36e7dfb5f6
Fix rounding error bug preventing state from updating after initial convergence. Decouple GPS reference height from published EKf origin height. Add bitmask parameter to control update and publishing of GPS reference height.
1515 lines
76 KiB
C++
1515 lines
76 KiB
C++
#include <AP_HAL/AP_HAL.h>
|
|
|
|
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_150
|
|
|
|
#include "AP_NavEKF2.h"
|
|
#include "AP_NavEKF2_core.h"
|
|
#include <AP_AHRS/AP_AHRS.h>
|
|
#include <AP_Vehicle/AP_Vehicle.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
#define earthRate 0.000072921f // earth rotation rate (rad/sec)
|
|
|
|
// when the wind estimation first starts with no airspeed sensor,
|
|
// assume 3m/s to start
|
|
#define STARTUP_WIND_SPEED 3.0f
|
|
|
|
// initial imu bias uncertainty (deg/sec)
|
|
#define INIT_ACCEL_BIAS_UNCERTAINTY 0.5f
|
|
|
|
// maximum allowed gyro bias (rad/sec)
|
|
#define GYRO_BIAS_LIMIT 0.5f
|
|
|
|
// constructor
|
|
NavEKF2_core::NavEKF2_core(void) :
|
|
stateStruct(*reinterpret_cast<struct state_elements *>(&statesArray)),
|
|
|
|
_perf_UpdateFilter(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_UpdateFilter")),
|
|
_perf_CovariancePrediction(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_CovariancePrediction")),
|
|
_perf_FuseVelPosNED(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_FuseVelPosNED")),
|
|
_perf_FuseMagnetometer(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_FuseMagnetometer")),
|
|
_perf_FuseAirspeed(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_FuseAirspeed")),
|
|
_perf_FuseSideslip(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_FuseSideslip")),
|
|
_perf_TerrainOffset(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_TerrainOffset")),
|
|
_perf_FuseOptFlow(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_FuseOptFlow"))
|
|
{
|
|
_perf_test[0] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_Test0");
|
|
_perf_test[1] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_Test1");
|
|
_perf_test[2] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_Test2");
|
|
_perf_test[3] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_Test3");
|
|
_perf_test[4] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_Test4");
|
|
_perf_test[5] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_Test5");
|
|
_perf_test[6] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_Test6");
|
|
_perf_test[7] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_Test7");
|
|
_perf_test[8] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_Test8");
|
|
_perf_test[9] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_Test9");
|
|
}
|
|
|
|
// setup this core backend
|
|
bool NavEKF2_core::setup_core(NavEKF2 *_frontend, uint8_t _imu_index, uint8_t _core_index)
|
|
{
|
|
frontend = _frontend;
|
|
imu_index = _imu_index;
|
|
core_index = _core_index;
|
|
_ahrs = frontend->_ahrs;
|
|
|
|
/*
|
|
the imu_buffer_length needs to cope with a 260ms delay at a
|
|
maximum fusion rate of 100Hz. Non-imu data coming in at faster
|
|
than 100Hz is downsampled. For 50Hz main loop rate we need a
|
|
shorter buffer.
|
|
*/
|
|
if (_ahrs->get_ins().get_sample_rate() < 100) {
|
|
imu_buffer_length = 13;
|
|
} else {
|
|
// maximum 260 msec delay at 100 Hz fusion rate
|
|
imu_buffer_length = 26;
|
|
}
|
|
if(!storedGPS.init(OBS_BUFFER_LENGTH)) {
|
|
return false;
|
|
}
|
|
if(!storedMag.init(OBS_BUFFER_LENGTH)) {
|
|
return false;
|
|
}
|
|
if(!storedBaro.init(OBS_BUFFER_LENGTH)) {
|
|
return false;
|
|
}
|
|
if(!storedTAS.init(OBS_BUFFER_LENGTH)) {
|
|
return false;
|
|
}
|
|
if(!storedOF.init(OBS_BUFFER_LENGTH)) {
|
|
return false;
|
|
}
|
|
// Note: the use of dual range finders potentially doubles the amount of to be stored
|
|
if(!storedRange.init(2*OBS_BUFFER_LENGTH)) {
|
|
return false;
|
|
}
|
|
// Note: range beacon data is read one beacon at a time and can arrive at a high rate
|
|
if(!storedRangeBeacon.init(imu_buffer_length)) {
|
|
return false;
|
|
}
|
|
if(!storedIMU.init(imu_buffer_length)) {
|
|
return false;
|
|
}
|
|
if(!storedOutput.init(imu_buffer_length)) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/********************************************************
|
|
* INIT FUNCTIONS *
|
|
********************************************************/
|
|
|
|
// Use a function call rather than a constructor to initialise variables because it enables the filter to be re-started in flight if necessary.
|
|
void NavEKF2_core::InitialiseVariables()
|
|
{
|
|
// calculate the nominal filter update rate
|
|
const AP_InertialSensor &ins = _ahrs->get_ins();
|
|
localFilterTimeStep_ms = (uint8_t)(1000*ins.get_loop_delta_t());
|
|
localFilterTimeStep_ms = MAX(localFilterTimeStep_ms,10);
|
|
|
|
// initialise time stamps
|
|
imuSampleTime_ms = frontend->imuSampleTime_us / 1000;
|
|
lastHealthyMagTime_ms = imuSampleTime_ms;
|
|
prevTasStep_ms = imuSampleTime_ms;
|
|
prevBetaStep_ms = imuSampleTime_ms;
|
|
lastMagUpdate_us = 0;
|
|
lastBaroReceived_ms = imuSampleTime_ms;
|
|
lastVelPassTime_ms = 0;
|
|
lastPosPassTime_ms = 0;
|
|
lastHgtPassTime_ms = 0;
|
|
lastTasPassTime_ms = 0;
|
|
lastSynthYawTime_ms = imuSampleTime_ms;
|
|
lastTimeGpsReceived_ms = 0;
|
|
secondLastGpsTime_ms = 0;
|
|
lastDecayTime_ms = imuSampleTime_ms;
|
|
timeAtLastAuxEKF_ms = imuSampleTime_ms;
|
|
flowValidMeaTime_ms = imuSampleTime_ms;
|
|
rngValidMeaTime_ms = imuSampleTime_ms;
|
|
flowMeaTime_ms = 0;
|
|
prevFlowFuseTime_ms = 0;
|
|
gndHgtValidTime_ms = 0;
|
|
ekfStartTime_ms = imuSampleTime_ms;
|
|
lastGpsVelFail_ms = 0;
|
|
lastGpsAidBadTime_ms = 0;
|
|
timeTasReceived_ms = 0;
|
|
magYawResetTimer_ms = imuSampleTime_ms;
|
|
lastPreAlignGpsCheckTime_ms = imuSampleTime_ms;
|
|
lastPosReset_ms = 0;
|
|
lastVelReset_ms = 0;
|
|
lastPosResetD_ms = 0;
|
|
lastRngMeasTime_ms = 0;
|
|
terrainHgtStableSet_ms = 0;
|
|
|
|
// initialise other variables
|
|
gpsNoiseScaler = 1.0f;
|
|
hgtTimeout = true;
|
|
magTimeout = false;
|
|
allMagSensorsFailed = false;
|
|
tasTimeout = true;
|
|
badMagYaw = false;
|
|
badIMUdata = false;
|
|
finalInflightYawInit = false;
|
|
finalInflightMagInit = false;
|
|
dtIMUavg = 0.0025f;
|
|
dtEkfAvg = EKF_TARGET_DT;
|
|
dt = 0;
|
|
velDotNEDfilt.zero();
|
|
lastKnownPositionNE.zero();
|
|
prevTnb.zero();
|
|
memset(&P[0][0], 0, sizeof(P));
|
|
memset(&nextP[0][0], 0, sizeof(nextP));
|
|
memset(&processNoise[0], 0, sizeof(processNoise));
|
|
flowDataValid = false;
|
|
rangeDataToFuse = false;
|
|
fuseOptFlowData = false;
|
|
Popt = 0.0f;
|
|
terrainState = 0.0f;
|
|
prevPosN = stateStruct.position.x;
|
|
prevPosE = stateStruct.position.y;
|
|
inhibitGndState = false;
|
|
flowGyroBias.x = 0;
|
|
flowGyroBias.y = 0;
|
|
heldVelNE.zero();
|
|
PV_AidingMode = AID_NONE;
|
|
PV_AidingModePrev = AID_NONE;
|
|
posTimeout = true;
|
|
velTimeout = true;
|
|
memset(&faultStatus, 0, sizeof(faultStatus));
|
|
hgtRate = 0.0f;
|
|
mag_state.q0 = 1;
|
|
mag_state.DCM.identity();
|
|
onGround = true;
|
|
prevOnGround = true;
|
|
inFlight = false;
|
|
prevInFlight = false;
|
|
manoeuvring = false;
|
|
inhibitWindStates = true;
|
|
inhibitMagStates = true;
|
|
gndOffsetValid = false;
|
|
validOrigin = false;
|
|
takeoffExpectedSet_ms = 0;
|
|
expectGndEffectTakeoff = false;
|
|
touchdownExpectedSet_ms = 0;
|
|
expectGndEffectTouchdown = false;
|
|
gpsSpdAccuracy = 0.0f;
|
|
gpsPosAccuracy = 0.0f;
|
|
gpsHgtAccuracy = 0.0f;
|
|
baroHgtOffset = 0.0f;
|
|
yawResetAngle = 0.0f;
|
|
lastYawReset_ms = 0;
|
|
tiltErrFilt = 1.0f;
|
|
tiltAlignComplete = false;
|
|
yawAlignComplete = false;
|
|
stateIndexLim = 23;
|
|
baroStoreIndex = 0;
|
|
rangeStoreIndex = 0;
|
|
magStoreIndex = 0;
|
|
gpsStoreIndex = 0;
|
|
tasStoreIndex = 0;
|
|
ofStoreIndex = 0;
|
|
delAngCorrection.zero();
|
|
velErrintegral.zero();
|
|
posErrintegral.zero();
|
|
gpsGoodToAlign = false;
|
|
gpsNotAvailable = true;
|
|
motorsArmed = false;
|
|
prevMotorsArmed = false;
|
|
innovationIncrement = 0;
|
|
lastInnovation = 0;
|
|
memset(&gpsCheckStatus, 0, sizeof(gpsCheckStatus));
|
|
gpsSpdAccPass = false;
|
|
ekfInnovationsPass = false;
|
|
sAccFilterState1 = 0.0f;
|
|
sAccFilterState2 = 0.0f;
|
|
lastGpsCheckTime_ms = 0;
|
|
lastInnovPassTime_ms = 0;
|
|
lastInnovFailTime_ms = 0;
|
|
gpsAccuracyGood = false;
|
|
memset(&gpsloc_prev, 0, sizeof(gpsloc_prev));
|
|
gpsDriftNE = 0.0f;
|
|
gpsVertVelFilt = 0.0f;
|
|
gpsHorizVelFilt = 0.0f;
|
|
memset(&statesArray, 0, sizeof(statesArray));
|
|
posDownDerivative = 0.0f;
|
|
posDown = 0.0f;
|
|
posVelFusionDelayed = false;
|
|
optFlowFusionDelayed = false;
|
|
airSpdFusionDelayed = false;
|
|
sideSlipFusionDelayed = false;
|
|
posResetNE.zero();
|
|
velResetNE.zero();
|
|
posResetD = 0.0f;
|
|
hgtInnovFiltState = 0.0f;
|
|
if (_ahrs->get_compass()) {
|
|
magSelectIndex = _ahrs->get_compass()->get_primary();
|
|
}
|
|
imuDataDownSampledNew.delAng.zero();
|
|
imuDataDownSampledNew.delVel.zero();
|
|
imuDataDownSampledNew.delAngDT = 0.0f;
|
|
imuDataDownSampledNew.delVelDT = 0.0f;
|
|
runUpdates = false;
|
|
framesSincePredict = 0;
|
|
lastMagOffsetsValid = false;
|
|
magStateResetRequest = false;
|
|
magStateInitComplete = false;
|
|
magYawResetRequest = false;
|
|
gpsYawResetRequest = false;
|
|
posDownAtLastMagReset = stateStruct.position.z;
|
|
yawInnovAtLastMagReset = 0.0f;
|
|
quatAtLastMagReset = stateStruct.quat;
|
|
magFieldLearned = false;
|
|
delAngBiasLearned = false;
|
|
memset(&filterStatus, 0, sizeof(filterStatus));
|
|
gpsInhibit = false;
|
|
activeHgtSource = 0;
|
|
memset(&rngMeasIndex, 0, sizeof(rngMeasIndex));
|
|
memset(&storedRngMeasTime_ms, 0, sizeof(storedRngMeasTime_ms));
|
|
memset(&storedRngMeas, 0, sizeof(storedRngMeas));
|
|
terrainHgtStable = true;
|
|
ekfOriginHgtVar = 0.0f;
|
|
ekfGpsRefHgt = 0.0;
|
|
velOffsetNED.zero();
|
|
posOffsetNED.zero();
|
|
|
|
// range beacon fusion variables
|
|
memset(&rngBcnDataNew, 0, sizeof(rngBcnDataNew));
|
|
memset(&rngBcnDataDelayed, 0, sizeof(rngBcnDataDelayed));
|
|
rngBcnStoreIndex = 0;
|
|
lastRngBcnPassTime_ms = 0;
|
|
rngBcnTestRatio = 0.0f;
|
|
rngBcnHealth = false;
|
|
rngBcnTimeout = true;
|
|
varInnovRngBcn = 0.0f;
|
|
innovRngBcn = 0.0f;
|
|
memset(&lastTimeRngBcn_ms, 0, sizeof(lastTimeRngBcn_ms));
|
|
rngBcnDataToFuse = false;
|
|
beaconVehiclePosNED.zero();
|
|
beaconVehiclePosErr = 1.0f;
|
|
rngBcnLast3DmeasTime_ms = 0;
|
|
rngBcnGoodToAlign = false;
|
|
lastRngBcnChecked = 0;
|
|
receiverPos.zero();
|
|
memset(&receiverPosCov, 0, sizeof(receiverPosCov));
|
|
rngBcnAlignmentStarted = false;
|
|
rngBcnAlignmentCompleted = false;
|
|
lastBeaconIndex = 0;
|
|
rngBcnPosSum.zero();
|
|
numBcnMeas = 0;
|
|
rngSum = 0.0f;
|
|
N_beacons = 0;
|
|
maxBcnPosD = 0.0f;
|
|
minBcnPosD = 0.0f;
|
|
bcnPosOffset = 0.0f;
|
|
bcnPosOffsetMax = 0.0f;
|
|
bcnPosOffsetMaxVar = 0.0f;
|
|
OffsetMaxInnovFilt = 0.0f;
|
|
bcnPosOffsetMin = 0.0f;
|
|
bcnPosOffsetMinVar = 0.0f;
|
|
OffsetMinInnovFilt = 0.0f;
|
|
rngBcnFuseDataReportIndex = 0;
|
|
memset(&rngBcnFusionReport, 0, sizeof(rngBcnFusionReport));
|
|
last_gps_idx = 0;
|
|
|
|
// zero data buffers
|
|
storedIMU.reset();
|
|
storedGPS.reset();
|
|
storedMag.reset();
|
|
storedBaro.reset();
|
|
storedTAS.reset();
|
|
storedRange.reset();
|
|
storedOutput.reset();
|
|
storedRangeBeacon.reset();
|
|
}
|
|
|
|
// Initialise the states from accelerometer and magnetometer data (if present)
|
|
// This method can only be used when the vehicle is static
|
|
bool NavEKF2_core::InitialiseFilterBootstrap(void)
|
|
{
|
|
// If we are a plane and don't have GPS lock then don't initialise
|
|
if (assume_zero_sideslip() && _ahrs->get_gps().status() < AP_GPS::GPS_OK_FIX_3D) {
|
|
statesInitialised = false;
|
|
return false;
|
|
}
|
|
|
|
// set re-used variables to zero
|
|
InitialiseVariables();
|
|
|
|
// Initialise IMU data
|
|
dtIMUavg = _ahrs->get_ins().get_loop_delta_t();
|
|
readIMUData();
|
|
storedIMU.reset_history(imuDataNew);
|
|
imuDataDelayed = imuDataNew;
|
|
|
|
// acceleration vector in XYZ body axes measured by the IMU (m/s^2)
|
|
Vector3f initAccVec;
|
|
|
|
// TODO we should average accel readings over several cycles
|
|
initAccVec = _ahrs->get_ins().get_accel(imu_index);
|
|
|
|
// read the magnetometer data
|
|
readMagData();
|
|
|
|
// normalise the acceleration vector
|
|
float pitch=0, roll=0;
|
|
if (initAccVec.length() > 0.001f) {
|
|
initAccVec.normalize();
|
|
|
|
// calculate initial pitch angle
|
|
pitch = asinf(initAccVec.x);
|
|
|
|
// calculate initial roll angle
|
|
roll = atan2f(-initAccVec.y , -initAccVec.z);
|
|
}
|
|
|
|
// calculate initial roll and pitch orientation
|
|
stateStruct.quat.from_euler(roll, pitch, 0.0f);
|
|
|
|
// initialise dynamic states
|
|
stateStruct.velocity.zero();
|
|
stateStruct.position.zero();
|
|
stateStruct.angErr.zero();
|
|
|
|
// initialise static process model states
|
|
stateStruct.gyro_bias.zero();
|
|
stateStruct.gyro_scale.x = 1.0f;
|
|
stateStruct.gyro_scale.y = 1.0f;
|
|
stateStruct.gyro_scale.z = 1.0f;
|
|
stateStruct.accel_zbias = 0.0f;
|
|
stateStruct.wind_vel.zero();
|
|
stateStruct.earth_magfield.zero();
|
|
stateStruct.body_magfield.zero();
|
|
|
|
// read the GPS and set the position and velocity states
|
|
readGpsData();
|
|
ResetVelocity();
|
|
ResetPosition();
|
|
|
|
// read the barometer and set the height state
|
|
readBaroData();
|
|
ResetHeight();
|
|
|
|
// define Earth rotation vector in the NED navigation frame
|
|
calcEarthRateNED(earthRateNED, _ahrs->get_home().lat);
|
|
|
|
// initialise the covariance matrix
|
|
CovarianceInit();
|
|
|
|
// reset output states
|
|
StoreOutputReset();
|
|
|
|
// set to true now that states have be initialised
|
|
statesInitialised = true;
|
|
|
|
return true;
|
|
}
|
|
|
|
// initialise the covariance matrix
|
|
void NavEKF2_core::CovarianceInit()
|
|
{
|
|
// zero the matrix
|
|
memset(P, 0, sizeof(P));
|
|
|
|
// attitude error
|
|
P[0][0] = 0.1f;
|
|
P[1][1] = 0.1f;
|
|
P[2][2] = 0.1f;
|
|
// velocities
|
|
P[3][3] = sq(frontend->_gpsHorizVelNoise);
|
|
P[4][4] = P[3][3];
|
|
P[5][5] = sq(frontend->_gpsVertVelNoise);
|
|
// positions
|
|
P[6][6] = sq(frontend->_gpsHorizPosNoise);
|
|
P[7][7] = P[6][6];
|
|
P[8][8] = sq(frontend->_baroAltNoise);
|
|
// gyro delta angle biases
|
|
P[9][9] = sq(radians(InitialGyroBiasUncertainty() * dtEkfAvg));
|
|
P[10][10] = P[9][9];
|
|
P[11][11] = P[9][9];
|
|
// gyro scale factor biases
|
|
P[12][12] = sq(1e-3);
|
|
P[13][13] = P[12][12];
|
|
P[14][14] = P[12][12];
|
|
// Z delta velocity bias
|
|
P[15][15] = sq(INIT_ACCEL_BIAS_UNCERTAINTY * dtEkfAvg);
|
|
// earth magnetic field
|
|
P[16][16] = 0.0f;
|
|
P[17][17] = P[16][16];
|
|
P[18][18] = P[16][16];
|
|
// body magnetic field
|
|
P[19][19] = 0.0f;
|
|
P[20][20] = P[19][19];
|
|
P[21][21] = P[19][19];
|
|
// wind velocities
|
|
P[22][22] = 0.0f;
|
|
P[23][23] = P[22][22];
|
|
|
|
// optical flow ground height covariance
|
|
Popt = 0.25f;
|
|
}
|
|
|
|
/********************************************************
|
|
* UPDATE FUNCTIONS *
|
|
********************************************************/
|
|
// Update Filter States - this should be called whenever new IMU data is available
|
|
void NavEKF2_core::UpdateFilter(bool predict)
|
|
{
|
|
// Set the flag to indicate to the filter that the front-end has given permission for a new state prediction cycle to be started
|
|
startPredictEnabled = predict;
|
|
|
|
// don't run filter updates if states have not been initialised
|
|
if (!statesInitialised) {
|
|
return;
|
|
}
|
|
|
|
// start the timer used for load measurement
|
|
#if EK2_DISABLE_INTERRUPTS
|
|
irqstate_t istate = irqsave();
|
|
#endif
|
|
hal.util->perf_begin(_perf_UpdateFilter);
|
|
|
|
// TODO - in-flight restart method
|
|
|
|
//get starting time for update step
|
|
imuSampleTime_ms = frontend->imuSampleTime_us / 1000;
|
|
|
|
// Check arm status and perform required checks and mode changes
|
|
controlFilterModes();
|
|
|
|
// read IMU data as delta angles and velocities
|
|
readIMUData();
|
|
|
|
// Run the EKF equations to estimate at the fusion time horizon if new IMU data is available in the buffer
|
|
if (runUpdates) {
|
|
// Predict states using IMU data from the delayed time horizon
|
|
UpdateStrapdownEquationsNED();
|
|
|
|
// Predict the covariance growth
|
|
CovariancePrediction();
|
|
|
|
// Update states using magnetometer data
|
|
SelectMagFusion();
|
|
|
|
// Update states using GPS and altimeter data
|
|
SelectVelPosFusion();
|
|
|
|
// Update states using range beacon data
|
|
SelectRngBcnFusion();
|
|
|
|
// Update states using optical flow data
|
|
SelectFlowFusion();
|
|
|
|
// Update states using airspeed data
|
|
SelectTasFusion();
|
|
|
|
// Update states using sideslip constraint assumption for fly-forward vehicles
|
|
SelectBetaFusion();
|
|
|
|
// Update the filter status
|
|
updateFilterStatus();
|
|
}
|
|
|
|
// Wind output forward from the fusion to output time horizon
|
|
calcOutputStates();
|
|
|
|
// stop the timer used for load measurement
|
|
hal.util->perf_end(_perf_UpdateFilter);
|
|
#if EK2_DISABLE_INTERRUPTS
|
|
irqrestore(istate);
|
|
#endif
|
|
}
|
|
|
|
void NavEKF2_core::correctDeltaAngle(Vector3f &delAng, float delAngDT)
|
|
{
|
|
delAng.x = delAng.x * stateStruct.gyro_scale.x;
|
|
delAng.y = delAng.y * stateStruct.gyro_scale.y;
|
|
delAng.z = delAng.z * stateStruct.gyro_scale.z;
|
|
delAng -= stateStruct.gyro_bias * (delAngDT / dtEkfAvg);
|
|
}
|
|
|
|
void NavEKF2_core::correctDeltaVelocity(Vector3f &delVel, float delVelDT)
|
|
{
|
|
delVel.z -= stateStruct.accel_zbias * (delVelDT / dtEkfAvg);
|
|
}
|
|
|
|
/*
|
|
* Update the quaternion, velocity and position states using delayed IMU measurements
|
|
* because the EKF is running on a delayed time horizon. Note that the quaternion is
|
|
* not used by the EKF equations, which instead estimate the error in the attitude of
|
|
* the vehicle when each observtion is fused. This attitude error is then used to correct
|
|
* the quaternion.
|
|
*/
|
|
void NavEKF2_core::UpdateStrapdownEquationsNED()
|
|
{
|
|
// update the quaternion states by rotating from the previous attitude through
|
|
// the delta angle rotation quaternion and normalise
|
|
// apply correction for earth's rotation rate
|
|
// % * - and + operators have been overloaded
|
|
stateStruct.quat.rotate(delAngCorrected - prevTnb * earthRateNED*imuDataDelayed.delAngDT);
|
|
stateStruct.quat.normalize();
|
|
|
|
// transform body delta velocities to delta velocities in the nav frame
|
|
// use the nav frame from previous time step as the delta velocities
|
|
// have been rotated into that frame
|
|
// * and + operators have been overloaded
|
|
Vector3f delVelNav; // delta velocity vector in earth axes
|
|
delVelNav = prevTnb.mul_transpose(delVelCorrected);
|
|
delVelNav.z += GRAVITY_MSS*imuDataDelayed.delVelDT;
|
|
|
|
// calculate the body to nav cosine matrix
|
|
stateStruct.quat.inverse().rotation_matrix(prevTnb);
|
|
|
|
// calculate the rate of change of velocity (used for launch detect and other functions)
|
|
velDotNED = delVelNav / imuDataDelayed.delVelDT;
|
|
|
|
// apply a first order lowpass filter
|
|
velDotNEDfilt = velDotNED * 0.05f + velDotNEDfilt * 0.95f;
|
|
|
|
// calculate a magnitude of the filtered nav acceleration (required for GPS
|
|
// variance estimation)
|
|
accNavMag = velDotNEDfilt.length();
|
|
accNavMagHoriz = norm(velDotNEDfilt.x , velDotNEDfilt.y);
|
|
|
|
// if we are not aiding, then limit the horizontal magnitude of acceleration
|
|
// to prevent large manoeuvre transients disturbing the attitude
|
|
if ((PV_AidingMode == AID_NONE) && (accNavMagHoriz > 5.0f)) {
|
|
float gain = 5.0f/accNavMagHoriz;
|
|
delVelNav.x *= gain;
|
|
delVelNav.y *= gain;
|
|
}
|
|
|
|
// save velocity for use in trapezoidal integration for position calcuation
|
|
Vector3f lastVelocity = stateStruct.velocity;
|
|
|
|
// sum delta velocities to get velocity
|
|
stateStruct.velocity += delVelNav;
|
|
|
|
// apply a trapezoidal integration to velocities to calculate position
|
|
stateStruct.position += (stateStruct.velocity + lastVelocity) * (imuDataDelayed.delVelDT*0.5f);
|
|
|
|
// accumulate the bias delta angle and time since last reset by an OF measurement arrival
|
|
delAngBodyOF += delAngCorrected;
|
|
delTimeOF += imuDataDelayed.delAngDT;
|
|
|
|
// limit states to protect against divergence
|
|
ConstrainStates();
|
|
}
|
|
|
|
/*
|
|
* Propagate PVA solution forward from the fusion time horizon to the current time horizon
|
|
* using simple observer which performs two functions:
|
|
* 1) Corrects for the delayed time horizon used by the EKF.
|
|
* 2) Applies a LPF to state corrections to prevent 'stepping' in states due to measurement
|
|
* fusion introducing unwanted noise into the control loops.
|
|
* The inspiration for using a complementary filter to correct for time delays in the EKF
|
|
* is based on the work by A Khosravian.
|
|
*
|
|
* "Recursive Attitude Estimation in the Presence of Multi-rate and Multi-delay Vector Measurements"
|
|
* A Khosravian, J Trumpf, R Mahony, T Hamel, Australian National University
|
|
*/
|
|
void NavEKF2_core::calcOutputStates()
|
|
{
|
|
// apply corrections to the IMU data
|
|
Vector3f delAngNewCorrected = imuDataNew.delAng;
|
|
Vector3f delVelNewCorrected = imuDataNew.delVel;
|
|
correctDeltaAngle(delAngNewCorrected, imuDataNew.delAngDT);
|
|
correctDeltaVelocity(delVelNewCorrected, imuDataNew.delVelDT);
|
|
|
|
// apply corections to track EKF solution
|
|
Vector3f delAng = delAngNewCorrected + delAngCorrection;
|
|
|
|
// convert the rotation vector to its equivalent quaternion
|
|
Quaternion deltaQuat;
|
|
deltaQuat.from_axis_angle(delAng);
|
|
|
|
// update the quaternion states by rotating from the previous attitude through
|
|
// the delta angle rotation quaternion and normalise
|
|
outputDataNew.quat *= deltaQuat;
|
|
outputDataNew.quat.normalize();
|
|
|
|
// calculate the body to nav cosine matrix
|
|
Matrix3f Tbn_temp;
|
|
outputDataNew.quat.rotation_matrix(Tbn_temp);
|
|
|
|
// transform body delta velocities to delta velocities in the nav frame
|
|
Vector3f delVelNav = Tbn_temp*delVelNewCorrected;
|
|
delVelNav.z += GRAVITY_MSS*imuDataNew.delVelDT;
|
|
|
|
// save velocity for use in trapezoidal integration for position calcuation
|
|
Vector3f lastVelocity = outputDataNew.velocity;
|
|
|
|
// sum delta velocities to get velocity
|
|
outputDataNew.velocity += delVelNav;
|
|
|
|
// apply a trapezoidal integration to velocities to calculate position
|
|
outputDataNew.position += (outputDataNew.velocity + lastVelocity) * (imuDataNew.delVelDT*0.5f);
|
|
|
|
// If the IMU accelerometer is offset from the body frame origin, then calculate corrections
|
|
// that can be added to the EKF velocity and position outputs so that they represent the velocity
|
|
// and position of the body frame origin.
|
|
// Note the * operator has been overloaded to operate as a dot product
|
|
if (!accelPosOffset.is_zero()) {
|
|
// calculate the average angular rate across the last IMU update
|
|
// note delAngDT is prevented from being zero in readIMUData()
|
|
Vector3f angRate = imuDataNew.delAng * (1.0f/imuDataNew.delAngDT);
|
|
|
|
// Calculate the velocity of the body frame origin relative to the IMU in body frame
|
|
// and rotate into earth frame. Note % operator has been overloaded to perform a cross product
|
|
Vector3f velBodyRelIMU = angRate % (- accelPosOffset);
|
|
velOffsetNED = Tbn_temp * velBodyRelIMU;
|
|
|
|
// calculate the earth frame position of the body frame origin relative to the IMU
|
|
posOffsetNED = Tbn_temp * (- accelPosOffset);
|
|
} else {
|
|
velOffsetNED.zero();
|
|
posOffsetNED.zero();
|
|
}
|
|
|
|
// store INS states in a ring buffer that with the same length and time coordinates as the IMU data buffer
|
|
if (runUpdates) {
|
|
// store the states at the output time horizon
|
|
storedOutput[storedIMU.get_youngest_index()] = outputDataNew;
|
|
|
|
// recall the states from the fusion time horizon
|
|
outputDataDelayed = storedOutput[storedIMU.get_oldest_index()];
|
|
|
|
// compare quaternion data with EKF quaternion at the fusion time horizon and calculate correction
|
|
|
|
// divide the demanded quaternion by the estimated to get the error
|
|
Quaternion quatErr = stateStruct.quat / outputDataDelayed.quat;
|
|
|
|
// Convert to a delta rotation using a small angle approximation
|
|
quatErr.normalize();
|
|
Vector3f deltaAngErr;
|
|
float scaler;
|
|
if (quatErr[0] >= 0.0f) {
|
|
scaler = 2.0f;
|
|
} else {
|
|
scaler = -2.0f;
|
|
}
|
|
deltaAngErr.x = scaler * quatErr[1];
|
|
deltaAngErr.y = scaler * quatErr[2];
|
|
deltaAngErr.z = scaler * quatErr[3];
|
|
|
|
// calculate a gain that provides tight tracking of the estimator states and
|
|
// adjust for changes in time delay to maintain consistent damping ratio of ~0.7
|
|
float timeDelay = 1e-3f * (float)(imuDataNew.time_ms - imuDataDelayed.time_ms);
|
|
timeDelay = fmaxf(timeDelay, dtIMUavg);
|
|
float errorGain = 0.5f / timeDelay;
|
|
|
|
// calculate a corrrection to the delta angle
|
|
// that will cause the INS to track the EKF quaternions
|
|
delAngCorrection = deltaAngErr * errorGain * dtIMUavg;
|
|
|
|
// calculate velocity and position tracking errors
|
|
Vector3f velErr = (stateStruct.velocity - outputDataDelayed.velocity);
|
|
Vector3f posErr = (stateStruct.position - outputDataDelayed.position);
|
|
|
|
// collect magnitude tracking error for diagnostics
|
|
outputTrackError.x = deltaAngErr.length();
|
|
outputTrackError.y = velErr.length();
|
|
outputTrackError.z = posErr.length();
|
|
|
|
// convert user specified time constant from centi-seconds to seconds
|
|
float tauPosVel = constrain_float(0.01f*(float)frontend->_tauVelPosOutput, 0.1f, 0.5f);
|
|
|
|
// calculate a gain to track the EKF position states with the specified time constant
|
|
float velPosGain = dtEkfAvg / constrain_float(tauPosVel, dtEkfAvg, 10.0f);
|
|
|
|
// use a PI feedback to calculate a correction that will be applied to the output state history
|
|
posErrintegral += posErr;
|
|
velErrintegral += velErr;
|
|
Vector3f velCorrection = velErr * velPosGain + velErrintegral * sq(velPosGain) * 0.1f;
|
|
Vector3f posCorrection = posErr * velPosGain + posErrintegral * sq(velPosGain) * 0.1f;
|
|
|
|
// loop through the output filter state history and apply the corrections to the velocity and position states
|
|
// this method is too expensive to use for the attitude states due to the quaternion operations required
|
|
// but does not introduce a time delay in the 'correction loop' and allows smaller tracking time constants
|
|
// to be used
|
|
output_elements outputStates;
|
|
for (unsigned index=0; index < imu_buffer_length; index++) {
|
|
outputStates = storedOutput[index];
|
|
|
|
// a constant velocity correction is applied
|
|
outputStates.velocity += velCorrection;
|
|
|
|
// a constant position correction is applied
|
|
outputStates.position += posCorrection;
|
|
|
|
// push the updated data to the buffer
|
|
storedOutput[index] = outputStates;
|
|
}
|
|
|
|
// update output state to corrected values
|
|
outputDataNew = storedOutput[storedIMU.get_youngest_index()];
|
|
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Calculate the predicted state covariance matrix using algebraic equations generated with Matlab symbolic toolbox.
|
|
* The script file used to generate these and other equations in this filter can be found here:
|
|
* https://github.com/priseborough/InertialNav/blob/master/derivations/RotationVectorAttitudeParameterisation/GenerateNavFilterEquations.m
|
|
*/
|
|
void NavEKF2_core::CovariancePrediction()
|
|
{
|
|
hal.util->perf_begin(_perf_CovariancePrediction);
|
|
float windVelSigma; // wind velocity 1-sigma process noise - m/s
|
|
float dAngBiasSigma;// delta angle bias 1-sigma process noise - rad/s
|
|
float dVelBiasSigma;// delta velocity bias 1-sigma process noise - m/s
|
|
float dAngScaleSigma;// delta angle scale factor 1-Sigma process noise
|
|
float magEarthSigma;// earth magnetic field 1-sigma process noise
|
|
float magBodySigma; // body magnetic field 1-sigma process noise
|
|
float daxNoise; // X axis delta angle noise variance rad^2
|
|
float dayNoise; // Y axis delta angle noise variance rad^2
|
|
float dazNoise; // Z axis delta angle noise variance rad^2
|
|
float dvxNoise; // X axis delta velocity variance noise (m/s)^2
|
|
float dvyNoise; // Y axis delta velocity variance noise (m/s)^2
|
|
float dvzNoise; // Z axis delta velocity variance noise (m/s)^2
|
|
float dvx; // X axis delta velocity (m/s)
|
|
float dvy; // Y axis delta velocity (m/s)
|
|
float dvz; // Z axis delta velocity (m/s)
|
|
float dax; // X axis delta angle (rad)
|
|
float day; // Y axis delta angle (rad)
|
|
float daz; // Z axis delta angle (rad)
|
|
float q0; // attitude quaternion
|
|
float q1; // attitude quaternion
|
|
float q2; // attitude quaternion
|
|
float q3; // attitude quaternion
|
|
float dax_b; // X axis delta angle measurement bias (rad)
|
|
float day_b; // Y axis delta angle measurement bias (rad)
|
|
float daz_b; // Z axis delta angle measurement bias (rad)
|
|
float dax_s; // X axis delta angle measurement scale factor
|
|
float day_s; // Y axis delta angle measurement scale factor
|
|
float daz_s; // Z axis delta angle measurement scale factor
|
|
float dvz_b; // Z axis delta velocity measurement bias (rad)
|
|
|
|
// calculate covariance prediction process noise
|
|
// use filtered height rate to increase wind process noise when climbing or descending
|
|
// this allows for wind gradient effects.
|
|
// filter height rate using a 10 second time constant filter
|
|
dt = imuDataDelayed.delAngDT;
|
|
float alpha = 0.1f * dt;
|
|
hgtRate = hgtRate * (1.0f - alpha) - stateStruct.velocity.z * alpha;
|
|
|
|
// use filtered height rate to increase wind process noise when climbing or descending
|
|
// this allows for wind gradient effects.
|
|
windVelSigma = dt * constrain_float(frontend->_windVelProcessNoise, 0.0f, 1.0f) * (1.0f + constrain_float(frontend->_wndVarHgtRateScale, 0.0f, 1.0f) * fabsf(hgtRate));
|
|
dAngBiasSigma = sq(dt) * constrain_float(frontend->_gyroBiasProcessNoise, 0.0f, 1.0f);
|
|
dVelBiasSigma = sq(dt) * constrain_float(frontend->_accelBiasProcessNoise, 0.0f, 1.0f);
|
|
dAngScaleSigma = dt * constrain_float(frontend->_gyroScaleProcessNoise, 0.0f, 1.0f);
|
|
magEarthSigma = dt * constrain_float(frontend->_magEarthProcessNoise, 0.0f, 1.0f);
|
|
magBodySigma = dt * constrain_float(frontend->_magBodyProcessNoise, 0.0f, 1.0f);
|
|
for (uint8_t i= 0; i<=8; i++) processNoise[i] = 0.0f;
|
|
for (uint8_t i=9; i<=11; i++) processNoise[i] = dAngBiasSigma;
|
|
for (uint8_t i=12; i<=14; i++) processNoise[i] = dAngScaleSigma;
|
|
if (expectGndEffectTakeoff) {
|
|
processNoise[15] = 0.0f;
|
|
} else {
|
|
processNoise[15] = dVelBiasSigma;
|
|
}
|
|
for (uint8_t i=16; i<=18; i++) processNoise[i] = magEarthSigma;
|
|
for (uint8_t i=19; i<=21; i++) processNoise[i] = magBodySigma;
|
|
for (uint8_t i=22; i<=23; i++) processNoise[i] = windVelSigma;
|
|
|
|
for (uint8_t i= 0; i<=stateIndexLim; i++) processNoise[i] = sq(processNoise[i]);
|
|
|
|
// set variables used to calculate covariance growth
|
|
dvx = imuDataDelayed.delVel.x;
|
|
dvy = imuDataDelayed.delVel.y;
|
|
dvz = imuDataDelayed.delVel.z;
|
|
dax = imuDataDelayed.delAng.x;
|
|
day = imuDataDelayed.delAng.y;
|
|
daz = imuDataDelayed.delAng.z;
|
|
q0 = stateStruct.quat[0];
|
|
q1 = stateStruct.quat[1];
|
|
q2 = stateStruct.quat[2];
|
|
q3 = stateStruct.quat[3];
|
|
dax_b = stateStruct.gyro_bias.x;
|
|
day_b = stateStruct.gyro_bias.y;
|
|
daz_b = stateStruct.gyro_bias.z;
|
|
dax_s = stateStruct.gyro_scale.x;
|
|
day_s = stateStruct.gyro_scale.y;
|
|
daz_s = stateStruct.gyro_scale.z;
|
|
dvz_b = stateStruct.accel_zbias;
|
|
float _gyrNoise = constrain_float(frontend->_gyrNoise, 0.0f, 1.0f);
|
|
daxNoise = dayNoise = dazNoise = sq(dt*_gyrNoise);
|
|
float _accNoise = constrain_float(frontend->_accNoise, 0.0f, 10.0f);
|
|
dvxNoise = dvyNoise = dvzNoise = sq(dt*_accNoise);
|
|
|
|
// calculate the predicted covariance due to inertial sensor error propagation
|
|
// we calculate the upper diagonal and copy to take advantage of symmetry
|
|
SF[0] = daz_b/2 - (daz*daz_s)/2;
|
|
SF[1] = day_b/2 - (day*day_s)/2;
|
|
SF[2] = dax_b/2 - (dax*dax_s)/2;
|
|
SF[3] = q3/2 - (q0*SF[0])/2 + (q1*SF[1])/2 - (q2*SF[2])/2;
|
|
SF[4] = q0/2 - (q1*SF[2])/2 - (q2*SF[1])/2 + (q3*SF[0])/2;
|
|
SF[5] = q1/2 + (q0*SF[2])/2 - (q2*SF[0])/2 - (q3*SF[1])/2;
|
|
SF[6] = q3/2 + (q0*SF[0])/2 - (q1*SF[1])/2 - (q2*SF[2])/2;
|
|
SF[7] = q0/2 - (q1*SF[2])/2 + (q2*SF[1])/2 - (q3*SF[0])/2;
|
|
SF[8] = q0/2 + (q1*SF[2])/2 - (q2*SF[1])/2 - (q3*SF[0])/2;
|
|
SF[9] = q2/2 + (q0*SF[1])/2 + (q1*SF[0])/2 + (q3*SF[2])/2;
|
|
SF[10] = q2/2 - (q0*SF[1])/2 - (q1*SF[0])/2 + (q3*SF[2])/2;
|
|
SF[11] = q2/2 + (q0*SF[1])/2 - (q1*SF[0])/2 - (q3*SF[2])/2;
|
|
SF[12] = q1/2 + (q0*SF[2])/2 + (q2*SF[0])/2 + (q3*SF[1])/2;
|
|
SF[13] = q1/2 - (q0*SF[2])/2 + (q2*SF[0])/2 - (q3*SF[1])/2;
|
|
SF[14] = q3/2 + (q0*SF[0])/2 + (q1*SF[1])/2 + (q2*SF[2])/2;
|
|
SF[15] = - sq(q0) - sq(q1) - sq(q2) - sq(q3);
|
|
SF[16] = dvz_b - dvz;
|
|
SF[17] = dvx;
|
|
SF[18] = dvy;
|
|
SF[19] = sq(q2);
|
|
SF[20] = SF[19] - sq(q0) + sq(q1) - sq(q3);
|
|
SF[21] = SF[19] + sq(q0) - sq(q1) - sq(q3);
|
|
SF[22] = 2*q0*q1 - 2*q2*q3;
|
|
SF[23] = SF[19] - sq(q0) - sq(q1) + sq(q3);
|
|
SF[24] = 2*q1*q2;
|
|
|
|
SG[0] = - sq(q0) - sq(q1) - sq(q2) - sq(q3);
|
|
SG[1] = sq(q3);
|
|
SG[2] = sq(q2);
|
|
SG[3] = sq(q1);
|
|
SG[4] = sq(q0);
|
|
|
|
SQ[0] = - dvyNoise*(2*q0*q1 + 2*q2*q3)*(SG[1] - SG[2] + SG[3] - SG[4]) - dvzNoise*(2*q0*q1 - 2*q2*q3)*(SG[1] - SG[2] - SG[3] + SG[4]) - dvxNoise*(2*q0*q2 - 2*q1*q3)*(2*q0*q3 + 2*q1*q2);
|
|
SQ[1] = dvxNoise*(2*q0*q2 - 2*q1*q3)*(SG[1] + SG[2] - SG[3] - SG[4]) + dvzNoise*(2*q0*q2 + 2*q1*q3)*(SG[1] - SG[2] - SG[3] + SG[4]) - dvyNoise*(2*q0*q1 + 2*q2*q3)*(2*q0*q3 - 2*q1*q2);
|
|
SQ[2] = dvyNoise*(2*q0*q3 - 2*q1*q2)*(SG[1] - SG[2] + SG[3] - SG[4]) - dvxNoise*(2*q0*q3 + 2*q1*q2)*(SG[1] + SG[2] - SG[3] - SG[4]) - dvzNoise*(2*q0*q1 - 2*q2*q3)*(2*q0*q2 + 2*q1*q3);
|
|
SQ[3] = sq(SG[0]);
|
|
SQ[4] = 2*q2*q3;
|
|
SQ[5] = 2*q1*q3;
|
|
SQ[6] = 2*q1*q2;
|
|
SQ[7] = SG[4];
|
|
|
|
SPP[0] = SF[17]*(2*q0*q1 + 2*q2*q3) + SF[18]*(2*q0*q2 - 2*q1*q3);
|
|
SPP[1] = SF[18]*(2*q0*q2 + 2*q1*q3) + SF[16]*(SF[24] - 2*q0*q3);
|
|
SPP[2] = 2*q3*SF[8] + 2*q1*SF[11] - 2*q0*SF[14] - 2*q2*SF[13];
|
|
SPP[3] = 2*q1*SF[7] + 2*q2*SF[6] - 2*q0*SF[12] - 2*q3*SF[10];
|
|
SPP[4] = 2*q0*SF[6] - 2*q3*SF[7] - 2*q1*SF[10] + 2*q2*SF[12];
|
|
SPP[5] = 2*q0*SF[8] + 2*q2*SF[11] + 2*q1*SF[13] + 2*q3*SF[14];
|
|
SPP[6] = 2*q0*SF[7] + 2*q3*SF[6] + 2*q2*SF[10] + 2*q1*SF[12];
|
|
SPP[7] = SF[18]*SF[20] - SF[16]*(2*q0*q1 + 2*q2*q3);
|
|
SPP[8] = 2*q1*SF[3] - 2*q2*SF[4] - 2*q3*SF[5] + 2*q0*SF[9];
|
|
SPP[9] = 2*q0*SF[5] - 2*q1*SF[4] - 2*q2*SF[3] + 2*q3*SF[9];
|
|
SPP[10] = SF[17]*SF[20] + SF[16]*(2*q0*q2 - 2*q1*q3);
|
|
SPP[11] = SF[17]*SF[21] - SF[18]*(SF[24] + 2*q0*q3);
|
|
SPP[12] = SF[17]*SF[22] - SF[16]*(SF[24] + 2*q0*q3);
|
|
SPP[13] = 2*q0*SF[4] + 2*q1*SF[5] + 2*q3*SF[3] + 2*q2*SF[9];
|
|
SPP[14] = 2*q2*SF[8] - 2*q0*SF[11] - 2*q1*SF[14] + 2*q3*SF[13];
|
|
SPP[15] = SF[18]*SF[23] + SF[17]*(SF[24] - 2*q0*q3);
|
|
SPP[16] = daz*SF[19] + daz*sq(q0) + daz*sq(q1) + daz*sq(q3);
|
|
SPP[17] = day*SF[19] + day*sq(q0) + day*sq(q1) + day*sq(q3);
|
|
SPP[18] = dax*SF[19] + dax*sq(q0) + dax*sq(q1) + dax*sq(q3);
|
|
SPP[19] = SF[16]*SF[23] - SF[17]*(2*q0*q2 + 2*q1*q3);
|
|
SPP[20] = SF[16]*SF[21] - SF[18]*SF[22];
|
|
SPP[21] = 2*q0*q2 + 2*q1*q3;
|
|
SPP[22] = SF[15];
|
|
|
|
if (inhibitMagStates) {
|
|
zeroRows(P,16,21);
|
|
zeroCols(P,16,21);
|
|
} else if (inhibitWindStates) {
|
|
zeroRows(P,22,23);
|
|
zeroCols(P,22,23);
|
|
}
|
|
|
|
nextP[0][0] = daxNoise*SQ[3] + SPP[5]*(P[0][0]*SPP[5] - P[1][0]*SPP[4] + P[9][0]*SPP[22] + P[12][0]*SPP[18] + P[2][0]*(2*q1*SF[3] - 2*q2*SF[4] - 2*q3*SF[5] + 2*q0*SF[9])) - SPP[4]*(P[0][1]*SPP[5] - P[1][1]*SPP[4] + P[9][1]*SPP[22] + P[12][1]*SPP[18] + P[2][1]*(2*q1*SF[3] - 2*q2*SF[4] - 2*q3*SF[5] + 2*q0*SF[9])) + SPP[8]*(P[0][2]*SPP[5] + P[2][2]*SPP[8] + P[9][2]*SPP[22] + P[12][2]*SPP[18] - P[1][2]*(2*q0*SF[6] - 2*q3*SF[7] - 2*q1*SF[10] + 2*q2*SF[12])) + SPP[22]*(P[0][9]*SPP[5] - P[1][9]*SPP[4] + P[9][9]*SPP[22] + P[12][9]*SPP[18] + P[2][9]*(2*q1*SF[3] - 2*q2*SF[4] - 2*q3*SF[5] + 2*q0*SF[9])) + SPP[18]*(P[0][12]*SPP[5] - P[1][12]*SPP[4] + P[9][12]*SPP[22] + P[12][12]*SPP[18] + P[2][12]*(2*q1*SF[3] - 2*q2*SF[4] - 2*q3*SF[5] + 2*q0*SF[9]));
|
|
nextP[0][1] = SPP[6]*(P[0][1]*SPP[5] - P[1][1]*SPP[4] + P[2][1]*SPP[8] + P[9][1]*SPP[22] + P[12][1]*SPP[18]) - SPP[2]*(P[0][0]*SPP[5] - P[1][0]*SPP[4] + P[2][0]*SPP[8] + P[9][0]*SPP[22] + P[12][0]*SPP[18]) + SPP[22]*(P[0][10]*SPP[5] - P[1][10]*SPP[4] + P[2][10]*SPP[8] + P[9][10]*SPP[22] + P[12][10]*SPP[18]) + SPP[17]*(P[0][13]*SPP[5] - P[1][13]*SPP[4] + P[2][13]*SPP[8] + P[9][13]*SPP[22] + P[12][13]*SPP[18]) - (2*q0*SF[5] - 2*q1*SF[4] - 2*q2*SF[3] + 2*q3*SF[9])*(P[0][2]*SPP[5] - P[1][2]*SPP[4] + P[2][2]*SPP[8] + P[9][2]*SPP[22] + P[12][2]*SPP[18]);
|
|
nextP[1][1] = dayNoise*SQ[3] - SPP[2]*(P[1][0]*SPP[6] - P[0][0]*SPP[2] - P[2][0]*SPP[9] + P[10][0]*SPP[22] + P[13][0]*SPP[17]) + SPP[6]*(P[1][1]*SPP[6] - P[0][1]*SPP[2] - P[2][1]*SPP[9] + P[10][1]*SPP[22] + P[13][1]*SPP[17]) - SPP[9]*(P[1][2]*SPP[6] - P[0][2]*SPP[2] - P[2][2]*SPP[9] + P[10][2]*SPP[22] + P[13][2]*SPP[17]) + SPP[22]*(P[1][10]*SPP[6] - P[0][10]*SPP[2] - P[2][10]*SPP[9] + P[10][10]*SPP[22] + P[13][10]*SPP[17]) + SPP[17]*(P[1][13]*SPP[6] - P[0][13]*SPP[2] - P[2][13]*SPP[9] + P[10][13]*SPP[22] + P[13][13]*SPP[17]);
|
|
nextP[0][2] = SPP[13]*(P[0][2]*SPP[5] - P[1][2]*SPP[4] + P[2][2]*SPP[8] + P[9][2]*SPP[22] + P[12][2]*SPP[18]) - SPP[3]*(P[0][1]*SPP[5] - P[1][1]*SPP[4] + P[2][1]*SPP[8] + P[9][1]*SPP[22] + P[12][1]*SPP[18]) + SPP[22]*(P[0][11]*SPP[5] - P[1][11]*SPP[4] + P[2][11]*SPP[8] + P[9][11]*SPP[22] + P[12][11]*SPP[18]) + SPP[16]*(P[0][14]*SPP[5] - P[1][14]*SPP[4] + P[2][14]*SPP[8] + P[9][14]*SPP[22] + P[12][14]*SPP[18]) + (2*q2*SF[8] - 2*q0*SF[11] - 2*q1*SF[14] + 2*q3*SF[13])*(P[0][0]*SPP[5] - P[1][0]*SPP[4] + P[2][0]*SPP[8] + P[9][0]*SPP[22] + P[12][0]*SPP[18]);
|
|
nextP[1][2] = SPP[13]*(P[1][2]*SPP[6] - P[0][2]*SPP[2] - P[2][2]*SPP[9] + P[10][2]*SPP[22] + P[13][2]*SPP[17]) - SPP[3]*(P[1][1]*SPP[6] - P[0][1]*SPP[2] - P[2][1]*SPP[9] + P[10][1]*SPP[22] + P[13][1]*SPP[17]) + SPP[22]*(P[1][11]*SPP[6] - P[0][11]*SPP[2] - P[2][11]*SPP[9] + P[10][11]*SPP[22] + P[13][11]*SPP[17]) + SPP[16]*(P[1][14]*SPP[6] - P[0][14]*SPP[2] - P[2][14]*SPP[9] + P[10][14]*SPP[22] + P[13][14]*SPP[17]) + (2*q2*SF[8] - 2*q0*SF[11] - 2*q1*SF[14] + 2*q3*SF[13])*(P[1][0]*SPP[6] - P[0][0]*SPP[2] - P[2][0]*SPP[9] + P[10][0]*SPP[22] + P[13][0]*SPP[17]);
|
|
nextP[2][2] = dazNoise*SQ[3] - SPP[3]*(P[0][1]*SPP[14] - P[1][1]*SPP[3] + P[2][1]*SPP[13] + P[11][1]*SPP[22] + P[14][1]*SPP[16]) + SPP[14]*(P[0][0]*SPP[14] - P[1][0]*SPP[3] + P[2][0]*SPP[13] + P[11][0]*SPP[22] + P[14][0]*SPP[16]) + SPP[13]*(P[0][2]*SPP[14] - P[1][2]*SPP[3] + P[2][2]*SPP[13] + P[11][2]*SPP[22] + P[14][2]*SPP[16]) + SPP[22]*(P[0][11]*SPP[14] - P[1][11]*SPP[3] + P[2][11]*SPP[13] + P[11][11]*SPP[22] + P[14][11]*SPP[16]) + SPP[16]*(P[0][14]*SPP[14] - P[1][14]*SPP[3] + P[2][14]*SPP[13] + P[11][14]*SPP[22] + P[14][14]*SPP[16]);
|
|
nextP[0][3] = P[0][3]*SPP[5] - P[1][3]*SPP[4] + P[2][3]*SPP[8] + P[9][3]*SPP[22] + P[12][3]*SPP[18] + SPP[1]*(P[0][0]*SPP[5] - P[1][0]*SPP[4] + P[2][0]*SPP[8] + P[9][0]*SPP[22] + P[12][0]*SPP[18]) + SPP[15]*(P[0][2]*SPP[5] - P[1][2]*SPP[4] + P[2][2]*SPP[8] + P[9][2]*SPP[22] + P[12][2]*SPP[18]) - SPP[21]*(P[0][15]*SPP[5] - P[1][15]*SPP[4] + P[2][15]*SPP[8] + P[9][15]*SPP[22] + P[12][15]*SPP[18]) + (SF[16]*SF[23] - SF[17]*SPP[21])*(P[0][1]*SPP[5] - P[1][1]*SPP[4] + P[2][1]*SPP[8] + P[9][1]*SPP[22] + P[12][1]*SPP[18]);
|
|
nextP[1][3] = P[1][3]*SPP[6] - P[0][3]*SPP[2] - P[2][3]*SPP[9] + P[10][3]*SPP[22] + P[13][3]*SPP[17] + SPP[1]*(P[1][0]*SPP[6] - P[0][0]*SPP[2] - P[2][0]*SPP[9] + P[10][0]*SPP[22] + P[13][0]*SPP[17]) + SPP[15]*(P[1][2]*SPP[6] - P[0][2]*SPP[2] - P[2][2]*SPP[9] + P[10][2]*SPP[22] + P[13][2]*SPP[17]) - SPP[21]*(P[1][15]*SPP[6] - P[0][15]*SPP[2] - P[2][15]*SPP[9] + P[10][15]*SPP[22] + P[13][15]*SPP[17]) + (SF[16]*SF[23] - SF[17]*SPP[21])*(P[1][1]*SPP[6] - P[0][1]*SPP[2] - P[2][1]*SPP[9] + P[10][1]*SPP[22] + P[13][1]*SPP[17]);
|
|
nextP[2][3] = P[0][3]*SPP[14] - P[1][3]*SPP[3] + P[2][3]*SPP[13] + P[11][3]*SPP[22] + P[14][3]*SPP[16] + SPP[1]*(P[0][0]*SPP[14] - P[1][0]*SPP[3] + P[2][0]*SPP[13] + P[11][0]*SPP[22] + P[14][0]*SPP[16]) + SPP[15]*(P[0][2]*SPP[14] - P[1][2]*SPP[3] + P[2][2]*SPP[13] + P[11][2]*SPP[22] + P[14][2]*SPP[16]) - SPP[21]*(P[0][15]*SPP[14] - P[1][15]*SPP[3] + P[2][15]*SPP[13] + P[11][15]*SPP[22] + P[14][15]*SPP[16]) + (SF[16]*SF[23] - SF[17]*SPP[21])*(P[0][1]*SPP[14] - P[1][1]*SPP[3] + P[2][1]*SPP[13] + P[11][1]*SPP[22] + P[14][1]*SPP[16]);
|
|
nextP[3][3] = P[3][3] + P[0][3]*SPP[1] + P[1][3]*SPP[19] + P[2][3]*SPP[15] - P[15][3]*SPP[21] + dvyNoise*sq(SQ[6] - 2*q0*q3) + dvzNoise*sq(SQ[5] + 2*q0*q2) + SPP[1]*(P[3][0] + P[0][0]*SPP[1] + P[1][0]*SPP[19] + P[2][0]*SPP[15] - P[15][0]*SPP[21]) + SPP[19]*(P[3][1] + P[0][1]*SPP[1] + P[1][1]*SPP[19] + P[2][1]*SPP[15] - P[15][1]*SPP[21]) + SPP[15]*(P[3][2] + P[0][2]*SPP[1] + P[1][2]*SPP[19] + P[2][2]*SPP[15] - P[15][2]*SPP[21]) - SPP[21]*(P[3][15] + P[0][15]*SPP[1] + P[2][15]*SPP[15] - P[15][15]*SPP[21] + P[1][15]*(SF[16]*SF[23] - SF[17]*SPP[21])) + dvxNoise*sq(SG[1] + SG[2] - SG[3] - SQ[7]);
|
|
nextP[0][4] = P[0][4]*SPP[5] - P[1][4]*SPP[4] + P[2][4]*SPP[8] + P[9][4]*SPP[22] + P[12][4]*SPP[18] + SF[22]*(P[0][15]*SPP[5] - P[1][15]*SPP[4] + P[2][15]*SPP[8] + P[9][15]*SPP[22] + P[12][15]*SPP[18]) + SPP[12]*(P[0][1]*SPP[5] - P[1][1]*SPP[4] + P[2][1]*SPP[8] + P[9][1]*SPP[22] + P[12][1]*SPP[18]) + SPP[20]*(P[0][0]*SPP[5] - P[1][0]*SPP[4] + P[2][0]*SPP[8] + P[9][0]*SPP[22] + P[12][0]*SPP[18]) + SPP[11]*(P[0][2]*SPP[5] - P[1][2]*SPP[4] + P[2][2]*SPP[8] + P[9][2]*SPP[22] + P[12][2]*SPP[18]);
|
|
nextP[1][4] = P[1][4]*SPP[6] - P[0][4]*SPP[2] - P[2][4]*SPP[9] + P[10][4]*SPP[22] + P[13][4]*SPP[17] + SF[22]*(P[1][15]*SPP[6] - P[0][15]*SPP[2] - P[2][15]*SPP[9] + P[10][15]*SPP[22] + P[13][15]*SPP[17]) + SPP[12]*(P[1][1]*SPP[6] - P[0][1]*SPP[2] - P[2][1]*SPP[9] + P[10][1]*SPP[22] + P[13][1]*SPP[17]) + SPP[20]*(P[1][0]*SPP[6] - P[0][0]*SPP[2] - P[2][0]*SPP[9] + P[10][0]*SPP[22] + P[13][0]*SPP[17]) + SPP[11]*(P[1][2]*SPP[6] - P[0][2]*SPP[2] - P[2][2]*SPP[9] + P[10][2]*SPP[22] + P[13][2]*SPP[17]);
|
|
nextP[2][4] = P[0][4]*SPP[14] - P[1][4]*SPP[3] + P[2][4]*SPP[13] + P[11][4]*SPP[22] + P[14][4]*SPP[16] + SF[22]*(P[0][15]*SPP[14] - P[1][15]*SPP[3] + P[2][15]*SPP[13] + P[11][15]*SPP[22] + P[14][15]*SPP[16]) + SPP[12]*(P[0][1]*SPP[14] - P[1][1]*SPP[3] + P[2][1]*SPP[13] + P[11][1]*SPP[22] + P[14][1]*SPP[16]) + SPP[20]*(P[0][0]*SPP[14] - P[1][0]*SPP[3] + P[2][0]*SPP[13] + P[11][0]*SPP[22] + P[14][0]*SPP[16]) + SPP[11]*(P[0][2]*SPP[14] - P[1][2]*SPP[3] + P[2][2]*SPP[13] + P[11][2]*SPP[22] + P[14][2]*SPP[16]);
|
|
nextP[3][4] = P[3][4] + SQ[2] + P[0][4]*SPP[1] + P[1][4]*SPP[19] + P[2][4]*SPP[15] - P[15][4]*SPP[21] + SF[22]*(P[3][15] + P[0][15]*SPP[1] + P[1][15]*SPP[19] + P[2][15]*SPP[15] - P[15][15]*SPP[21]) + SPP[12]*(P[3][1] + P[0][1]*SPP[1] + P[1][1]*SPP[19] + P[2][1]*SPP[15] - P[15][1]*SPP[21]) + SPP[20]*(P[3][0] + P[0][0]*SPP[1] + P[1][0]*SPP[19] + P[2][0]*SPP[15] - P[15][0]*SPP[21]) + SPP[11]*(P[3][2] + P[0][2]*SPP[1] + P[1][2]*SPP[19] + P[2][2]*SPP[15] - P[15][2]*SPP[21]);
|
|
nextP[4][4] = P[4][4] + P[15][4]*SF[22] + P[0][4]*SPP[20] + P[1][4]*SPP[12] + P[2][4]*SPP[11] + dvxNoise*sq(SQ[6] + 2*q0*q3) + dvzNoise*sq(SQ[4] - 2*q0*q1) + SF[22]*(P[4][15] + P[15][15]*SF[22] + P[0][15]*SPP[20] + P[1][15]*SPP[12] + P[2][15]*SPP[11]) + SPP[12]*(P[4][1] + P[15][1]*SF[22] + P[0][1]*SPP[20] + P[1][1]*SPP[12] + P[2][1]*SPP[11]) + SPP[20]*(P[4][0] + P[15][0]*SF[22] + P[0][0]*SPP[20] + P[1][0]*SPP[12] + P[2][0]*SPP[11]) + SPP[11]*(P[4][2] + P[15][2]*SF[22] + P[0][2]*SPP[20] + P[1][2]*SPP[12] + P[2][2]*SPP[11]) + dvyNoise*sq(SG[1] - SG[2] + SG[3] - SQ[7]);
|
|
nextP[0][5] = P[0][5]*SPP[5] - P[1][5]*SPP[4] + P[2][5]*SPP[8] + P[9][5]*SPP[22] + P[12][5]*SPP[18] + SF[20]*(P[0][15]*SPP[5] - P[1][15]*SPP[4] + P[2][15]*SPP[8] + P[9][15]*SPP[22] + P[12][15]*SPP[18]) - SPP[7]*(P[0][0]*SPP[5] - P[1][0]*SPP[4] + P[2][0]*SPP[8] + P[9][0]*SPP[22] + P[12][0]*SPP[18]) + SPP[0]*(P[0][2]*SPP[5] - P[1][2]*SPP[4] + P[2][2]*SPP[8] + P[9][2]*SPP[22] + P[12][2]*SPP[18]) + SPP[10]*(P[0][1]*SPP[5] - P[1][1]*SPP[4] + P[2][1]*SPP[8] + P[9][1]*SPP[22] + P[12][1]*SPP[18]);
|
|
nextP[1][5] = P[1][5]*SPP[6] - P[0][5]*SPP[2] - P[2][5]*SPP[9] + P[10][5]*SPP[22] + P[13][5]*SPP[17] + SF[20]*(P[1][15]*SPP[6] - P[0][15]*SPP[2] - P[2][15]*SPP[9] + P[10][15]*SPP[22] + P[13][15]*SPP[17]) - SPP[7]*(P[1][0]*SPP[6] - P[0][0]*SPP[2] - P[2][0]*SPP[9] + P[10][0]*SPP[22] + P[13][0]*SPP[17]) + SPP[0]*(P[1][2]*SPP[6] - P[0][2]*SPP[2] - P[2][2]*SPP[9] + P[10][2]*SPP[22] + P[13][2]*SPP[17]) + SPP[10]*(P[1][1]*SPP[6] - P[0][1]*SPP[2] - P[2][1]*SPP[9] + P[10][1]*SPP[22] + P[13][1]*SPP[17]);
|
|
nextP[2][5] = P[0][5]*SPP[14] - P[1][5]*SPP[3] + P[2][5]*SPP[13] + P[11][5]*SPP[22] + P[14][5]*SPP[16] + SF[20]*(P[0][15]*SPP[14] - P[1][15]*SPP[3] + P[2][15]*SPP[13] + P[11][15]*SPP[22] + P[14][15]*SPP[16]) - SPP[7]*(P[0][0]*SPP[14] - P[1][0]*SPP[3] + P[2][0]*SPP[13] + P[11][0]*SPP[22] + P[14][0]*SPP[16]) + SPP[0]*(P[0][2]*SPP[14] - P[1][2]*SPP[3] + P[2][2]*SPP[13] + P[11][2]*SPP[22] + P[14][2]*SPP[16]) + SPP[10]*(P[0][1]*SPP[14] - P[1][1]*SPP[3] + P[2][1]*SPP[13] + P[11][1]*SPP[22] + P[14][1]*SPP[16]);
|
|
nextP[3][5] = P[3][5] + SQ[1] + P[0][5]*SPP[1] + P[1][5]*SPP[19] + P[2][5]*SPP[15] - P[15][5]*SPP[21] + SF[20]*(P[3][15] + P[0][15]*SPP[1] + P[1][15]*SPP[19] + P[2][15]*SPP[15] - P[15][15]*SPP[21]) - SPP[7]*(P[3][0] + P[0][0]*SPP[1] + P[1][0]*SPP[19] + P[2][0]*SPP[15] - P[15][0]*SPP[21]) + SPP[0]*(P[3][2] + P[0][2]*SPP[1] + P[1][2]*SPP[19] + P[2][2]*SPP[15] - P[15][2]*SPP[21]) + SPP[10]*(P[3][1] + P[0][1]*SPP[1] + P[1][1]*SPP[19] + P[2][1]*SPP[15] - P[15][1]*SPP[21]);
|
|
nextP[4][5] = P[4][5] + SQ[0] + P[15][5]*SF[22] + P[0][5]*SPP[20] + P[1][5]*SPP[12] + P[2][5]*SPP[11] + SF[20]*(P[4][15] + P[15][15]*SF[22] + P[0][15]*SPP[20] + P[1][15]*SPP[12] + P[2][15]*SPP[11]) - SPP[7]*(P[4][0] + P[15][0]*SF[22] + P[0][0]*SPP[20] + P[1][0]*SPP[12] + P[2][0]*SPP[11]) + SPP[0]*(P[4][2] + P[15][2]*SF[22] + P[0][2]*SPP[20] + P[1][2]*SPP[12] + P[2][2]*SPP[11]) + SPP[10]*(P[4][1] + P[15][1]*SF[22] + P[0][1]*SPP[20] + P[1][1]*SPP[12] + P[2][1]*SPP[11]);
|
|
nextP[5][5] = P[5][5] + P[15][5]*SF[20] - P[0][5]*SPP[7] + P[1][5]*SPP[10] + P[2][5]*SPP[0] + dvxNoise*sq(SQ[5] - 2*q0*q2) + dvyNoise*sq(SQ[4] + 2*q0*q1) + SF[20]*(P[5][15] + P[15][15]*SF[20] - P[0][15]*SPP[7] + P[1][15]*SPP[10] + P[2][15]*SPP[0]) - SPP[7]*(P[5][0] + P[15][0]*SF[20] - P[0][0]*SPP[7] + P[1][0]*SPP[10] + P[2][0]*SPP[0]) + SPP[0]*(P[5][2] + P[15][2]*SF[20] - P[0][2]*SPP[7] + P[1][2]*SPP[10] + P[2][2]*SPP[0]) + SPP[10]*(P[5][1] + P[15][1]*SF[20] - P[0][1]*SPP[7] + P[1][1]*SPP[10] + P[2][1]*SPP[0]) + dvzNoise*sq(SG[1] - SG[2] - SG[3] + SQ[7]);
|
|
nextP[0][6] = P[0][6]*SPP[5] - P[1][6]*SPP[4] + P[2][6]*SPP[8] + P[9][6]*SPP[22] + P[12][6]*SPP[18] + dt*(P[0][3]*SPP[5] - P[1][3]*SPP[4] + P[2][3]*SPP[8] + P[9][3]*SPP[22] + P[12][3]*SPP[18]);
|
|
nextP[1][6] = P[1][6]*SPP[6] - P[0][6]*SPP[2] - P[2][6]*SPP[9] + P[10][6]*SPP[22] + P[13][6]*SPP[17] + dt*(P[1][3]*SPP[6] - P[0][3]*SPP[2] - P[2][3]*SPP[9] + P[10][3]*SPP[22] + P[13][3]*SPP[17]);
|
|
nextP[2][6] = P[0][6]*SPP[14] - P[1][6]*SPP[3] + P[2][6]*SPP[13] + P[11][6]*SPP[22] + P[14][6]*SPP[16] + dt*(P[0][3]*SPP[14] - P[1][3]*SPP[3] + P[2][3]*SPP[13] + P[11][3]*SPP[22] + P[14][3]*SPP[16]);
|
|
nextP[3][6] = P[3][6] + P[0][6]*SPP[1] + P[1][6]*SPP[19] + P[2][6]*SPP[15] - P[15][6]*SPP[21] + dt*(P[3][3] + P[0][3]*SPP[1] + P[1][3]*SPP[19] + P[2][3]*SPP[15] - P[15][3]*SPP[21]);
|
|
nextP[4][6] = P[4][6] + P[15][6]*SF[22] + P[0][6]*SPP[20] + P[1][6]*SPP[12] + P[2][6]*SPP[11] + dt*(P[4][3] + P[15][3]*SF[22] + P[0][3]*SPP[20] + P[1][3]*SPP[12] + P[2][3]*SPP[11]);
|
|
nextP[5][6] = P[5][6] + P[15][6]*SF[20] - P[0][6]*SPP[7] + P[1][6]*SPP[10] + P[2][6]*SPP[0] + dt*(P[5][3] + P[15][3]*SF[20] - P[0][3]*SPP[7] + P[1][3]*SPP[10] + P[2][3]*SPP[0]);
|
|
nextP[6][6] = P[6][6] + P[3][6]*dt + dt*(P[6][3] + P[3][3]*dt);
|
|
nextP[0][7] = P[0][7]*SPP[5] - P[1][7]*SPP[4] + P[2][7]*SPP[8] + P[9][7]*SPP[22] + P[12][7]*SPP[18] + dt*(P[0][4]*SPP[5] - P[1][4]*SPP[4] + P[2][4]*SPP[8] + P[9][4]*SPP[22] + P[12][4]*SPP[18]);
|
|
nextP[1][7] = P[1][7]*SPP[6] - P[0][7]*SPP[2] - P[2][7]*SPP[9] + P[10][7]*SPP[22] + P[13][7]*SPP[17] + dt*(P[1][4]*SPP[6] - P[0][4]*SPP[2] - P[2][4]*SPP[9] + P[10][4]*SPP[22] + P[13][4]*SPP[17]);
|
|
nextP[2][7] = P[0][7]*SPP[14] - P[1][7]*SPP[3] + P[2][7]*SPP[13] + P[11][7]*SPP[22] + P[14][7]*SPP[16] + dt*(P[0][4]*SPP[14] - P[1][4]*SPP[3] + P[2][4]*SPP[13] + P[11][4]*SPP[22] + P[14][4]*SPP[16]);
|
|
nextP[3][7] = P[3][7] + P[0][7]*SPP[1] + P[1][7]*SPP[19] + P[2][7]*SPP[15] - P[15][7]*SPP[21] + dt*(P[3][4] + P[0][4]*SPP[1] + P[1][4]*SPP[19] + P[2][4]*SPP[15] - P[15][4]*SPP[21]);
|
|
nextP[4][7] = P[4][7] + P[15][7]*SF[22] + P[0][7]*SPP[20] + P[1][7]*SPP[12] + P[2][7]*SPP[11] + dt*(P[4][4] + P[15][4]*SF[22] + P[0][4]*SPP[20] + P[1][4]*SPP[12] + P[2][4]*SPP[11]);
|
|
nextP[5][7] = P[5][7] + P[15][7]*SF[20] - P[0][7]*SPP[7] + P[1][7]*SPP[10] + P[2][7]*SPP[0] + dt*(P[5][4] + P[15][4]*SF[20] - P[0][4]*SPP[7] + P[1][4]*SPP[10] + P[2][4]*SPP[0]);
|
|
nextP[6][7] = P[6][7] + P[3][7]*dt + dt*(P[6][4] + P[3][4]*dt);
|
|
nextP[7][7] = P[7][7] + P[4][7]*dt + dt*(P[7][4] + P[4][4]*dt);
|
|
nextP[0][8] = P[0][8]*SPP[5] - P[1][8]*SPP[4] + P[2][8]*SPP[8] + P[9][8]*SPP[22] + P[12][8]*SPP[18] + dt*(P[0][5]*SPP[5] - P[1][5]*SPP[4] + P[2][5]*SPP[8] + P[9][5]*SPP[22] + P[12][5]*SPP[18]);
|
|
nextP[1][8] = P[1][8]*SPP[6] - P[0][8]*SPP[2] - P[2][8]*SPP[9] + P[10][8]*SPP[22] + P[13][8]*SPP[17] + dt*(P[1][5]*SPP[6] - P[0][5]*SPP[2] - P[2][5]*SPP[9] + P[10][5]*SPP[22] + P[13][5]*SPP[17]);
|
|
nextP[2][8] = P[0][8]*SPP[14] - P[1][8]*SPP[3] + P[2][8]*SPP[13] + P[11][8]*SPP[22] + P[14][8]*SPP[16] + dt*(P[0][5]*SPP[14] - P[1][5]*SPP[3] + P[2][5]*SPP[13] + P[11][5]*SPP[22] + P[14][5]*SPP[16]);
|
|
nextP[3][8] = P[3][8] + P[0][8]*SPP[1] + P[1][8]*SPP[19] + P[2][8]*SPP[15] - P[15][8]*SPP[21] + dt*(P[3][5] + P[0][5]*SPP[1] + P[1][5]*SPP[19] + P[2][5]*SPP[15] - P[15][5]*SPP[21]);
|
|
nextP[4][8] = P[4][8] + P[15][8]*SF[22] + P[0][8]*SPP[20] + P[1][8]*SPP[12] + P[2][8]*SPP[11] + dt*(P[4][5] + P[15][5]*SF[22] + P[0][5]*SPP[20] + P[1][5]*SPP[12] + P[2][5]*SPP[11]);
|
|
nextP[5][8] = P[5][8] + P[15][8]*SF[20] - P[0][8]*SPP[7] + P[1][8]*SPP[10] + P[2][8]*SPP[0] + dt*(P[5][5] + P[15][5]*SF[20] - P[0][5]*SPP[7] + P[1][5]*SPP[10] + P[2][5]*SPP[0]);
|
|
nextP[6][8] = P[6][8] + P[3][8]*dt + dt*(P[6][5] + P[3][5]*dt);
|
|
nextP[7][8] = P[7][8] + P[4][8]*dt + dt*(P[7][5] + P[4][5]*dt);
|
|
nextP[8][8] = P[8][8] + P[5][8]*dt + dt*(P[8][5] + P[5][5]*dt);
|
|
nextP[0][9] = P[0][9]*SPP[5] - P[1][9]*SPP[4] + P[2][9]*SPP[8] + P[9][9]*SPP[22] + P[12][9]*SPP[18];
|
|
nextP[1][9] = P[1][9]*SPP[6] - P[0][9]*SPP[2] - P[2][9]*SPP[9] + P[10][9]*SPP[22] + P[13][9]*SPP[17];
|
|
nextP[2][9] = P[0][9]*SPP[14] - P[1][9]*SPP[3] + P[2][9]*SPP[13] + P[11][9]*SPP[22] + P[14][9]*SPP[16];
|
|
nextP[3][9] = P[3][9] + P[0][9]*SPP[1] + P[1][9]*SPP[19] + P[2][9]*SPP[15] - P[15][9]*SPP[21];
|
|
nextP[4][9] = P[4][9] + P[15][9]*SF[22] + P[0][9]*SPP[20] + P[1][9]*SPP[12] + P[2][9]*SPP[11];
|
|
nextP[5][9] = P[5][9] + P[15][9]*SF[20] - P[0][9]*SPP[7] + P[1][9]*SPP[10] + P[2][9]*SPP[0];
|
|
nextP[6][9] = P[6][9] + P[3][9]*dt;
|
|
nextP[7][9] = P[7][9] + P[4][9]*dt;
|
|
nextP[8][9] = P[8][9] + P[5][9]*dt;
|
|
nextP[9][9] = P[9][9];
|
|
nextP[0][10] = P[0][10]*SPP[5] - P[1][10]*SPP[4] + P[2][10]*SPP[8] + P[9][10]*SPP[22] + P[12][10]*SPP[18];
|
|
nextP[1][10] = P[1][10]*SPP[6] - P[0][10]*SPP[2] - P[2][10]*SPP[9] + P[10][10]*SPP[22] + P[13][10]*SPP[17];
|
|
nextP[2][10] = P[0][10]*SPP[14] - P[1][10]*SPP[3] + P[2][10]*SPP[13] + P[11][10]*SPP[22] + P[14][10]*SPP[16];
|
|
nextP[3][10] = P[3][10] + P[0][10]*SPP[1] + P[1][10]*SPP[19] + P[2][10]*SPP[15] - P[15][10]*SPP[21];
|
|
nextP[4][10] = P[4][10] + P[15][10]*SF[22] + P[0][10]*SPP[20] + P[1][10]*SPP[12] + P[2][10]*SPP[11];
|
|
nextP[5][10] = P[5][10] + P[15][10]*SF[20] - P[0][10]*SPP[7] + P[1][10]*SPP[10] + P[2][10]*SPP[0];
|
|
nextP[6][10] = P[6][10] + P[3][10]*dt;
|
|
nextP[7][10] = P[7][10] + P[4][10]*dt;
|
|
nextP[8][10] = P[8][10] + P[5][10]*dt;
|
|
nextP[9][10] = P[9][10];
|
|
nextP[10][10] = P[10][10];
|
|
nextP[0][11] = P[0][11]*SPP[5] - P[1][11]*SPP[4] + P[2][11]*SPP[8] + P[9][11]*SPP[22] + P[12][11]*SPP[18];
|
|
nextP[1][11] = P[1][11]*SPP[6] - P[0][11]*SPP[2] - P[2][11]*SPP[9] + P[10][11]*SPP[22] + P[13][11]*SPP[17];
|
|
nextP[2][11] = P[0][11]*SPP[14] - P[1][11]*SPP[3] + P[2][11]*SPP[13] + P[11][11]*SPP[22] + P[14][11]*SPP[16];
|
|
nextP[3][11] = P[3][11] + P[0][11]*SPP[1] + P[1][11]*SPP[19] + P[2][11]*SPP[15] - P[15][11]*SPP[21];
|
|
nextP[4][11] = P[4][11] + P[15][11]*SF[22] + P[0][11]*SPP[20] + P[1][11]*SPP[12] + P[2][11]*SPP[11];
|
|
nextP[5][11] = P[5][11] + P[15][11]*SF[20] - P[0][11]*SPP[7] + P[1][11]*SPP[10] + P[2][11]*SPP[0];
|
|
nextP[6][11] = P[6][11] + P[3][11]*dt;
|
|
nextP[7][11] = P[7][11] + P[4][11]*dt;
|
|
nextP[8][11] = P[8][11] + P[5][11]*dt;
|
|
nextP[9][11] = P[9][11];
|
|
nextP[10][11] = P[10][11];
|
|
nextP[11][11] = P[11][11];
|
|
nextP[0][12] = P[0][12]*SPP[5] - P[1][12]*SPP[4] + P[2][12]*SPP[8] + P[9][12]*SPP[22] + P[12][12]*SPP[18];
|
|
nextP[1][12] = P[1][12]*SPP[6] - P[0][12]*SPP[2] - P[2][12]*SPP[9] + P[10][12]*SPP[22] + P[13][12]*SPP[17];
|
|
nextP[2][12] = P[0][12]*SPP[14] - P[1][12]*SPP[3] + P[2][12]*SPP[13] + P[11][12]*SPP[22] + P[14][12]*SPP[16];
|
|
nextP[3][12] = P[3][12] + P[0][12]*SPP[1] + P[1][12]*SPP[19] + P[2][12]*SPP[15] - P[15][12]*SPP[21];
|
|
nextP[4][12] = P[4][12] + P[15][12]*SF[22] + P[0][12]*SPP[20] + P[1][12]*SPP[12] + P[2][12]*SPP[11];
|
|
nextP[5][12] = P[5][12] + P[15][12]*SF[20] - P[0][12]*SPP[7] + P[1][12]*SPP[10] + P[2][12]*SPP[0];
|
|
nextP[6][12] = P[6][12] + P[3][12]*dt;
|
|
nextP[7][12] = P[7][12] + P[4][12]*dt;
|
|
nextP[8][12] = P[8][12] + P[5][12]*dt;
|
|
nextP[9][12] = P[9][12];
|
|
nextP[10][12] = P[10][12];
|
|
nextP[11][12] = P[11][12];
|
|
nextP[12][12] = P[12][12];
|
|
nextP[0][13] = P[0][13]*SPP[5] - P[1][13]*SPP[4] + P[2][13]*SPP[8] + P[9][13]*SPP[22] + P[12][13]*SPP[18];
|
|
nextP[1][13] = P[1][13]*SPP[6] - P[0][13]*SPP[2] - P[2][13]*SPP[9] + P[10][13]*SPP[22] + P[13][13]*SPP[17];
|
|
nextP[2][13] = P[0][13]*SPP[14] - P[1][13]*SPP[3] + P[2][13]*SPP[13] + P[11][13]*SPP[22] + P[14][13]*SPP[16];
|
|
nextP[3][13] = P[3][13] + P[0][13]*SPP[1] + P[1][13]*SPP[19] + P[2][13]*SPP[15] - P[15][13]*SPP[21];
|
|
nextP[4][13] = P[4][13] + P[15][13]*SF[22] + P[0][13]*SPP[20] + P[1][13]*SPP[12] + P[2][13]*SPP[11];
|
|
nextP[5][13] = P[5][13] + P[15][13]*SF[20] - P[0][13]*SPP[7] + P[1][13]*SPP[10] + P[2][13]*SPP[0];
|
|
nextP[6][13] = P[6][13] + P[3][13]*dt;
|
|
nextP[7][13] = P[7][13] + P[4][13]*dt;
|
|
nextP[8][13] = P[8][13] + P[5][13]*dt;
|
|
nextP[9][13] = P[9][13];
|
|
nextP[10][13] = P[10][13];
|
|
nextP[11][13] = P[11][13];
|
|
nextP[12][13] = P[12][13];
|
|
nextP[13][13] = P[13][13];
|
|
nextP[0][14] = P[0][14]*SPP[5] - P[1][14]*SPP[4] + P[2][14]*SPP[8] + P[9][14]*SPP[22] + P[12][14]*SPP[18];
|
|
nextP[1][14] = P[1][14]*SPP[6] - P[0][14]*SPP[2] - P[2][14]*SPP[9] + P[10][14]*SPP[22] + P[13][14]*SPP[17];
|
|
nextP[2][14] = P[0][14]*SPP[14] - P[1][14]*SPP[3] + P[2][14]*SPP[13] + P[11][14]*SPP[22] + P[14][14]*SPP[16];
|
|
nextP[3][14] = P[3][14] + P[0][14]*SPP[1] + P[1][14]*SPP[19] + P[2][14]*SPP[15] - P[15][14]*SPP[21];
|
|
nextP[4][14] = P[4][14] + P[15][14]*SF[22] + P[0][14]*SPP[20] + P[1][14]*SPP[12] + P[2][14]*SPP[11];
|
|
nextP[5][14] = P[5][14] + P[15][14]*SF[20] - P[0][14]*SPP[7] + P[1][14]*SPP[10] + P[2][14]*SPP[0];
|
|
nextP[6][14] = P[6][14] + P[3][14]*dt;
|
|
nextP[7][14] = P[7][14] + P[4][14]*dt;
|
|
nextP[8][14] = P[8][14] + P[5][14]*dt;
|
|
nextP[9][14] = P[9][14];
|
|
nextP[10][14] = P[10][14];
|
|
nextP[11][14] = P[11][14];
|
|
nextP[12][14] = P[12][14];
|
|
nextP[13][14] = P[13][14];
|
|
nextP[14][14] = P[14][14];
|
|
nextP[0][15] = P[0][15]*SPP[5] - P[1][15]*SPP[4] + P[2][15]*SPP[8] + P[9][15]*SPP[22] + P[12][15]*SPP[18];
|
|
nextP[1][15] = P[1][15]*SPP[6] - P[0][15]*SPP[2] - P[2][15]*SPP[9] + P[10][15]*SPP[22] + P[13][15]*SPP[17];
|
|
nextP[2][15] = P[0][15]*SPP[14] - P[1][15]*SPP[3] + P[2][15]*SPP[13] + P[11][15]*SPP[22] + P[14][15]*SPP[16];
|
|
nextP[3][15] = P[3][15] + P[0][15]*SPP[1] + P[1][15]*SPP[19] + P[2][15]*SPP[15] - P[15][15]*SPP[21];
|
|
nextP[4][15] = P[4][15] + P[15][15]*SF[22] + P[0][15]*SPP[20] + P[1][15]*SPP[12] + P[2][15]*SPP[11];
|
|
nextP[5][15] = P[5][15] + P[15][15]*SF[20] - P[0][15]*SPP[7] + P[1][15]*SPP[10] + P[2][15]*SPP[0];
|
|
nextP[6][15] = P[6][15] + P[3][15]*dt;
|
|
nextP[7][15] = P[7][15] + P[4][15]*dt;
|
|
nextP[8][15] = P[8][15] + P[5][15]*dt;
|
|
nextP[9][15] = P[9][15];
|
|
nextP[10][15] = P[10][15];
|
|
nextP[11][15] = P[11][15];
|
|
nextP[12][15] = P[12][15];
|
|
nextP[13][15] = P[13][15];
|
|
nextP[14][15] = P[14][15];
|
|
nextP[15][15] = P[15][15];
|
|
|
|
if (stateIndexLim > 15) {
|
|
nextP[0][16] = P[0][16]*SPP[5] - P[1][16]*SPP[4] + P[2][16]*SPP[8] + P[9][16]*SPP[22] + P[12][16]*SPP[18];
|
|
nextP[1][16] = P[1][16]*SPP[6] - P[0][16]*SPP[2] - P[2][16]*SPP[9] + P[10][16]*SPP[22] + P[13][16]*SPP[17];
|
|
nextP[2][16] = P[0][16]*SPP[14] - P[1][16]*SPP[3] + P[2][16]*SPP[13] + P[11][16]*SPP[22] + P[14][16]*SPP[16];
|
|
nextP[3][16] = P[3][16] + P[0][16]*SPP[1] + P[1][16]*SPP[19] + P[2][16]*SPP[15] - P[15][16]*SPP[21];
|
|
nextP[4][16] = P[4][16] + P[15][16]*SF[22] + P[0][16]*SPP[20] + P[1][16]*SPP[12] + P[2][16]*SPP[11];
|
|
nextP[5][16] = P[5][16] + P[15][16]*SF[20] - P[0][16]*SPP[7] + P[1][16]*SPP[10] + P[2][16]*SPP[0];
|
|
nextP[6][16] = P[6][16] + P[3][16]*dt;
|
|
nextP[7][16] = P[7][16] + P[4][16]*dt;
|
|
nextP[8][16] = P[8][16] + P[5][16]*dt;
|
|
nextP[9][16] = P[9][16];
|
|
nextP[10][16] = P[10][16];
|
|
nextP[11][16] = P[11][16];
|
|
nextP[12][16] = P[12][16];
|
|
nextP[13][16] = P[13][16];
|
|
nextP[14][16] = P[14][16];
|
|
nextP[15][16] = P[15][16];
|
|
nextP[16][16] = P[16][16];
|
|
nextP[0][17] = P[0][17]*SPP[5] - P[1][17]*SPP[4] + P[2][17]*SPP[8] + P[9][17]*SPP[22] + P[12][17]*SPP[18];
|
|
nextP[1][17] = P[1][17]*SPP[6] - P[0][17]*SPP[2] - P[2][17]*SPP[9] + P[10][17]*SPP[22] + P[13][17]*SPP[17];
|
|
nextP[2][17] = P[0][17]*SPP[14] - P[1][17]*SPP[3] + P[2][17]*SPP[13] + P[11][17]*SPP[22] + P[14][17]*SPP[16];
|
|
nextP[3][17] = P[3][17] + P[0][17]*SPP[1] + P[1][17]*SPP[19] + P[2][17]*SPP[15] - P[15][17]*SPP[21];
|
|
nextP[4][17] = P[4][17] + P[15][17]*SF[22] + P[0][17]*SPP[20] + P[1][17]*SPP[12] + P[2][17]*SPP[11];
|
|
nextP[5][17] = P[5][17] + P[15][17]*SF[20] - P[0][17]*SPP[7] + P[1][17]*SPP[10] + P[2][17]*SPP[0];
|
|
nextP[6][17] = P[6][17] + P[3][17]*dt;
|
|
nextP[7][17] = P[7][17] + P[4][17]*dt;
|
|
nextP[8][17] = P[8][17] + P[5][17]*dt;
|
|
nextP[9][17] = P[9][17];
|
|
nextP[10][17] = P[10][17];
|
|
nextP[11][17] = P[11][17];
|
|
nextP[12][17] = P[12][17];
|
|
nextP[13][17] = P[13][17];
|
|
nextP[14][17] = P[14][17];
|
|
nextP[15][17] = P[15][17];
|
|
nextP[16][17] = P[16][17];
|
|
nextP[17][17] = P[17][17];
|
|
nextP[0][18] = P[0][18]*SPP[5] - P[1][18]*SPP[4] + P[2][18]*SPP[8] + P[9][18]*SPP[22] + P[12][18]*SPP[18];
|
|
nextP[1][18] = P[1][18]*SPP[6] - P[0][18]*SPP[2] - P[2][18]*SPP[9] + P[10][18]*SPP[22] + P[13][18]*SPP[17];
|
|
nextP[2][18] = P[0][18]*SPP[14] - P[1][18]*SPP[3] + P[2][18]*SPP[13] + P[11][18]*SPP[22] + P[14][18]*SPP[16];
|
|
nextP[3][18] = P[3][18] + P[0][18]*SPP[1] + P[1][18]*SPP[19] + P[2][18]*SPP[15] - P[15][18]*SPP[21];
|
|
nextP[4][18] = P[4][18] + P[15][18]*SF[22] + P[0][18]*SPP[20] + P[1][18]*SPP[12] + P[2][18]*SPP[11];
|
|
nextP[5][18] = P[5][18] + P[15][18]*SF[20] - P[0][18]*SPP[7] + P[1][18]*SPP[10] + P[2][18]*SPP[0];
|
|
nextP[6][18] = P[6][18] + P[3][18]*dt;
|
|
nextP[7][18] = P[7][18] + P[4][18]*dt;
|
|
nextP[8][18] = P[8][18] + P[5][18]*dt;
|
|
nextP[9][18] = P[9][18];
|
|
nextP[10][18] = P[10][18];
|
|
nextP[11][18] = P[11][18];
|
|
nextP[12][18] = P[12][18];
|
|
nextP[13][18] = P[13][18];
|
|
nextP[14][18] = P[14][18];
|
|
nextP[15][18] = P[15][18];
|
|
nextP[16][18] = P[16][18];
|
|
nextP[17][18] = P[17][18];
|
|
nextP[18][18] = P[18][18];
|
|
nextP[0][19] = P[0][19]*SPP[5] - P[1][19]*SPP[4] + P[2][19]*SPP[8] + P[9][19]*SPP[22] + P[12][19]*SPP[18];
|
|
nextP[1][19] = P[1][19]*SPP[6] - P[0][19]*SPP[2] - P[2][19]*SPP[9] + P[10][19]*SPP[22] + P[13][19]*SPP[17];
|
|
nextP[2][19] = P[0][19]*SPP[14] - P[1][19]*SPP[3] + P[2][19]*SPP[13] + P[11][19]*SPP[22] + P[14][19]*SPP[16];
|
|
nextP[3][19] = P[3][19] + P[0][19]*SPP[1] + P[1][19]*SPP[19] + P[2][19]*SPP[15] - P[15][19]*SPP[21];
|
|
nextP[4][19] = P[4][19] + P[15][19]*SF[22] + P[0][19]*SPP[20] + P[1][19]*SPP[12] + P[2][19]*SPP[11];
|
|
nextP[5][19] = P[5][19] + P[15][19]*SF[20] - P[0][19]*SPP[7] + P[1][19]*SPP[10] + P[2][19]*SPP[0];
|
|
nextP[6][19] = P[6][19] + P[3][19]*dt;
|
|
nextP[7][19] = P[7][19] + P[4][19]*dt;
|
|
nextP[8][19] = P[8][19] + P[5][19]*dt;
|
|
nextP[9][19] = P[9][19];
|
|
nextP[10][19] = P[10][19];
|
|
nextP[11][19] = P[11][19];
|
|
nextP[12][19] = P[12][19];
|
|
nextP[13][19] = P[13][19];
|
|
nextP[14][19] = P[14][19];
|
|
nextP[15][19] = P[15][19];
|
|
nextP[16][19] = P[16][19];
|
|
nextP[17][19] = P[17][19];
|
|
nextP[18][19] = P[18][19];
|
|
nextP[19][19] = P[19][19];
|
|
nextP[0][20] = P[0][20]*SPP[5] - P[1][20]*SPP[4] + P[2][20]*SPP[8] + P[9][20]*SPP[22] + P[12][20]*SPP[18];
|
|
nextP[1][20] = P[1][20]*SPP[6] - P[0][20]*SPP[2] - P[2][20]*SPP[9] + P[10][20]*SPP[22] + P[13][20]*SPP[17];
|
|
nextP[2][20] = P[0][20]*SPP[14] - P[1][20]*SPP[3] + P[2][20]*SPP[13] + P[11][20]*SPP[22] + P[14][20]*SPP[16];
|
|
nextP[3][20] = P[3][20] + P[0][20]*SPP[1] + P[1][20]*SPP[19] + P[2][20]*SPP[15] - P[15][20]*SPP[21];
|
|
nextP[4][20] = P[4][20] + P[15][20]*SF[22] + P[0][20]*SPP[20] + P[1][20]*SPP[12] + P[2][20]*SPP[11];
|
|
nextP[5][20] = P[5][20] + P[15][20]*SF[20] - P[0][20]*SPP[7] + P[1][20]*SPP[10] + P[2][20]*SPP[0];
|
|
nextP[6][20] = P[6][20] + P[3][20]*dt;
|
|
nextP[7][20] = P[7][20] + P[4][20]*dt;
|
|
nextP[8][20] = P[8][20] + P[5][20]*dt;
|
|
nextP[9][20] = P[9][20];
|
|
nextP[10][20] = P[10][20];
|
|
nextP[11][20] = P[11][20];
|
|
nextP[12][20] = P[12][20];
|
|
nextP[13][20] = P[13][20];
|
|
nextP[14][20] = P[14][20];
|
|
nextP[15][20] = P[15][20];
|
|
nextP[16][20] = P[16][20];
|
|
nextP[17][20] = P[17][20];
|
|
nextP[18][20] = P[18][20];
|
|
nextP[19][20] = P[19][20];
|
|
nextP[20][20] = P[20][20];
|
|
nextP[0][21] = P[0][21]*SPP[5] - P[1][21]*SPP[4] + P[2][21]*SPP[8] + P[9][21]*SPP[22] + P[12][21]*SPP[18];
|
|
nextP[1][21] = P[1][21]*SPP[6] - P[0][21]*SPP[2] - P[2][21]*SPP[9] + P[10][21]*SPP[22] + P[13][21]*SPP[17];
|
|
nextP[2][21] = P[0][21]*SPP[14] - P[1][21]*SPP[3] + P[2][21]*SPP[13] + P[11][21]*SPP[22] + P[14][21]*SPP[16];
|
|
nextP[3][21] = P[3][21] + P[0][21]*SPP[1] + P[1][21]*SPP[19] + P[2][21]*SPP[15] - P[15][21]*SPP[21];
|
|
nextP[4][21] = P[4][21] + P[15][21]*SF[22] + P[0][21]*SPP[20] + P[1][21]*SPP[12] + P[2][21]*SPP[11];
|
|
nextP[5][21] = P[5][21] + P[15][21]*SF[20] - P[0][21]*SPP[7] + P[1][21]*SPP[10] + P[2][21]*SPP[0];
|
|
nextP[6][21] = P[6][21] + P[3][21]*dt;
|
|
nextP[7][21] = P[7][21] + P[4][21]*dt;
|
|
nextP[8][21] = P[8][21] + P[5][21]*dt;
|
|
nextP[9][21] = P[9][21];
|
|
nextP[10][21] = P[10][21];
|
|
nextP[11][21] = P[11][21];
|
|
nextP[12][21] = P[12][21];
|
|
nextP[13][21] = P[13][21];
|
|
nextP[14][21] = P[14][21];
|
|
nextP[15][21] = P[15][21];
|
|
nextP[16][21] = P[16][21];
|
|
nextP[17][21] = P[17][21];
|
|
nextP[18][21] = P[18][21];
|
|
nextP[19][21] = P[19][21];
|
|
nextP[20][21] = P[20][21];
|
|
nextP[21][21] = P[21][21];
|
|
|
|
if (stateIndexLim > 21) {
|
|
nextP[0][22] = P[0][22]*SPP[5] - P[1][22]*SPP[4] + P[2][22]*SPP[8] + P[9][22]*SPP[22] + P[12][22]*SPP[18];
|
|
nextP[1][22] = P[1][22]*SPP[6] - P[0][22]*SPP[2] - P[2][22]*SPP[9] + P[10][22]*SPP[22] + P[13][22]*SPP[17];
|
|
nextP[2][22] = P[0][22]*SPP[14] - P[1][22]*SPP[3] + P[2][22]*SPP[13] + P[11][22]*SPP[22] + P[14][22]*SPP[16];
|
|
nextP[3][22] = P[3][22] + P[0][22]*SPP[1] + P[1][22]*SPP[19] + P[2][22]*SPP[15] - P[15][22]*SPP[21];
|
|
nextP[4][22] = P[4][22] + P[15][22]*SF[22] + P[0][22]*SPP[20] + P[1][22]*SPP[12] + P[2][22]*SPP[11];
|
|
nextP[5][22] = P[5][22] + P[15][22]*SF[20] - P[0][22]*SPP[7] + P[1][22]*SPP[10] + P[2][22]*SPP[0];
|
|
nextP[6][22] = P[6][22] + P[3][22]*dt;
|
|
nextP[7][22] = P[7][22] + P[4][22]*dt;
|
|
nextP[8][22] = P[8][22] + P[5][22]*dt;
|
|
nextP[9][22] = P[9][22];
|
|
nextP[10][22] = P[10][22];
|
|
nextP[11][22] = P[11][22];
|
|
nextP[12][22] = P[12][22];
|
|
nextP[13][22] = P[13][22];
|
|
nextP[14][22] = P[14][22];
|
|
nextP[15][22] = P[15][22];
|
|
nextP[16][22] = P[16][22];
|
|
nextP[17][22] = P[17][22];
|
|
nextP[18][22] = P[18][22];
|
|
nextP[19][22] = P[19][22];
|
|
nextP[20][22] = P[20][22];
|
|
nextP[21][22] = P[21][22];
|
|
nextP[22][22] = P[22][22];
|
|
nextP[0][23] = P[0][23]*SPP[5] - P[1][23]*SPP[4] + P[2][23]*SPP[8] + P[9][23]*SPP[22] + P[12][23]*SPP[18];
|
|
nextP[1][23] = P[1][23]*SPP[6] - P[0][23]*SPP[2] - P[2][23]*SPP[9] + P[10][23]*SPP[22] + P[13][23]*SPP[17];
|
|
nextP[2][23] = P[0][23]*SPP[14] - P[1][23]*SPP[3] + P[2][23]*SPP[13] + P[11][23]*SPP[22] + P[14][23]*SPP[16];
|
|
nextP[3][23] = P[3][23] + P[0][23]*SPP[1] + P[1][23]*SPP[19] + P[2][23]*SPP[15] - P[15][23]*SPP[21];
|
|
nextP[4][23] = P[4][23] + P[15][23]*SF[22] + P[0][23]*SPP[20] + P[1][23]*SPP[12] + P[2][23]*SPP[11];
|
|
nextP[5][23] = P[5][23] + P[15][23]*SF[20] - P[0][23]*SPP[7] + P[1][23]*SPP[10] + P[2][23]*SPP[0];
|
|
nextP[6][23] = P[6][23] + P[3][23]*dt;
|
|
nextP[7][23] = P[7][23] + P[4][23]*dt;
|
|
nextP[8][23] = P[8][23] + P[5][23]*dt;
|
|
nextP[9][23] = P[9][23];
|
|
nextP[10][23] = P[10][23];
|
|
nextP[11][23] = P[11][23];
|
|
nextP[12][23] = P[12][23];
|
|
nextP[13][23] = P[13][23];
|
|
nextP[14][23] = P[14][23];
|
|
nextP[15][23] = P[15][23];
|
|
nextP[16][23] = P[16][23];
|
|
nextP[17][23] = P[17][23];
|
|
nextP[18][23] = P[18][23];
|
|
nextP[19][23] = P[19][23];
|
|
nextP[20][23] = P[20][23];
|
|
nextP[21][23] = P[21][23];
|
|
nextP[22][23] = P[22][23];
|
|
nextP[23][23] = P[23][23];
|
|
}
|
|
}
|
|
|
|
// Copy upper diagonal to lower diagonal taking advantage of symmetry
|
|
for (uint8_t colIndex=0; colIndex<=stateIndexLim; colIndex++)
|
|
{
|
|
for (uint8_t rowIndex=0; rowIndex<colIndex; rowIndex++)
|
|
{
|
|
nextP[colIndex][rowIndex] = nextP[rowIndex][colIndex];
|
|
}
|
|
}
|
|
|
|
// add the general state process noise variances
|
|
for (uint8_t i=0; i<=stateIndexLim; i++)
|
|
{
|
|
nextP[i][i] = nextP[i][i] + processNoise[i];
|
|
}
|
|
|
|
// if the total position variance exceeds 1e4 (100m), then stop covariance
|
|
// growth by setting the predicted to the previous values
|
|
// This prevent an ill conditioned matrix from occurring for long periods
|
|
// without GPS
|
|
if ((P[6][6] + P[7][7]) > 1e4f)
|
|
{
|
|
for (uint8_t i=6; i<=7; i++)
|
|
{
|
|
for (uint8_t j=0; j<=stateIndexLim; j++)
|
|
{
|
|
nextP[i][j] = P[i][j];
|
|
nextP[j][i] = P[j][i];
|
|
}
|
|
}
|
|
}
|
|
|
|
// copy covariances to output
|
|
CopyCovariances();
|
|
|
|
// constrain diagonals to prevent ill-conditioning
|
|
ConstrainVariances();
|
|
|
|
hal.util->perf_end(_perf_CovariancePrediction);
|
|
}
|
|
|
|
// zero specified range of rows in the state covariance matrix
|
|
void NavEKF2_core::zeroRows(Matrix24 &covMat, uint8_t first, uint8_t last)
|
|
{
|
|
uint8_t row;
|
|
for (row=first; row<=last; row++)
|
|
{
|
|
memset(&covMat[row][0], 0, sizeof(covMat[0][0])*24);
|
|
}
|
|
}
|
|
|
|
// zero specified range of columns in the state covariance matrix
|
|
void NavEKF2_core::zeroCols(Matrix24 &covMat, uint8_t first, uint8_t last)
|
|
{
|
|
uint8_t row;
|
|
for (row=0; row<=23; row++)
|
|
{
|
|
memset(&covMat[row][first], 0, sizeof(covMat[0][0])*(1+last-first));
|
|
}
|
|
}
|
|
|
|
// reset the output data to the current EKF state
|
|
void NavEKF2_core::StoreOutputReset()
|
|
{
|
|
outputDataNew.quat = stateStruct.quat;
|
|
outputDataNew.velocity = stateStruct.velocity;
|
|
outputDataNew.position = stateStruct.position;
|
|
// write current measurement to entire table
|
|
for (uint8_t i=0; i<imu_buffer_length; i++) {
|
|
storedOutput[i] = outputDataNew;
|
|
}
|
|
outputDataDelayed = outputDataNew;
|
|
// reset the states for the complementary filter used to provide a vertical position dervative output
|
|
posDown = stateStruct.position.z;
|
|
posDownDerivative = stateStruct.velocity.z;
|
|
}
|
|
|
|
// Reset the stored output quaternion history to current EKF state
|
|
void NavEKF2_core::StoreQuatReset()
|
|
{
|
|
outputDataNew.quat = stateStruct.quat;
|
|
// write current measurement to entire table
|
|
for (uint8_t i=0; i<imu_buffer_length; i++) {
|
|
storedOutput[i].quat = outputDataNew.quat;
|
|
}
|
|
outputDataDelayed.quat = outputDataNew.quat;
|
|
}
|
|
|
|
// Rotate the stored output quaternion history through a quaternion rotation
|
|
void NavEKF2_core::StoreQuatRotate(Quaternion deltaQuat)
|
|
{
|
|
outputDataNew.quat = outputDataNew.quat*deltaQuat;
|
|
// write current measurement to entire table
|
|
for (uint8_t i=0; i<imu_buffer_length; i++) {
|
|
storedOutput[i].quat = storedOutput[i].quat*deltaQuat;
|
|
}
|
|
outputDataDelayed.quat = outputDataDelayed.quat*deltaQuat;
|
|
}
|
|
|
|
// calculate nav to body quaternions from body to nav rotation matrix
|
|
void NavEKF2_core::quat2Tbn(Matrix3f &Tbn, const Quaternion &quat) const
|
|
{
|
|
// Calculate the body to nav cosine matrix
|
|
quat.rotation_matrix(Tbn);
|
|
}
|
|
|
|
// force symmetry on the covariance matrix to prevent ill-conditioning
|
|
void NavEKF2_core::ForceSymmetry()
|
|
{
|
|
for (uint8_t i=1; i<=stateIndexLim; i++)
|
|
{
|
|
for (uint8_t j=0; j<=i-1; j++)
|
|
{
|
|
float temp = 0.5f*(P[i][j] + P[j][i]);
|
|
P[i][j] = temp;
|
|
P[j][i] = temp;
|
|
}
|
|
}
|
|
}
|
|
|
|
// copy covariances across from covariance prediction calculation
|
|
void NavEKF2_core::CopyCovariances()
|
|
{
|
|
// copy predicted covariances
|
|
for (uint8_t i=0; i<=stateIndexLim; i++) {
|
|
for (uint8_t j=0; j<=stateIndexLim; j++)
|
|
{
|
|
P[i][j] = nextP[i][j];
|
|
}
|
|
}
|
|
}
|
|
|
|
// constrain variances (diagonal terms) in the state covariance matrix to prevent ill-conditioning
|
|
void NavEKF2_core::ConstrainVariances()
|
|
{
|
|
for (uint8_t i=0; i<=2; i++) P[i][i] = constrain_float(P[i][i],0.0f,1.0f); // attitude error
|
|
for (uint8_t i=3; i<=5; i++) P[i][i] = constrain_float(P[i][i],0.0f,1.0e3f); // velocities
|
|
for (uint8_t i=6; i<=7; i++) P[i][i] = constrain_float(P[i][i],0.0f,1.0e6f);
|
|
P[8][8] = constrain_float(P[8][8],0.0f,1.0e6f); // vertical position
|
|
for (uint8_t i=9; i<=11; i++) P[i][i] = constrain_float(P[i][i],0.0f,sq(0.175f * dtEkfAvg)); // delta angle biases
|
|
if (PV_AidingMode != AID_NONE) {
|
|
for (uint8_t i=12; i<=14; i++) P[i][i] = constrain_float(P[i][i],0.0f,0.01f); // delta angle scale factors
|
|
} else {
|
|
// we can't reliably estimate scale factors when there is no aiding data due to transient manoeuvre induced innovations
|
|
// so inhibit estimation by keeping covariance elements at zero
|
|
zeroRows(P,12,14);
|
|
zeroCols(P,12,14);
|
|
}
|
|
P[15][15] = constrain_float(P[15][15],0.0f,sq(10.0f * dtEkfAvg)); // delta velocity bias
|
|
for (uint8_t i=16; i<=18; i++) P[i][i] = constrain_float(P[i][i],0.0f,0.01f); // earth magnetic field
|
|
for (uint8_t i=19; i<=21; i++) P[i][i] = constrain_float(P[i][i],0.0f,0.01f); // body magnetic field
|
|
for (uint8_t i=22; i<=23; i++) P[i][i] = constrain_float(P[i][i],0.0f,1.0e3f); // wind velocity
|
|
}
|
|
|
|
// constrain states to prevent ill-conditioning
|
|
void NavEKF2_core::ConstrainStates()
|
|
{
|
|
// attitude errors are limited between +-1
|
|
for (uint8_t i=0; i<=2; i++) statesArray[i] = constrain_float(statesArray[i],-1.0f,1.0f);
|
|
// velocity limit 500 m/sec (could set this based on some multiple of max airspeed * EAS2TAS)
|
|
for (uint8_t i=3; i<=5; i++) statesArray[i] = constrain_float(statesArray[i],-5.0e2f,5.0e2f);
|
|
// position limit 1000 km - TODO apply circular limit
|
|
for (uint8_t i=6; i<=7; i++) statesArray[i] = constrain_float(statesArray[i],-1.0e6f,1.0e6f);
|
|
// height limit covers home alt on everest through to home alt at SL and ballon drop
|
|
stateStruct.position.z = constrain_float(stateStruct.position.z,-4.0e4f,1.0e4f);
|
|
// gyro bias limit (this needs to be set based on manufacturers specs)
|
|
for (uint8_t i=9; i<=11; i++) statesArray[i] = constrain_float(statesArray[i],-GYRO_BIAS_LIMIT*dtEkfAvg,GYRO_BIAS_LIMIT*dtEkfAvg);
|
|
// gyro scale factor limit of +-5% (this needs to be set based on manufacturers specs)
|
|
for (uint8_t i=12; i<=14; i++) statesArray[i] = constrain_float(statesArray[i],0.95f,1.05f);
|
|
// Z accel bias limit 1.0 m/s^2 (this needs to be finalised from test data)
|
|
stateStruct.accel_zbias = constrain_float(stateStruct.accel_zbias,-1.0f*dtEkfAvg,1.0f*dtEkfAvg);
|
|
// earth magnetic field limit
|
|
for (uint8_t i=16; i<=18; i++) statesArray[i] = constrain_float(statesArray[i],-1.0f,1.0f);
|
|
// body magnetic field limit
|
|
for (uint8_t i=19; i<=21; i++) statesArray[i] = constrain_float(statesArray[i],-0.5f,0.5f);
|
|
// wind velocity limit 100 m/s (could be based on some multiple of max airspeed * EAS2TAS) - TODO apply circular limit
|
|
for (uint8_t i=22; i<=23; i++) statesArray[i] = constrain_float(statesArray[i],-100.0f,100.0f);
|
|
// constrain the terrain state to be below the vehicle height unless we are using terrain as the height datum
|
|
if (!inhibitGndState) {
|
|
terrainState = MAX(terrainState, stateStruct.position.z + rngOnGnd);
|
|
}
|
|
}
|
|
|
|
// calculate the NED earth spin vector in rad/sec
|
|
void NavEKF2_core::calcEarthRateNED(Vector3f &omega, int32_t latitude) const
|
|
{
|
|
float lat_rad = radians(latitude*1.0e-7f);
|
|
omega.x = earthRate*cosf(lat_rad);
|
|
omega.y = 0;
|
|
omega.z = -earthRate*sinf(lat_rad);
|
|
}
|
|
|
|
// initialise the earth magnetic field states using declination, suppled roll/pitch
|
|
// and magnetometer measurements and return initial attitude quaternion
|
|
Quaternion NavEKF2_core::calcQuatAndFieldStates(float roll, float pitch)
|
|
{
|
|
// declare local variables required to calculate initial orientation and magnetic field
|
|
float yaw;
|
|
Matrix3f Tbn;
|
|
Vector3f initMagNED;
|
|
Quaternion initQuat;
|
|
|
|
if (use_compass()) {
|
|
// calculate rotation matrix from body to NED frame
|
|
Tbn.from_euler(roll, pitch, 0.0f);
|
|
|
|
// read the magnetometer data
|
|
readMagData();
|
|
|
|
// rotate the magnetic field into NED axes
|
|
initMagNED = Tbn * magDataDelayed.mag;
|
|
|
|
// calculate heading of mag field rel to body heading
|
|
float magHeading = atan2f(initMagNED.y, initMagNED.x);
|
|
|
|
// get the magnetic declination
|
|
float magDecAng = use_compass() ? _ahrs->get_compass()->get_declination() : 0;
|
|
|
|
// calculate yaw angle rel to true north
|
|
yaw = magDecAng - magHeading;
|
|
|
|
// calculate initial filter quaternion states using yaw from magnetometer
|
|
// store the yaw change so that it can be retrieved externally for use by the control loops to prevent yaw disturbances following a reset
|
|
Vector3f tempEuler;
|
|
stateStruct.quat.to_euler(tempEuler.x, tempEuler.y, tempEuler.z);
|
|
// this check ensures we accumulate the resets that occur within a single iteration of the EKF
|
|
if (imuSampleTime_ms != lastYawReset_ms) {
|
|
yawResetAngle = 0.0f;
|
|
}
|
|
yawResetAngle += wrap_PI(yaw - tempEuler.z);
|
|
lastYawReset_ms = imuSampleTime_ms;
|
|
// calculate an initial quaternion using the new yaw value
|
|
initQuat.from_euler(roll, pitch, yaw);
|
|
// zero the attitude covariances becasue the corelations will now be invalid
|
|
zeroAttCovOnly();
|
|
|
|
// calculate initial Tbn matrix and rotate Mag measurements into NED
|
|
// to set initial NED magnetic field states
|
|
// don't do this if the earth field has already been learned
|
|
if (!magFieldLearned) {
|
|
initQuat.rotation_matrix(Tbn);
|
|
stateStruct.earth_magfield = Tbn * magDataDelayed.mag;
|
|
|
|
// set the NE earth magnetic field states using the published declination
|
|
// and set the corresponding variances and covariances
|
|
alignMagStateDeclination();
|
|
|
|
// set the remaining variances and covariances
|
|
zeroRows(P,18,21);
|
|
zeroCols(P,18,21);
|
|
P[18][18] = sq(frontend->_magNoise);
|
|
P[19][19] = P[18][18];
|
|
P[20][20] = P[18][18];
|
|
P[21][21] = P[18][18];
|
|
|
|
}
|
|
|
|
// record the fact we have initialised the magnetic field states
|
|
recordMagReset();
|
|
|
|
// clear mag state reset request
|
|
magStateResetRequest = false;
|
|
|
|
} else {
|
|
// this function should not be called if there is no compass data but if is is, return the
|
|
// current attitude
|
|
initQuat = stateStruct.quat;
|
|
}
|
|
|
|
// return attitude quaternion
|
|
return initQuat;
|
|
}
|
|
|
|
// zero the attitude covariances, but preserve the variances
|
|
void NavEKF2_core::zeroAttCovOnly()
|
|
{
|
|
float varTemp[3];
|
|
for (uint8_t index=0; index<=2; index++) {
|
|
varTemp[index] = P[index][index];
|
|
}
|
|
zeroCols(P,0,2);
|
|
zeroRows(P,0,2);
|
|
for (uint8_t index=0; index<=2; index++) {
|
|
P[index][index] = varTemp[index];
|
|
}
|
|
}
|
|
|
|
#endif // HAL_CPU_CLASS
|