READ_MULTI = b'\x28' # rev2 only
GET_CRC = b'\x29' # rev3+
GET_OTP = b'\x2a' # rev4+ , get a word from OTP area
GET_SN = b'\x2b' # rev4+ , get a word from SN area
GET_CHIP = b'\x2c' # rev5+ , get chip version
SET_BOOT_DELAY = b'\x2d' # rev5+ , set boot delay
GET_CHIP_DES = b'\x2e' # rev5+ , get chip description in ASCII
MAX_DES_LENGTH = 20
REBOOT = b'\x30'
SET_BAUD = b'\x33' # set baud
EXTF_ERASE = b'\x34' # erase sectors from external flash
EXTF_PROG_MULTI = b'\x35' # write bytes at external flash program address and increment
EXTF_READ_MULTI = b'\x36' # read bytes at address and increment
EXTF_GET_CRC = b'\x37' # compute & return a CRC of data in external flash
INFO_BL_REV = b'\x01' # bootloader protocol revision
BL_REV_MIN = 2 # minimum supported bootloader protocol
BL_REV_MAX = 5 # maximum supported bootloader protocol
INFO_BOARD_ID = b'\x02' # board type
INFO_BOARD_REV = b'\x03' # board revision
INFO_FLASH_SIZE = b'\x04' # max firmware size in bytes
INFO_EXTF_SIZE = b'\x06' # available external flash size
PROG_MULTI_MAX = 252 # protocol max is 255, must be multiple of 4
READ_MULTI_MAX = 252 # protocol max is 255
NSH_INIT = bytearray(b'\x0d\x0d\x0d')
NSH_REBOOT_BL = b"reboot -b\n"
NSH_REBOOT = b"reboot\n"
def __init__(self,
portname,
baudrate_bootloader,
baudrate_flightstack,
baudrate_bootloader_flash=None,
target_system=None,
target_component=None,
source_system=None,
source_component=None):
self.MAVLINK_REBOOT_ID1 = bytearray(b'\xfe\x21\x72\xff\x00\x4c\x00\x00\x40\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf6\x00\x01\x00\x00\x53\x6b') # NOQA
self.MAVLINK_REBOOT_ID0 = bytearray(b'\xfe\x21\x45\xff\x00\x4c\x00\x00\x40\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf6\x00\x00\x00\x00\xcc\x37') # NOQA
if target_component is None:
target_component = 1
if source_system is None:
source_system = 255
if source_component is None:
source_component = 1
# open the port, keep the default timeout short so we can poll quickly
self.port = serial.Serial(portname, baudrate_bootloader, timeout=2.0)
self.baudrate_bootloader = baudrate_bootloader
if baudrate_bootloader_flash is not None:
self.baudrate_bootloader_flash = baudrate_bootloader_flash
else:
self.baudrate_bootloader_flash = self.baudrate_bootloader
self.baudrate_flightstack = baudrate_flightstack
self.baudrate_flightstack_idx = -1
# generate mavlink reboot message:
if target_system is not None:
from pymavlink import mavutil
m = mavutil.mavlink.MAVLink_command_long_message(
target_system,
target_component,
mavutil.mavlink.MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN,
1, # confirmation
3, # remain in bootloader
0,
0,
0,
0,
0,
0)
mav = mavutil.mavlink.MAVLink(self,
srcSystem=source_system,
srcComponent=source_component)
self.MAVLINK_REBOOT_ID1 = m.pack(mav)
self.MAVLINK_REBOOT_ID0 = None
def close(self):
if self.port is not None:
self.port.close()
def open(self):
timeout = time.time() + 0.2
# Attempt to open the port while it exists and until timeout occurs
while self.port is not None:
portopen = True
try:
portopen = self.port.is_open
except AttributeError:
portopen = self.port.isOpen()
if not portopen and time.time() < timeout:
try:
self.port.open()
except OSError:
# wait for the port to be ready
time.sleep(0.04)
except serial.SerialException:
# if open fails, try again later
time.sleep(0.04)
else:
break
def __send(self, c):
self.port.write(c)
def __recv(self, count=1):
c = self.port.read(count)
if len(c) < 1:
raise RuntimeError("timeout waiting for data (%u bytes)" % count)
# print("recv " + binascii.hexlify(c))
return c
def __recv_int(self):
raw = self.__recv(4)
val = struct.unpack("<I", raw)
return val[0]
def __recv_uint8(self):
raw = self.__recv(1)
val = struct.unpack("<B", raw)
return val[0]
def __getSync(self):
self.port.flush()
c = bytes(self.__recv())
if c != self.INSYNC:
raise RuntimeError("unexpected %s instead of INSYNC" % c)
c = self.__recv()
if c == self.INVALID:
raise RuntimeError("bootloader reports INVALID OPERATION")
if c == self.FAILED:
raise RuntimeError("bootloader reports OPERATION FAILED")
if c != self.OK:
raise RuntimeError("unexpected response 0x%x instead of OK" % ord(c))
# attempt to get back into sync with the bootloader
def __sync(self):
# send a stream of ignored bytes longer than the longest possible conversation
# that we might still have in progress
# self.__send(uploader.NOP * (uploader.PROG_MULTI_MAX + 2))
self.port.flushInput()
self.__send(uploader.GET_SYNC +
uploader.EOC)
self.__getSync()
def __trySync(self):
try:
self.port.flush()
if (self.__recv() != self.INSYNC):
# print("unexpected 0x%x instead of INSYNC" % ord(c))
return False
c = self.__recv()
if (c == self.BAD_SILICON_REV):
raise NotImplementedError()
if (c != self.OK):
# print("unexpected 0x%x instead of OK" % ord(c))
return False
return True
except NotImplementedError:
raise RuntimeError("Programing not supported for this version of silicon!\n"
"See https://pixhawk.org/help/errata")
except RuntimeError:
# timeout, no response yet
return False
# send the GET_DEVICE command and wait for an info parameter
def __getInfo(self, param):
self.__send(uploader.GET_DEVICE + param + uploader.EOC)
value = self.__recv_int()
self.__getSync()
return value
# send the GET_OTP command and wait for an info parameter
def __getOTP(self, param):
t = struct.pack("I", param) # int param as 32bit ( 4 byte ) char array.
self.__send(uploader.GET_OTP + t + uploader.EOC)
value = self.__recv(4)
self.__getSync()
return value
# send the GET_SN command and wait for an info parameter
def __getSN(self, param):
t = struct.pack("I", param) # int param as 32bit ( 4 byte ) char array.
self.__send(uploader.GET_SN + t + uploader.EOC)
value = self.__recv(4)
self.__getSync()
return value
# send the GET_CHIP command
def __getCHIP(self):
self.__send(uploader.GET_CHIP + uploader.EOC)
value = self.__recv_int()
self.__getSync()
return value
# send the GET_CHIP command
def __getCHIPDes(self):
self.__send(uploader.GET_CHIP_DES + uploader.EOC)
length = self.__recv_int()
value = self.__recv(length)
self.__getSync()
if runningPython3:
value = value.decode('ascii')
peices = value.split(",")
return peices
def __drawProgressBar(self, label, progress, maxVal):
if maxVal < progress:
progress = maxVal
percent = (float(progress) / float(maxVal)) * 100.0
sys.stdout.write("\r%s: [%-20s] %.1f%%" % (label, '='*int(percent/5.0), percent))
sys.stdout.flush()
# send the CHIP_ERASE command and wait for the bootloader to become ready
def __erase(self, label):
print("\n", end='')
self.__send(uploader.CHIP_ERASE +
uploader.EOC)
# erase is very slow, give it 20s
deadline = time.time() + 20.0
while time.time() < deadline:
# Draw progress bar (erase usually takes about 9 seconds to complete)
estimatedTimeRemaining = deadline-time.time()
if estimatedTimeRemaining >= 9.0:
self.__drawProgressBar(label, 20.0-estimatedTimeRemaining, 9.0)
else:
self.__drawProgressBar(label, 10.0, 10.0)
sys.stdout.write(" (timeout: %d seconds) " % int(deadline-time.time()))
sys.stdout.flush()
if self.__trySync():
self.__drawProgressBar(label, 10.0, 10.0)
return
raise RuntimeError("timed out waiting for erase")
# send a PROG_MULTI command to write a collection of bytes
def __program_multi(self, data):
if runningPython3:
length = len(data).to_bytes(1, byteorder='big')
else:
length = chr(len(data))
self.__send(uploader.PROG_MULTI)
self.__send(length)
self.__send(data)
self.__send(uploader.EOC)
self.__getSync()
# send a PROG_EXTF_MULTI command to write a collection of bytes to external flash
def __program_multi_extf(self, data):
if runningPython3:
length = len(data).to_bytes(1, byteorder='big')
else:
length = chr(len(data))
self.__send(uploader.EXTF_PROG_MULTI)
self.__send(length)
self.__send(data)
self.__send(uploader.EOC)
self.__getSync()
# verify multiple bytes in flash
def __verify_multi(self, data):
if runningPython3:
length = len(data).to_bytes(1, byteorder='big')
else:
length = chr(len(data))
self.__send(uploader.READ_MULTI)
self.__send(length)
self.__send(uploader.EOC)
self.port.flush()
programmed = self.__recv(len(data))
if programmed != data:
print("got " + binascii.hexlify(programmed))
print("expect " + binascii.hexlify(data))
return False
self.__getSync()
return True
# read multiple bytes from flash
def __read_multi(self, length):
if runningPython3:
clength = length.to_bytes(1, byteorder='big')
else:
clength = chr(length)
self.__send(uploader.READ_MULTI)
self.__send(clength)
self.__send(uploader.EOC)
self.port.flush()
ret = self.__recv(length)
self.__getSync()
return ret
# send the reboot command
def __reboot(self):
self.__send(uploader.REBOOT +
uploader.EOC)
self.port.flush()
# v3+ can report failure if the first word flash fails
if self.bl_rev >= 3:
self.__getSync()
# split a sequence into a list of size-constrained pieces
def __split_len(self, seq, length):
return [seq[i:i+length] for i in range(0, len(seq), length)]
# upload code
def __program(self, label, fw):
print("\n", end='')
code = fw.image
groups = self.__split_len(code, uploader.PROG_MULTI_MAX)
uploadProgress = 0
for bytes in groups:
self.__program_multi(bytes)
# Print upload progress (throttled, so it does not delay upload progress)
uploadProgress += 1
if uploadProgress % 256 == 0:
self.__drawProgressBar(label, uploadProgress, len(groups))
self.__drawProgressBar(label, 100, 100)
# download code
def __download(self, label, fw):
print("\n", end='')
f = open(fw, 'wb')
downloadProgress = 0
readsize = uploader.READ_MULTI_MAX
total = 0
while True:
n = min(self.fw_maxsize - total, readsize)
bb = self.__read_multi(n)
f.write(bb)
total += len(bb)
# Print download progress (throttled, so it does not delay download progress)
downloadProgress += 1
if downloadProgress % 256 == 0:
self.__drawProgressBar(label, total, self.fw_maxsize)
if len(bb) < readsize:
break
f.close()
self.__drawProgressBar(label, total, self.fw_maxsize)
print("\nReceived %u bytes to %s" % (total, fw))
# verify code
def __verify_v2(self, label, fw):
print("\n", end='')
self.__send(uploader.CHIP_VERIFY +
uploader.EOC)
self.__getSync()
code = fw.image
groups = self.__split_len(code, uploader.READ_MULTI_MAX)
verifyProgress = 0
for bytes in groups:
verifyProgress += 1
if verifyProgress % 256 == 0:
self.__drawProgressBar(label, verifyProgress, len(groups))
if (not self.__verify_multi(bytes)):
raise RuntimeError("Verification failed")
self.__drawProgressBar(label, 100, 100)
def __verify_v3(self, label, fw):
print("\n", end='')
self.__drawProgressBar(label, 1, 100)
expect_crc = fw.crc(self.fw_maxsize)
self.__send(uploader.GET_CRC +
uploader.EOC)
report_crc = self.__recv_int()
self.__getSync()
if report_crc != expect_crc:
print("Expected 0x%x" % expect_crc)
print("Got 0x%x" % report_crc)
raise RuntimeError("Program CRC failed")
self.__drawProgressBar(label, 100, 100)
def __set_boot_delay(self, boot_delay):
self.__send(uploader.SET_BOOT_DELAY +
struct.pack("b", boot_delay) +
uploader.EOC)
self.__getSync()
def __setbaud(self, baud):
self.__send(uploader.SET_BAUD +
struct.pack("I", baud) +
uploader.EOC)
self.__getSync()
def erase_extflash(self, label, size):
if runningPython3:
size_bytes = size.to_bytes(4, byteorder='little')
else:
size_bytes = chr(size)
self.__send(uploader.EXTF_ERASE + size_bytes + uploader.EOC)
self.__getSync()
last_pct = 0
while(True):
if last_pct < 90:
pct = self.__recv_uint8()
if last_pct != pct:
self.__drawProgressBar(label, pct, 100)
last_pct = pct
elif self.__trySync():
self.__drawProgressBar(label, 10.0, 10.0)
return
def __program_extf(self, label, fw):
print("\n", end='')
code = fw.extf_image
groups = self.__split_len(code, uploader.PROG_MULTI_MAX)
uploadProgress = 0
for bytes in groups:
self.__program_multi_extf(bytes)
# Print upload progress (throttled, so it does not delay upload progress)
uploadProgress += 1
if uploadProgress % 32 == 0:
self.__drawProgressBar(label, uploadProgress, len(groups))
self.__drawProgressBar(label, 100, 100)
def __verify_extf(self, label, fw, size):
if runningPython3:
size_bytes = size.to_bytes(4, byteorder='little')
else:
size_bytes = chr(size)
print("\n", end='')
self.__drawProgressBar(label, 1, 100)
expect_crc = fw.extf_crc(size)
self.__send(uploader.EXTF_GET_CRC +
size_bytes + uploader.EOC)
report_crc = self.__recv_int()
self.__getSync()
if report_crc != expect_crc:
print("\nExpected 0x%x" % expect_crc)
print("Got 0x%x" % report_crc)
raise RuntimeError("Program CRC failed")
self.__drawProgressBar(label, 100, 100)
# get basic data about the board
def identify(self):
# make sure we are in sync before starting
self.__sync()
# get the bootloader protocol ID first
self.bl_rev = self.__getInfo(uploader.INFO_BL_REV)
if (self.bl_rev < uploader.BL_REV_MIN) or (self.bl_rev > uploader.BL_REV_MAX):
print("Unsupported bootloader protocol %d" % self.bl_rev)
raise RuntimeError("Bootloader protocol mismatch")
self.board_type = self.__getInfo(uploader.INFO_BOARD_ID)
self.board_rev = self.__getInfo(uploader.INFO_BOARD_REV)
self.fw_maxsize = self.__getInfo(uploader.INFO_FLASH_SIZE)
try:
self.extf_maxsize = self.__getInfo(uploader.INFO_EXTF_SIZE)
except Exception:
print("Could not get external flash size, assuming 0")
self.extf_maxsize = 0
def dump_board_info(self):
# OTP added in v4:
print("Bootloader Protocol: %u" % self.bl_rev)
if self.bl_rev > 3:
otp = b''
for byte in range(0, 32*6, 4):
x = self.__getOTP(byte)
otp = otp + x
# print(binascii.hexlify(x).decode('Latin-1') + ' ', end='')
# see src/modules/systemlib/otp.h in px4 code:
otp_id = otp[0:4]
otp_idtype = otp[4:5]
otp_vid = otp[8:4:-1]
otp_pid = otp[12:8:-1]
otp_coa = otp[32:160]
# show user:
try:
print("OTP:")
print(" type: " + otp_id.decode('Latin-1'))
print(" idtype: " + binascii.b2a_qp(otp_idtype).decode('Latin-1'))
print(" vid: " + binascii.hexlify(otp_vid).decode('Latin-1'))
print(" pid: " + binascii.hexlify(otp_pid).decode('Latin-1'))
print(" coa: " + binascii.b2a_base64(otp_coa).decode('Latin-1'), end='')
print(" sn: ", end='')
for byte in range(0, 12, 4):
x = self.__getSN(byte)
x = x[::-1] # reverse the bytes
print(binascii.hexlify(x).decode('Latin-1'), end='') # show user
print('')
except Exception:
# ignore bad character encodings
pass
if self.bl_rev >= 5:
des = self.__getCHIPDes()
if (len(des) == 2):
print("ChipDes:")
print(" family: %s" % des[0])
print(" revision: %s" % des[1])
print("Chip:")
if self.bl_rev > 4:
chip = self.__getCHIP()
mcu_id = chip & 0xfff
revs = {}
F4_IDS = {
0x413: "STM32F40x_41x",
0x419: "STM32F42x_43x",
0x421: "STM32F42x_446xx",
}
F7_IDS = {
0x449: "STM32F74x_75x",
0x451: "STM32F76x_77x",
}
H7_IDS = {
0x450: "STM32H74x_75x",
}
family = mcu_id & 0xfff
if family in F4_IDS:
mcu = F4_IDS[family]
MCU_REV_STM32F4_REV_A = 0x1000
MCU_REV_STM32F4_REV_Z = 0x1001
MCU_REV_STM32F4_REV_Y = 0x1003
MCU_REV_STM32F4_REV_1 = 0x1007
MCU_REV_STM32F4_REV_3 = 0x2001
revs = {
MCU_REV_STM32F4_REV_A: ("A", True),
MCU_REV_STM32F4_REV_Z: ("Z", True),
MCU_REV_STM32F4_REV_Y: ("Y", True),
MCU_REV_STM32F4_REV_1: ("1", True),
MCU_REV_STM32F4_REV_3: ("3", False),
}
rev = (chip & 0xFFFF0000) >> 16
if rev in revs:
(label, flawed) = revs[rev]
if flawed and family == 0x419:
print(" %x %s rev%s (flawed; 1M limit, see STM32F42XX Errata sheet sec. 2.1.10)" %
(chip, mcu, label,))
elif family == 0x419:
print(" %x %s rev%s (no 1M flaw)" % (chip, mcu, label,))
else:
print(" %x %s rev%s" % (chip, mcu, label,))
elif family in F7_IDS:
print(" %s %08x" % (F7_IDS[family], chip))
elif family in H7_IDS:
print(" %s %08x" % (H7_IDS[family], chip))
else:
print(" [unavailable; bootloader too old]")
print("Info:")
print(" flash size: %u" % self.fw_maxsize)
print(" ext flash size: %u" % self.extf_maxsize)
name = self.board_name_for_board_id(self.board_type)
if name is not None:
print(" board_type: %u (%s)" % (self.board_type, name))
else:
print(" board_type: %u" % self.board_type)
print(" board_rev: %u" % self.board_rev)
print("Identification complete")
def board_name_for_board_id(self, board_id):
'''return name for board_id, None if it can't be found'''
shared_ids = {
9: "fmuv3",
50: "fmuv5",
}
if board_id in shared_ids:
return shared_ids[board_id]
try:
ret = []
hwdef_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)),
"..", "..", "libraries", "AP_HAL_ChibiOS", "hwdef")
# uploader.py is swiped into other places, so if the dir
# doesn't exist then fail silently
if os.path.exists(hwdef_dir):
dirs = [x if (x not in ["scripts", "common", "STM32CubeConf"] and os.path.isdir(os.path.join(hwdef_dir, x))) else None for x in os.listdir(hwdef_dir)] # NOQA
for adir in dirs:
if adir is None:
continue
filepath = os.path.join(hwdef_dir, adir, "hwdef.dat")
if not os.path.exists(filepath):
continue
fh = open(filepath)
if fh is None:
continue
text = fh.readlines()
for line in text:
m = re.match(r"^\s*APJ_BOARD_ID\s+(\d+)\s*$", line)
if m is None:
continue
if int(m.group(1)) == board_id:
ret.append(adir)
if len(ret) == 0:
return None
return " or ".join(ret)
except Exception as e:
print("Failed to get name: %s" % str(e))
return None
# upload the firmware
def upload(self, fw, force=False, boot_delay=None):
# Make sure we are doing the right thing
if self.board_type != fw.property('board_id'):
# ID mismatch: check compatibility
incomp = True
if self.board_type in compatible_IDs:
comp_fw_id = compatible_IDs[self.board_type][0]
board_name = compatible_IDs[self.board_type][1]
if comp_fw_id == fw.property('board_id'):
msg = "Target %s (board_id: %d) is compatible with firmware for board_id=%u)" % (
board_name, self.board_type, fw.property('board_id'))
print("INFO: %s" % msg)
incomp = False
if incomp:
msg = "Firmware not suitable for this board (board_type=%u (%s) board_id=%u (%s))" % (
self.board_type,
self.board_name_for_board_id(self.board_type),
fw.property('board_id'),
self.board_name_for_board_id(fw.property('board_id')))
print("WARNING: %s" % msg)
if force:
print("FORCED WRITE, FLASHING ANYWAY!")
else:
raise IOError(msg)
self.dump_board_info()
if self.fw_maxsize < fw.property('image_size') or self.extf_maxsize < fw.property('extf_image_size'):
raise RuntimeError("Firmware image is too large for this board")
if self.baudrate_bootloader_flash != self.baudrate_bootloader:
print("Setting baudrate to %u" % self.baudrate_bootloader_flash)
self.__setbaud(self.baudrate_bootloader_flash)
self.port.baudrate = self.baudrate_bootloader_flash
self.__sync()
if (fw.property('extf_image_size') > 0):
self.erase_extflash("Erase ExtF ", fw.property('extf_image_size'))
self.__program_extf("Program ExtF", fw)
self.__verify_extf("Verify ExtF ", fw, fw.property('extf_image_size'))
if (fw.property('image_size') > 0):
self.__erase("Erase ")
self.__program("Program", fw)
if self.bl_rev == 2:
self.__verify_v2("Verify ", fw)
else:
self.__verify_v3("Verify ", fw)
if boot_delay is not None:
self.__set_boot_delay(boot_delay)
print("\nRebooting.\n")
self.__reboot()
self.port.close()
def __next_baud_flightstack(self):
self.baudrate_flightstack_idx = self.baudrate_flightstack_idx + 1
if self.baudrate_flightstack_idx >= len(self.baudrate_flightstack):
return False
try:
self.port.baudrate = self.baudrate_flightstack[self.baudrate_flightstack_idx]
except Exception:
return False
return True
def send_reboot(self):
if (not self.__next_baud_flightstack()):
return False
print("Attempting reboot on %s with baudrate=%d..." % (self.port.port, self.port.baudrate), file=sys.stderr)
print("If the board does not respond, unplug and re-plug the USB connector.", file=sys.stderr)
try:
# try MAVLINK command first
self.port.flush()
if self.MAVLINK_REBOOT_ID1 is not None:
self.__send(self.MAVLINK_REBOOT_ID1)
if self.MAVLINK_REBOOT_ID0 is not None:
self.__send(self.MAVLINK_REBOOT_ID0)
# then try reboot via NSH
self.__send(uploader.NSH_INIT)
self.__send(uploader.NSH_REBOOT_BL)
self.__send(uploader.NSH_INIT)
self.__send(uploader.NSH_REBOOT)
self.port.flush()
self.port.baudrate = self.baudrate_bootloader
except Exception:
try:
self.port.flush()
self.port.baudrate = self.baudrate_bootloader
except Exception:
pass
return True
# upload the firmware
def download(self, fw):
if self.baudrate_bootloader_flash != self.baudrate_bootloader:
print("Setting baudrate to %u" % self.baudrate_bootloader_flash)
self.__setbaud(self.baudrate_bootloader_flash)
self.port.baudrate = self.baudrate_bootloader_flash
self.__sync()
self.__download("Download", fw)
self.port.close()
def ports_to_try(args):
portlist = []
if args.port is None:
patterns = default_ports
else:
patterns = args.port.split(",")
# use glob to support wildcard ports. This allows the use of
# /dev/serial/by-id/usb-ArduPilot on Linux, which prevents the
# upload from causing modem hangups etc
if "linux" in _platform or "darwin" in _platform or "cygwin" in _platform:
import glob
for pattern in patterns:
portlist += glob.glob(pattern)
else:
portlist = patterns
# filter ports based on platform:
if "cygwin" in _platform:
# Cygwin, don't open MAC OS and Win ports, we are more like
# Linux. Cygwin needs to be before Windows test
pass
elif "darwin" in _platform:
# OS X, don't open Windows and Linux ports
portlist = [port for port in portlist if "COM" not in port and "ACM" not in port]
elif "win" in _platform:
# Windows, don't open POSIX ports
portlist = [port for port in portlist if "/" not in port]
return portlist
def modemmanager_check():
if os.path.exists("/usr/sbin/ModemManager"):
print("""
==========================================================================================================
WARNING: You should uninstall ModemManager as it conflicts with any non-modem serial device (like Pixhawk)
==========================================================================================================
""")
def find_bootloader(up, port):
while (True):
up.open()
# port is open, try talking to it
try:
# identify the bootloader
up.identify()
print("Found board %x,%x bootloader rev %x on %s" % (up.board_type, up.board_rev, up.bl_rev, port))
return True
except Exception:
pass
reboot_sent = up.send_reboot()
# wait for the reboot, without we might run into Serial I/O Error 5
time.sleep(0.25)
# always close the port
up.close()
# wait for the close, without we might run into Serial I/O Error 6
time.sleep(0.3)
if not reboot_sent:
return False
def main():
# Parse commandline arguments
parser = argparse.ArgumentParser(description="Firmware uploader for the PX autopilot system.")
parser.add_argument(
'--port',
action="store",
help="Comma-separated list of serial port(s) to which the FMU may be attached",
default=None
)
parser.add_argument(
'--baud-bootloader',
action="store",
type=int,
default=115200,
help="Baud rate of the serial port (default is 115200) when communicating with bootloader, only required for true serial ports." # NOQA
)
parser.add_argument(
'--baud-bootloader-flash',
action="store",
type=int,
default=None,
help="Attempt to negotiate this baudrate with bootloader for flashing."
)
parser.add_argument(
'--baud-flightstack',
action="store",
default="57600",
help="Comma-separated list of baud rate of the serial port (default is 57600) when communicating with flight stack (Mavlink or NSH), only required for true serial ports." # NOQA
)
parser.add_argument('--force', action='store_true', default=False, help='Override board type check and continue loading')
parser.add_argument('--boot-delay', type=int, default=None, help='minimum boot delay to store in flash')
parser.add_argument('--target-system', type=int, action="store", help="System ID to update")
parser.add_argument('--target-component', type=int, action="store", help="Component ID to update")
parser.add_argument(
'--source-system',
type=int,
action="store",
help="Source system to send reboot mavlink packets from",
default=255
)
parser.add_argument(
'--source-component',
type=int,
action="store",
help="Source component to send reboot mavlink packets from",
default=0
)
parser.add_argument('--download', action='store_true', default=False, help='download firmware from board')
parser.add_argument('--identify', action="store_true", help="Do not flash firmware; simply dump information about board")
parser.add_argument('--erase-extflash', type=lambda x: int(x, 0), default=None,
help="Erase sectors containing specified amount of bytes from ext flash")
parser.add_argument('firmware', nargs="?", action="store", default=None, help="Firmware file to be uploaded")
args = parser.parse_args()
# warn people about ModemManager which interferes badly with Pixhawk
modemmanager_check()
if args.firmware is None and not args.identify and not args.erase_extflash:
parser.error("Firmware filename required for upload or download")
sys.exit(1)
# Load the firmware file
if not args.download and not args.identify and not args.erase_extflash:
fw = firmware(args.firmware)
print("Loaded firmware for %x,%x, size: %d bytes, waiting for the bootloader..." %
(fw.property('board_id'), fw.property('board_revision'), fw.property('image_size')))
print("If the board does not respond within 1-2 seconds, unplug and re-plug the USB connector.")
baud_flightstack = [int(x) for x in args.baud_flightstack.split(',')]
# Spin waiting for a device to show up
try:
while True:
for port in ports_to_try(args):
# print("Trying %s" % port)
# create an uploader attached to the port
try:
up = uploader(port,
args.baud_bootloader,
baud_flightstack,
args.baud_bootloader_flash,
args.target_system,
args.target_component,
args.source_system,
args.source_component)
except Exception as e:
if not is_WSL:
# open failed, WSL must cycle through all ttyS* ports quickly but rate limit everything else
print("Exception creating uploader: %s" % str(e))
time.sleep(0.05)
# and loop to the next port
continue
if not find_bootloader(up, port):
# Go to the next port
continue
try:
# ok, we have a bootloader, try flashing it
if args.identify:
up.dump_board_info()
elif args.download:
up.download(args.firmware)
elif args.erase_extflash:
up.erase_extflash('Erase ExtF', args.erase_extflash)
print("\nExtF Erase Finished")
else:
up.upload(fw, force=args.force, boot_delay=args.boot_delay)
except RuntimeError as ex:
# print the error
print("\nERROR: %s" % ex.args)
except IOError:
up.close()
continue
finally:
# always close the port
up.close()
# we could loop here if we wanted to wait for more boards...
sys.exit(0)
# Delay retries to < 20 Hz to prevent spin-lock from hogging the CPU
time.sleep(0.05)
# CTRL+C aborts the upload/spin-lock by interrupt mechanics
except KeyboardInterrupt:
print("\n Upload aborted by user.")
sys.exit(0)
if __name__ == '__main__':
main()
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4