Ardupilot2/ArduCopterMega/navigation.pde

211 lines
6.1 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
//****************************************************************
// Function that will calculate the desired direction to fly and distance
//****************************************************************
void navigate()
{
// do not navigate with corrupt data
// ---------------------------------
if (g_gps->fix == 0){
g_gps->new_data = false;
return;
}
if(next_WP.lat == 0){
return;
}
// waypoint distance from plane
// ----------------------------
wp_distance = get_distance(&current_loc, &next_WP);
if (wp_distance < 0){
gcs.send_text(SEVERITY_HIGH,"<navigate> WP error - distance < 0");
//Serial.println(wp_distance,DEC);
//print_current_waypoints();
return;
}
// target_bearing is where we should be heading
// --------------------------------------------
target_bearing = get_bearing(&current_loc, &next_WP);
// nav_bearing will includes xtrac correction
// ------------------------------------------
nav_bearing = target_bearing;
// check if we have missed the WP
loiter_delta = (target_bearing - old_target_bearing)/100;
// reset the old value
old_target_bearing = target_bearing;
// wrap values
if (loiter_delta > 180) loiter_delta -= 360;
if (loiter_delta < -180) loiter_delta += 360;
loiter_sum += abs(loiter_delta);
// control mode specific updates to nav_bearing
// --------------------------------------------
update_navigation();
}
#define DIST_ERROR_MAX 1800
void calc_nav()
{
Vector2f yawvector;
Matrix3f temp;
/*
Becuase we are using lat and lon to do our distance errors here's a quick chart:
100 = 1m
1000 = 11m
3000 = 33m
10000 = 111m
pitch_max = 22° (2200)
*/
long_error = (float)(next_WP.lng - current_loc.lng) * scaleLongDown; // 50 - 30 = 20 pitch right
lat_error = next_WP.lat - current_loc.lat; // 50 - 30 = 20 pitch up
long_error = constrain(long_error, -DIST_ERROR_MAX, DIST_ERROR_MAX); // +- 20m max error
lat_error = constrain(lat_error, -DIST_ERROR_MAX, DIST_ERROR_MAX); // +- 20m max error
// Convert distance into ROLL X
nav_lon = long_error * g.pid_nav_lon.kP(); // 1800 * 2 = 3600 or 36°
//nav_lon = g.pid_nav_lon.get_pid(long_error, dTnav2, 1.0);
//nav_lon = constrain(nav_lon, -DIST_ERROR_MAX, DIST_ERROR_MAX); // Limit max command
// PITCH Y
//nav_lat = g.pid_nav_lat.get_pid(lat_error, dTnav2, 1.0);
nav_lat = lat_error * g.pid_nav_lat.kP(); // 1800 * 2 = 3600 or 36°
//nav_lat = constrain(nav_lat, -DIST_ERROR_MAX, DIST_ERROR_MAX); // Limit max command
// rotate the vector
nav_roll = (float)nav_lon * sin_yaw_y - (float)nav_lat * cos_yaw_x;
nav_pitch = -((float)nav_lon * cos_yaw_x + (float)nav_lat * sin_yaw_y);
long pmax = g.pitch_max.get();
nav_roll = constrain(nav_roll, -pmax, pmax);
nav_pitch = constrain(nav_pitch, -pmax, pmax);
}
void calc_bearing_error()
{
bearing_error = nav_bearing - dcm.yaw_sensor;
bearing_error = wrap_180(bearing_error);
}
void calc_altitude_error()
{
if(control_mode == AUTO && offset_altitude != 0) {
// limit climb rates - we draw a straight line between first location and edge of waypoint_radius
target_altitude = next_WP.alt - ((wp_distance * offset_altitude) / (wp_totalDistance - g.waypoint_radius));
// stay within a certain range
if(prev_WP.alt > next_WP.alt){
target_altitude = constrain(target_altitude, next_WP.alt, prev_WP.alt);
}else{
target_altitude = constrain(target_altitude, prev_WP.alt, next_WP.alt);
}
}else{
target_altitude = next_WP.alt;
}
altitude_error = target_altitude - current_loc.alt;
}
long wrap_360(long error)
{
if (error > 36000) error -= 36000;
if (error < 0) error += 36000;
return error;
}
long wrap_180(long error)
{
if (error > 18000) error -= 36000;
if (error < -18000) error += 36000;
return error;
}
void update_loiter()
{
float power;
if(wp_distance <= g.loiter_radius){
power = float(wp_distance) / float(g.loiter_radius);
nav_bearing += (int)(9000.0 * (2.0 + power));
}else if(wp_distance < (g.loiter_radius + LOITER_RANGE)){
power = -((float)(wp_distance - g.loiter_radius - LOITER_RANGE) / LOITER_RANGE);
power = constrain(power, 0, 1);
nav_bearing -= power * 9000;
}else{
update_crosstrack();
loiter_time = millis(); // keep start time for loiter updating till we get within LOITER_RANGE of orbit
}
if (wp_distance < g.loiter_radius){
nav_bearing += 9000;
}else{
nav_bearing -= 100 * M_PI / 180 * asin(g.loiter_radius / wp_distance);
}
update_crosstrack;
nav_bearing = wrap_360(nav_bearing);
}
void update_crosstrack(void)
{
// Crosstrack Error
// ----------------
if (abs(target_bearing - crosstrack_bearing) < 4500) { // If we are too far off or too close we don't do track following
crosstrack_error = sin(radians((target_bearing - crosstrack_bearing) / 100)) * wp_distance; // Meters we are off track line
nav_bearing += constrain(crosstrack_error * g.crosstrack_gain, -g.crosstrack_entry_angle.get(), g.crosstrack_entry_angle.get());
nav_bearing = wrap_360(nav_bearing);
}
}
void reset_crosstrack()
{
crosstrack_bearing = get_bearing(&current_loc, &next_WP); // Used for track following
}
long get_altitude_above_home(void)
{
// This is the altitude above the home location
// The GPS gives us altitude at Sea Level
// if you slope soar, you should see a negative number sometimes
// -------------------------------------------------------------
return current_loc.alt - home.alt;
}
long get_distance(struct Location *loc1, struct Location *loc2)
{
if(loc1->lat == 0 || loc1->lng == 0)
return -1;
if(loc2->lat == 0 || loc2->lng == 0)
return -1;
float dlat = (float)(loc2->lat - loc1->lat);
float dlong = ((float)(loc2->lng - loc1->lng)) * scaleLongDown;
return sqrt(sq(dlat) + sq(dlong)) * .01113195;
}
long get_alt_distance(struct Location *loc1, struct Location *loc2)
{
return abs(loc1->alt - loc2->alt);
}
long get_bearing(struct Location *loc1, struct Location *loc2)
{
long off_x = loc2->lng - loc1->lng;
long off_y = (loc2->lat - loc1->lat) * scaleLongUp;
long bearing = 9000 + atan2(-off_y, off_x) * 5729.57795;
if (bearing < 0) bearing += 36000;
return bearing;
}