Ardupilot2/libraries/AP_InertialSensor/examples/VibTest/VibTest.cpp
Lucas De Marchi 91c4bf470f AP_InertialSensor: add O_CLOEXEC in places missing it
By opening with O_CLOEXEC we make sure we don't leak the file descriptor
when we are exec'ing or calling out subprograms. Right now we currently
don't do it so there's no harm, but it's good practice in Linux to have
it.
2016-11-07 12:37:30 -03:00

210 lines
8.1 KiB
C++

//
// test harness for vibration testing
//
#include <stdarg.h>
#include <AP_Common/AP_Common.h>
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include <AP_Param/AP_Param.h>
#include <AP_ADC/AP_ADC.h>
#include <AP_InertialSensor/AP_InertialSensor.h>
#include <AP_Notify/AP_Notify.h>
#include <AP_GPS/AP_GPS.h>
#include <AP_Baro/AP_Baro.h>
#include <Filter/Filter.h>
#include <DataFlash/DataFlash.h>
#include <GCS_MAVLink/GCS_MAVLink.h>
#include <AP_Mission/AP_Mission.h>
#include <StorageManager/StorageManager.h>
#include <AP_Terrain/AP_Terrain.h>
#include <AP_AHRS/AP_AHRS.h>
#include <AP_Airspeed/AP_Airspeed.h>
#include <AP_Vehicle/AP_Vehicle.h>
#include <AP_Compass/AP_Compass.h>
#include <AP_Scheduler/AP_Scheduler.h>
#include <AP_Declination/AP_Declination.h>
#include <AP_Notify/AP_Notify.h>
#include <AP_NavEKF/AP_NavEKF.h>
#include <AP_BattMonitor/AP_BattMonitor.h>
#include <AP_RangeFinder/AP_RangeFinder.h>
#include <AP_Rally/AP_Rally.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
#include <drivers/drv_accel.h>
#include <drivers/drv_hrt.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
const AP_HAL::HAL& hal = AP_HAL::get_HAL();
static int accel_fd[INS_MAX_INSTANCES];
static int gyro_fd[INS_MAX_INSTANCES];
static uint32_t total_samples[INS_MAX_INSTANCES];
static uint64_t last_accel_timestamp[INS_MAX_INSTANCES];
static uint64_t last_gyro_timestamp[INS_MAX_INSTANCES];
static uint32_t accel_deltat_min[INS_MAX_INSTANCES];
static uint32_t accel_deltat_max[INS_MAX_INSTANCES];
static uint32_t gyro_deltat_min[INS_MAX_INSTANCES];
static uint32_t gyro_deltat_max[INS_MAX_INSTANCES];
static DataFlash_File DataFlash("/fs/microsd/VIBTEST");
static const struct LogStructure log_structure[] = {
LOG_COMMON_STRUCTURES,
LOG_EXTRA_STRUCTURES
};
void setup(void)
{
for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) {
char accel_path[] = ACCEL_BASE_DEVICE_PATH "n";
char gyro_path[] = GYRO_BASE_DEVICE_PATH "n";
accel_path[strlen(accel_path)-1] = '0'+i;
gyro_path[strlen(gyro_path)-1] = '0'+i;
accel_fd[i] = open(accel_path, O_RDONLY|O_CLOEXEC);
gyro_fd[i] = open(gyro_path, O_RDONLY|O_CLOEXEC);
}
if (accel_fd[0] == -1 || gyro_fd[0] == -1) {
AP_HAL::panic("Failed to open accel/gyro 0");
}
ioctl(gyro_fd[0], SENSORIOCSPOLLRATE, 1000);
ioctl(gyro_fd[0], GYROIOCSLOWPASS, 0);
ioctl(gyro_fd[0], GYROIOCSHWLOWPASS, 256);
ioctl(gyro_fd[0], GYROIOCSSAMPLERATE, 1000);
ioctl(gyro_fd[0], SENSORIOCSQUEUEDEPTH, 100);
ioctl(gyro_fd[1], SENSORIOCSPOLLRATE, 800);
ioctl(gyro_fd[1], GYROIOCSLOWPASS, 0);
ioctl(gyro_fd[1], GYROIOCSHWLOWPASS, 100);
ioctl(gyro_fd[1], GYROIOCSSAMPLERATE, 800);
ioctl(gyro_fd[1], SENSORIOCSQUEUEDEPTH, 100);
ioctl(accel_fd[0], SENSORIOCSPOLLRATE, 1000);
ioctl(accel_fd[0], ACCELIOCSLOWPASS, 0);
ioctl(accel_fd[0], ACCELIOCSRANGE, 16);
ioctl(accel_fd[0], ACCELIOCSHWLOWPASS, 256);
ioctl(accel_fd[0], ACCELIOCSSAMPLERATE, 1000);
ioctl(accel_fd[0], SENSORIOCSQUEUEDEPTH, 100);
ioctl(accel_fd[1], SENSORIOCSPOLLRATE, 1600);
ioctl(accel_fd[1], ACCELIOCSLOWPASS, 0);
ioctl(accel_fd[1], ACCELIOCSRANGE, 16);
ioctl(accel_fd[1], ACCELIOCSHWLOWPASS, 194);
ioctl(accel_fd[1], ACCELIOCSSAMPLERATE, 1600);
ioctl(accel_fd[1], SENSORIOCSQUEUEDEPTH, 100);
DataFlash.Init(log_structure, ARRAY_SIZE(log_structure));
DataFlash.StartNewLog();
}
void loop(void)
{
bool got_sample = false;
static uint32_t last_print;
do {
got_sample = false;
for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) {
struct accel_report accel_report;
struct gyro_report gyro_report;
if (accel_fd[i] != -1 && ::read(accel_fd[i], &accel_report, sizeof(accel_report)) ==
sizeof(accel_report) &&
accel_report.timestamp != last_accel_timestamp[i]) {
uint32_t deltat = accel_report.timestamp - last_accel_timestamp[i];
if (deltat > accel_deltat_max[i]) {
accel_deltat_max[i] = deltat;
}
if (accel_deltat_min[i] == 0 || deltat < accel_deltat_max[i]) {
accel_deltat_min[i] = deltat;
}
last_accel_timestamp[i] = accel_report.timestamp;
struct log_ACCEL pkt = {
LOG_PACKET_HEADER_INIT((uint8_t)(LOG_ACC1_MSG+i)),
time_us : AP_HAL::micros64(),
sample_us : accel_report.timestamp,
AccX : accel_report.x,
AccY : accel_report.y,
AccZ : accel_report.z
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
got_sample = true;
total_samples[i]++;
}
if (gyro_fd[i] != -1 && ::read(gyro_fd[i], &gyro_report, sizeof(gyro_report)) ==
sizeof(gyro_report) &&
gyro_report.timestamp != last_gyro_timestamp[i]) {
uint32_t deltat = gyro_report.timestamp - last_gyro_timestamp[i];
if (deltat > gyro_deltat_max[i]) {
gyro_deltat_max[i] = deltat;
}
if (gyro_deltat_min[i] == 0 || deltat < gyro_deltat_max[i]) {
gyro_deltat_min[i] = deltat;
}
last_gyro_timestamp[i] = gyro_report.timestamp;
struct log_GYRO pkt = {
LOG_PACKET_HEADER_INIT((uint8_t)(LOG_GYR1_MSG+i)),
time_us : AP_HAL::micros64(),
sample_us : gyro_report.timestamp,
GyrX : gyro_report.x,
GyrY : gyro_report.y,
GyrZ : gyro_report.z
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
got_sample = true;
total_samples[i]++;
}
}
if (got_sample) {
if (total_samples[0] % 2000 == 0 && last_print != total_samples[0]) {
last_print = total_samples[0];
hal.console->printf("t=%lu total_samples=%lu/%lu/%lu adt=%u:%u/%u:%u/%u:%u gdt=%u:%u/%u:%u/%u:%u\n",
(unsigned long)AP_HAL::millis(),
(unsigned long)total_samples[0],
(unsigned long)total_samples[1],
(unsigned long)total_samples[2],
accel_deltat_min[0],
accel_deltat_max[0],
accel_deltat_min[1],
accel_deltat_max[1],
accel_deltat_min[2], accel_deltat_max[2],
gyro_deltat_min[0], gyro_deltat_max[0],
gyro_deltat_min[1], gyro_deltat_max[1],
gyro_deltat_min[2], gyro_deltat_max[2]);
#if 0
::printf("t=%lu total_samples=%lu/%lu/%lu adt=%u:%u/%u:%u/%u:%u gdt=%u:%u/%u:%u/%u:%u\n",
AP_HAL::millis(),
total_samples[0], total_samples[1],total_samples[2],
accel_deltat_min[0], accel_deltat_max[0],
accel_deltat_min[1], accel_deltat_max[1],
accel_deltat_min[2], accel_deltat_max[2],
gyro_deltat_min[0], gyro_deltat_max[0],
gyro_deltat_min[1], gyro_deltat_max[1],
gyro_deltat_min[2], gyro_deltat_max[2]);
#endif
memset(accel_deltat_min, 0, sizeof(accel_deltat_min));
memset(accel_deltat_max, 0, sizeof(accel_deltat_max));
memset(gyro_deltat_min, 0, sizeof(gyro_deltat_min));
memset(gyro_deltat_max, 0, sizeof(gyro_deltat_max));
}
}
} while (got_sample);
hal.scheduler->delay_microseconds(100);
}
#else
const AP_HAL::HAL& hal = AP_HAL::get_HAL();
void setup() {}
void loop() {}
#endif // CONFIG_HAL_BOARD
AP_HAL_MAIN();