Ardupilot2/libraries/AC_AttitudeControl/AC_AttitudeControl.cpp
Randy Mackay 7bff8e9312 AC_AttControl: constrain earth frame yaw angle error
This temporarily resolves the wobble we see in Auto when the target
heading is suddenly changed leading to a large yaw angle error
2014-03-29 20:42:21 +09:00

622 lines
26 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
#include "AC_AttitudeControl.h"
#include <AP_HAL.h>
extern const AP_HAL::HAL& hal;
// table of user settable parameters
const AP_Param::GroupInfo AC_AttitudeControl::var_info[] PROGMEM = {
// @Param: RATE_RP_MAX
// @DisplayName: Angle Rate Roll-Pitch max
// @Description: maximum rotation rate in roll/pitch axis requested by angle controller used in stabilize, loiter, rtl, auto flight modes
// @Units: Centi-Degrees/Sec
// @Range: 90000 250000
// @Increment: 500
// @User: Advanced
AP_GROUPINFO("RATE_RP_MAX", 0, AC_AttitudeControl, _angle_rate_rp_max, AC_ATTITUDE_CONTROL_RATE_RP_MAX_DEFAULT),
// @Param: RATE_Y_MAX
// @DisplayName: Angle Rate Yaw max
// @Description: maximum rotation rate in roll/pitch axis requested by angle controller used in stabilize, loiter, rtl, auto flight modes
// @Units: Centi-Degrees/Sec
// @Range: 90000 250000
// @Increment: 500
// @User: Advanced
AP_GROUPINFO("RATE_Y_MAX", 1, AC_AttitudeControl, _angle_rate_y_max, AC_ATTITUDE_CONTROL_RATE_Y_MAX_DEFAULT),
// @Param: SLEW_YAW
// @DisplayName: Yaw target slew rate
// @Description: Maximum rate the yaw target can be updated in Loiter, RTL, Auto flight modes
// @Units: Centi-Degrees/Sec
// @Range: 500 18000
// @Increment: 100
// @User: Advanced
AP_GROUPINFO("SLEW_YAW", 2, AC_AttitudeControl, _slew_yaw, AC_ATTITUDE_CONTROL_SLEW_YAW_DEFAULT),
// @Param: ACCEL_RP_MAX
// @DisplayName: Acceleration Max for Roll/Pitch
// @Description: Maximum acceleration in roll/pitch axis
// @Units: Centi-Degrees/Sec/Sec
// @Range: 20000 100000
// @Increment: 100
// @User: Advanced
AP_GROUPINFO("ACCEL_RP_MAX", 3, AC_AttitudeControl, _accel_rp_max, AC_ATTITUDE_CONTROL_ACCEL_RP_MAX_DEFAULT),
// @Param: ACCEL_Y_MAX
// @DisplayName: Acceleration Max for Yaw
// @Description: Maximum acceleration in yaw axis
// @Units: Centi-Degrees/Sec/Sec
// @Range: 20000 100000
// @Increment: 100
// @User: Advanced
AP_GROUPINFO("ACCEL_Y_MAX", 4, AC_AttitudeControl, _accel_y_max, AC_ATTITUDE_CONTROL_ACCEL_Y_MAX_DEFAULT),
AP_GROUPEND
};
//
// high level controllers
//
// init_targets - resets target angles to current angles
void AC_AttitudeControl::init_targets()
{
// set earth frame angle targets to current lean angles
_angle_ef_target.x = _ahrs.roll_sensor;
_angle_ef_target.y = _ahrs.pitch_sensor;
_angle_ef_target.z = _ahrs.yaw_sensor;
// clear body frame angle errors
_angle_bf_error.zero();
// clear earth-frame and body-frame feed forward rates
const Vector3f& gyro = _ins.get_gyro();
_rate_bf_desired = gyro * AC_ATTITUDE_CONTROL_DEGX100;
frame_conversion_bf_to_ef(_rate_bf_desired,_rate_ef_desired);
}
//
// methods to be called by upper controllers to request and implement a desired attitude
//
// angle_ef_roll_pitch_rate_ef_yaw_smooth - attempts to maintain a roll and pitch angle and yaw rate (all earth frame) while smoothing the attitude based on the feel parameter
// smoothing_gain : a number from 1 to 50 with 1 being sluggish and 50 being very crisp
void AC_AttitudeControl::angle_ef_roll_pitch_rate_ef_yaw_smooth(float roll_angle_ef, float pitch_angle_ef, float yaw_rate_ef, float smoothing_gain)
{
Vector3f angle_ef_error; // earth frame angle errors
float rate_change_limit;
// sanity check smoothing gain
smoothing_gain = constrain_float(smoothing_gain,1.0f,50.0f);
float linear_angle = _accel_rp_max/(smoothing_gain*smoothing_gain);
rate_change_limit = _accel_rp_max * _dt;
float rate_ef_desired;
float angle_to_target;
// calculate earth-frame roll and pitch angle error
angle_ef_error.x = wrap_180_cd_float(_angle_ef_target.x - _ahrs.roll_sensor);
angle_ef_error.y = wrap_180_cd_float(_angle_ef_target.y - _ahrs.pitch_sensor);
// calculate earth-frame feed forward roll rate using linear response when close to the target, sqrt response when we're further away
angle_to_target = roll_angle_ef - _angle_ef_target.x;
if (angle_to_target > linear_angle){
rate_ef_desired = safe_sqrt(2.0f*_accel_rp_max*(fabs(angle_to_target)-(linear_angle/2.0f)));
} else if (angle_to_target < -linear_angle){
rate_ef_desired = -safe_sqrt(2.0f*_accel_rp_max*(fabs(angle_to_target)-(linear_angle/2.0f)));
} else {
rate_ef_desired = smoothing_gain*angle_to_target;
}
_rate_ef_desired.x = constrain_float(rate_ef_desired, _rate_ef_desired.x-rate_change_limit, _rate_ef_desired.x+rate_change_limit);
// update earth-frame roll angle target using desired roll rate
_angle_ef_target.x += _rate_ef_desired.x*_dt;
// calculate earth-frame feed forward pitch rate using linear response when close to the target, sqrt response when we're further away
angle_to_target = pitch_angle_ef - _angle_ef_target.y;
if (angle_to_target > linear_angle){
rate_ef_desired = safe_sqrt(2.0f*_accel_rp_max*(fabs(angle_to_target)-(linear_angle/2.0f)));
} else if (angle_to_target < -linear_angle){
rate_ef_desired = -safe_sqrt(2.0f*_accel_rp_max*(fabs(angle_to_target)-(linear_angle/2.0f)));
} else {
rate_ef_desired = smoothing_gain*angle_to_target;
}
_rate_ef_desired.y = constrain_float(rate_ef_desired, _rate_ef_desired.y-rate_change_limit, _rate_ef_desired.y+rate_change_limit);
// update earth-frame pitch angle target using desired pitch rate
_angle_ef_target.y += _rate_ef_desired.y*_dt;
// set earth-frame feed forward rate for yaw
rate_change_limit = _accel_y_max * _dt;
float rate_change = yaw_rate_ef - _rate_ef_desired.z;
rate_change = constrain_float(rate_change, -rate_change_limit, rate_change_limit);
_rate_ef_desired.z += rate_change;
// calculate yaw target angle and angle error
update_ef_yaw_angle_and_error(_rate_ef_desired.z, angle_ef_error);
// convert earth-frame angle errors to body-frame angle errors
frame_conversion_ef_to_bf(angle_ef_error, _angle_bf_error);
// convert earth-frame feed forward rates to body-frame feed forward rates
frame_conversion_ef_to_bf(_rate_ef_desired, _rate_bf_desired);
// convert body-frame angle errors to body-frame rate targets
update_rate_bf_targets();
// add body frame rate feed forward
_rate_bf_target += _rate_bf_desired;
// body-frame to motor outputs should be called separately
}
//
// methods to be called by upper controllers to request and implement a desired attitude
//
// angle_ef_roll_pitch_rate_ef_yaw - attempts to maintain a roll and pitch angle and yaw rate (all earth frame)
void AC_AttitudeControl::angle_ef_roll_pitch_rate_ef_yaw(float roll_angle_ef, float pitch_angle_ef, float yaw_rate_ef)
{
Vector3f angle_ef_error; // earth frame angle errors
// set earth-frame angle targets for roll and pitch and calculate angle error
_angle_ef_target.x = roll_angle_ef;
angle_ef_error.x = wrap_180_cd_float(_angle_ef_target.x - _ahrs.roll_sensor);
_angle_ef_target.y = pitch_angle_ef;
angle_ef_error.y = wrap_180_cd_float(_angle_ef_target.y - _ahrs.pitch_sensor);
// set earth-frame feed forward rate for yaw
float rate_change_limit = _accel_y_max * _dt;
float rate_change = yaw_rate_ef - _rate_ef_desired.z;
rate_change = constrain_float(rate_change, -rate_change_limit, rate_change_limit);
_rate_ef_desired.z += rate_change;
update_ef_yaw_angle_and_error(_rate_ef_desired.z, angle_ef_error);
// convert earth-frame angle errors to body-frame angle errors
frame_conversion_ef_to_bf(angle_ef_error, _angle_bf_error);
// convert earth-frame feed forward rates to body-frame feed forward rates
frame_conversion_ef_to_bf(_rate_ef_desired, _rate_bf_desired);
// convert body-frame angle errors to body-frame rate targets
update_rate_bf_targets();
// add body frame rate feed forward
_rate_bf_target += _rate_bf_desired;
// body-frame to motor outputs should be called separately
}
// angle_ef_roll_pitch_yaw - attempts to maintain a roll, pitch and yaw angle (all earth frame)
// if yaw_slew is true then target yaw movement will be gradually moved to the new target based on the SLEW_YAW parameter
void AC_AttitudeControl::angle_ef_roll_pitch_yaw(float roll_angle_ef, float pitch_angle_ef, float yaw_angle_ef, bool slew_yaw)
{
Vector3f angle_ef_error;
// set earth-frame angle targets
_angle_ef_target.x = roll_angle_ef;
_angle_ef_target.y = pitch_angle_ef;
_angle_ef_target.z = yaw_angle_ef;
// calculate earth frame errors
angle_ef_error.x = wrap_180_cd_float(_angle_ef_target.x - _ahrs.roll_sensor);
angle_ef_error.y = wrap_180_cd_float(_angle_ef_target.y - _ahrs.pitch_sensor);
angle_ef_error.z = wrap_180_cd_float(_angle_ef_target.z - _ahrs.yaw_sensor);
// constrain the yaw angle error
if (slew_yaw) {
angle_ef_error.z = constrain_float(angle_ef_error.z,-_slew_yaw,_slew_yaw);
}
// convert earth-frame angle errors to body-frame angle errors
frame_conversion_ef_to_bf(angle_ef_error, _angle_bf_error);
// convert body-frame angle errors to body-frame rate targets
update_rate_bf_targets();
// body-frame to motor outputs should be called separately
}
// rate_ef_roll_pitch_yaw - attempts to maintain a roll, pitch and yaw rate (all earth frame)
void AC_AttitudeControl::rate_ef_roll_pitch_yaw(float roll_rate_ef, float pitch_rate_ef, float yaw_rate_ef)
{
Vector3f angle_ef_error;
float rate_change_limit = _accel_rp_max * _dt;
// update feed forward roll rate after checking it is within acceleration limits
float rate_change = roll_rate_ef - _rate_ef_desired.x;
rate_change = constrain_float(rate_change, -rate_change_limit, rate_change_limit);
_rate_ef_desired.x += rate_change;
// update feed forward pitch rate after checking it is within acceleration limits
rate_change = pitch_rate_ef - _rate_ef_desired.y;
rate_change = constrain_float(rate_change, -rate_change_limit, rate_change_limit);
_rate_ef_desired.y += rate_change;
// update feed forward yaw rate after checking it is within acceleration limits
rate_change_limit = _accel_y_max * _dt;
rate_change = yaw_rate_ef - _rate_ef_desired.z;
rate_change = constrain_float(rate_change, -rate_change_limit, rate_change_limit);
_rate_ef_desired.z += rate_change;
// update earth frame angle targets and errors
update_ef_roll_angle_and_error(_rate_ef_desired.x, angle_ef_error);
update_ef_pitch_angle_and_error(_rate_ef_desired.y, angle_ef_error);
update_ef_yaw_angle_and_error(_rate_ef_desired.z, angle_ef_error);
// convert earth-frame angle errors to body-frame angle errors
frame_conversion_ef_to_bf(angle_ef_error, _angle_bf_error);
// convert earth-frame rates to body-frame rates
frame_conversion_ef_to_bf(_rate_ef_desired, _rate_bf_desired);
// convert body-frame angle errors to body-frame rate targets
update_rate_bf_targets();
// add body frame rate feed forward
_rate_bf_target += _rate_bf_desired;
// body-frame to motor outputs should be called separately
}
// rate_bf_roll_pitch_yaw - attempts to maintain a roll, pitch and yaw rate (all body frame)
void AC_AttitudeControl::rate_bf_roll_pitch_yaw(float roll_rate_bf, float pitch_rate_bf, float yaw_rate_bf)
{
Vector3f angle_ef_error;
// Update angle error
if (labs(_ahrs.pitch_sensor)<_acro_angle_switch){
_acro_angle_switch = 6000;
// convert body-frame rates to earth-frame rates
frame_conversion_bf_to_ef(_rate_bf_desired, _rate_ef_desired);
// update earth frame angle targets and errors
update_ef_roll_angle_and_error(_rate_ef_desired.x, angle_ef_error);
update_ef_pitch_angle_and_error(_rate_ef_desired.y, angle_ef_error);
update_ef_yaw_angle_and_error(_rate_ef_desired.z, angle_ef_error);
// convert earth-frame angle errors to body-frame angle errors
frame_conversion_ef_to_bf(angle_ef_error, _angle_bf_error);
} else {
_acro_angle_switch = 4500;
integrate_bf_rate_error_to_angle_errors();
frame_conversion_bf_to_ef(_angle_bf_error, angle_ef_error);
_angle_ef_target.x = wrap_180_cd_float(angle_ef_error.x + _ahrs.roll_sensor);
_angle_ef_target.y = wrap_180_cd_float(angle_ef_error.y + _ahrs.pitch_sensor);
_angle_ef_target.z = wrap_360_cd_float(angle_ef_error.z + _ahrs.yaw_sensor);
if (_angle_ef_target.y>9000){
_angle_ef_target.x = wrap_180_cd_float(_angle_ef_target.x + 18000);
_angle_ef_target.y = wrap_180_cd_float(18000-_angle_ef_target.x);
_angle_ef_target.z = wrap_360_cd_float(_angle_ef_target.z + 18000);
}
if (_angle_ef_target.y<-9000){
_angle_ef_target.x = wrap_180_cd_float(_angle_ef_target.x + 18000);
_angle_ef_target.y = wrap_180_cd_float(-18000-_angle_ef_target.x);
_angle_ef_target.z = wrap_360_cd_float(_angle_ef_target.z + 18000);
}
}
// convert body-frame angle errors to body-frame rate targets
update_rate_bf_targets();
float rate_change, rate_change_limit;
// update the rate feed forward with angular acceleration limits
rate_change_limit = _accel_rp_max * _dt;
rate_change = roll_rate_bf - _rate_bf_desired.x;
rate_change = constrain_float(rate_change, -rate_change_limit, rate_change_limit);
_rate_bf_desired.x += rate_change;
rate_change = pitch_rate_bf - _rate_bf_desired.y;
rate_change = constrain_float(rate_change, -rate_change_limit, rate_change_limit);
_rate_bf_desired.y += rate_change;
rate_change_limit = _accel_y_max * _dt;
rate_change = yaw_rate_bf - _rate_bf_desired.z;
rate_change = constrain_float(rate_change, -rate_change_limit, rate_change_limit);
_rate_bf_desired.z += rate_change;
// body-frame rate commands added
_rate_bf_target += _rate_bf_desired;
// body-frame to motor outputs should be called separately
}
//
// rate_controller_run - run lowest level body-frame rate controller and send outputs to the motors
// should be called at 100hz or more
//
void AC_AttitudeControl::rate_controller_run()
{
// call rate controllers and send output to motors object
// To-Do: should the outputs from get_rate_roll, pitch, yaw be int16_t which is the input to the motors library?
// To-Do: skip this step if the throttle out is zero?
_motors.set_roll(rate_bf_to_motor_roll(_rate_bf_target.x));
_motors.set_pitch(rate_bf_to_motor_pitch(_rate_bf_target.y));
_motors.set_yaw(rate_bf_to_motor_yaw(_rate_bf_target.z));
}
//
// earth-frame <-> body-frame conversion functions
//
// frame_conversion_ef_to_bf - converts earth frame vector to body frame vector
void AC_AttitudeControl::frame_conversion_ef_to_bf(const Vector3f& ef_vector, Vector3f& bf_vector)
{
// convert earth frame rates to body frame rates
bf_vector.x = ef_vector.x - _ahrs.sin_pitch() * ef_vector.z;
bf_vector.y = _ahrs.cos_roll() * ef_vector.y + _ahrs.sin_roll() * _ahrs.cos_pitch() * ef_vector.z;
bf_vector.z = -_ahrs.sin_roll() * ef_vector.y + _ahrs.cos_pitch() * _ahrs.cos_roll() * ef_vector.z;
}
// frame_conversion_bf_to_ef - converts body frame vector to earth frame vector
void AC_AttitudeControl::frame_conversion_bf_to_ef(const Vector3f& bf_vector, Vector3f& ef_vector)
{
// convert earth frame rates to body frame rates
ef_vector.x = bf_vector.x + _ahrs.sin_roll() * (_ahrs.sin_pitch()/_ahrs.cos_pitch()) * bf_vector.y + _ahrs.cos_roll() * (_ahrs.sin_pitch()/_ahrs.cos_pitch()) * bf_vector.z;
ef_vector.y = _ahrs.cos_roll() * bf_vector.y - _ahrs.sin_roll() * bf_vector.z;
ef_vector.z = (_ahrs.sin_roll() / _ahrs.cos_pitch()) * bf_vector.y + (_ahrs.cos_roll() / _ahrs.cos_pitch()) * bf_vector.z;
}
//
// protected methods
//
//
// stabilized rate controller (body-frame) methods
//
// update_ef_roll_angle_and_error - update _angle_ef_target.x using an earth frame roll rate request
void AC_AttitudeControl::update_ef_roll_angle_and_error(float roll_rate_ef, Vector3f &angle_ef_error)
{
// calculate angle error with maximum of +- max angle overshoot
angle_ef_error.x = wrap_180_cd(_angle_ef_target.x - _ahrs.roll_sensor);
angle_ef_error.x = constrain_float(angle_ef_error.x, -AC_ATTITUDE_RATE_STAB_ROLL_OVERSHOOT_ANGLE_MAX, AC_ATTITUDE_RATE_STAB_ROLL_OVERSHOOT_ANGLE_MAX);
// To-Do: handle check for traditional heli's motors.motor_runup_complete
// update roll angle target to be within max angle overshoot of our roll angle
_angle_ef_target.x = angle_ef_error.x + _ahrs.roll_sensor;
// increment the roll angle target
_angle_ef_target.x += roll_rate_ef * _dt;
_angle_ef_target.x = wrap_180_cd(_angle_ef_target.x);
}
// update_ef_pitch_angle_and_error - update _angle_ef_target.y using an earth frame pitch rate request
void AC_AttitudeControl::update_ef_pitch_angle_and_error(float pitch_rate_ef, Vector3f &angle_ef_error)
{
// calculate angle error with maximum of +- max angle overshoot
// To-Do: should we do something better as we cross 90 degrees?
angle_ef_error.y = wrap_180_cd(_angle_ef_target.y - _ahrs.pitch_sensor);
angle_ef_error.y = constrain_float(angle_ef_error.y, -AC_ATTITUDE_RATE_STAB_PITCH_OVERSHOOT_ANGLE_MAX, AC_ATTITUDE_RATE_STAB_PITCH_OVERSHOOT_ANGLE_MAX);
// To-Do: handle check for traditional heli's motors.motor_runup_complete
// update pitch angle target to be within max angle overshoot of our pitch angle
_angle_ef_target.y = angle_ef_error.y + _ahrs.pitch_sensor;
// increment the pitch angle target
_angle_ef_target.y += pitch_rate_ef * _dt;
_angle_ef_target.y = wrap_180_cd(_angle_ef_target.y);
}
// update_ef_yaw_angle_and_error - update _angle_ef_target.z using an earth frame yaw rate request
void AC_AttitudeControl::update_ef_yaw_angle_and_error(float yaw_rate_ef, Vector3f &angle_ef_error)
{
// calculate angle error with maximum of +- max angle overshoot
angle_ef_error.z = wrap_180_cd(_angle_ef_target.z - _ahrs.yaw_sensor);
angle_ef_error.z = constrain_float(angle_ef_error.z, -AC_ATTITUDE_RATE_STAB_YAW_OVERSHOOT_ANGLE_MAX, AC_ATTITUDE_RATE_STAB_YAW_OVERSHOOT_ANGLE_MAX);
// update yaw angle target to be within max angle overshoot of our current heading
_angle_ef_target.z = angle_ef_error.z + _ahrs.yaw_sensor;
// increment the yaw angle target
_angle_ef_target.z += yaw_rate_ef * _dt;
_angle_ef_target.z = wrap_360_cd(_angle_ef_target.z);
}
// update_rate_bf_errors - calculates body frame angle errors
// body-frame feed forward rates (centi-degrees / second) taken from _angle_bf_error
// angle errors in centi-degrees placed in _angle_bf_error
void AC_AttitudeControl::integrate_bf_rate_error_to_angle_errors()
{
// roll - calculate body-frame angle error by integrating body-frame rate error
_angle_bf_error.x += (_rate_bf_desired.x - (_ins.get_gyro().x * AC_ATTITUDE_CONTROL_DEGX100)) * _dt;
// roll - limit maximum error
_angle_bf_error.x = constrain_float(_angle_bf_error.x, -AC_ATTITUDE_RATE_STAB_ROLL_OVERSHOOT_ANGLE_MAX, AC_ATTITUDE_RATE_STAB_ROLL_OVERSHOOT_ANGLE_MAX);
// pitch - calculate body-frame angle error by integrating body-frame rate error
_angle_bf_error.y += (_rate_bf_desired.y - (_ins.get_gyro().y * AC_ATTITUDE_CONTROL_DEGX100)) * _dt;
// pitch - limit maximum error
_angle_bf_error.y = constrain_float(_angle_bf_error.y, -AC_ATTITUDE_RATE_STAB_PITCH_OVERSHOOT_ANGLE_MAX, AC_ATTITUDE_RATE_STAB_PITCH_OVERSHOOT_ANGLE_MAX);
// yaw - calculate body-frame angle error by integrating body-frame rate error
_angle_bf_error.z += (_rate_bf_desired.z - (_ins.get_gyro().z * AC_ATTITUDE_CONTROL_DEGX100)) * _dt;
// yaw - limit maximum error
_angle_bf_error.z = constrain_float(_angle_bf_error.z, -AC_ATTITUDE_RATE_STAB_YAW_OVERSHOOT_ANGLE_MAX, AC_ATTITUDE_RATE_STAB_YAW_OVERSHOOT_ANGLE_MAX);
// To-Do: handle case of motors being disarmed or g.rc_3.servo_out == 0 and set error to zero
}
// update_rate_bf_targets - converts body-frame angle error to body-frame rate targets for roll, pitch and yaw axis
// targets rates in centi-degrees taken from _angle_bf_error
// results in centi-degrees/sec put into _rate_bf_target
void AC_AttitudeControl::update_rate_bf_targets()
{
// stab roll calculation
_rate_bf_target.x = _p_angle_roll.kP() * _angle_bf_error.x;
// constrain roll rate request
if (_flags.limit_angle_to_rate_request) {
_rate_bf_target.x = constrain_float(_rate_bf_target.x,-_angle_rate_rp_max,_angle_rate_rp_max);
}
// stab pitch calculation
_rate_bf_target.y = _p_angle_pitch.kP() * _angle_bf_error.y;
// constrain pitch rate request
if (_flags.limit_angle_to_rate_request) {
_rate_bf_target.y = constrain_float(_rate_bf_target.y,-_angle_rate_rp_max,_angle_rate_rp_max);
}
// stab yaw calculation
_rate_bf_target.z = _p_angle_yaw.kP() * _angle_bf_error.z;
// constrain yaw rate request
if (_flags.limit_angle_to_rate_request) {
_rate_bf_target.z = constrain_float(_rate_bf_target.z,-_angle_rate_y_max,_angle_rate_y_max);
}
}
//
// body-frame rate controller
//
// rate_bf_to_motor_roll - ask the rate controller to calculate the motor outputs to achieve the target rate in centi-degrees / second
float AC_AttitudeControl::rate_bf_to_motor_roll(float rate_target_cds)
{
float p,i,d; // used to capture pid values for logging
float current_rate; // this iteration's rate
float rate_error; // simply target_rate - current_rate
// get current rate
// To-Do: make getting gyro rates more efficient?
current_rate = (_ins.get_gyro().x * AC_ATTITUDE_CONTROL_DEGX100);
// calculate error and call pid controller
rate_error = rate_target_cds - current_rate;
p = _pid_rate_roll.get_p(rate_error);
// get i term
i = _pid_rate_roll.get_integrator();
// update i term as long as we haven't breached the limits or the I term will certainly reduce
if (!_motors.limit.roll_pitch || ((i>0&&rate_error<0)||(i<0&&rate_error>0))) {
i = _pid_rate_roll.get_i(rate_error, _dt);
}
// get d term
d = _pid_rate_roll.get_d(rate_error, _dt);
// constrain output and return
return constrain_float((p+i+d), -AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX, AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX);
// To-Do: allow logging of PIDs?
}
// rate_bf_to_motor_pitch - ask the rate controller to calculate the motor outputs to achieve the target rate in centi-degrees / second
float AC_AttitudeControl::rate_bf_to_motor_pitch(float rate_target_cds)
{
float p,i,d; // used to capture pid values for logging
float current_rate; // this iteration's rate
float rate_error; // simply target_rate - current_rate
// get current rate
// To-Do: make getting gyro rates more efficient?
current_rate = (_ins.get_gyro().y * AC_ATTITUDE_CONTROL_DEGX100);
// calculate error and call pid controller
rate_error = rate_target_cds - current_rate;
p = _pid_rate_pitch.get_p(rate_error);
// get i term
i = _pid_rate_pitch.get_integrator();
// update i term as long as we haven't breached the limits or the I term will certainly reduce
if (!_motors.limit.roll_pitch || ((i>0&&rate_error<0)||(i<0&&rate_error>0))) {
i = _pid_rate_pitch.get_i(rate_error, _dt);
}
// get d term
d = _pid_rate_pitch.get_d(rate_error, _dt);
// constrain output and return
return constrain_float((p+i+d), -AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX, AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX);
// To-Do: allow logging of PIDs?
}
// rate_bf_to_motor_yaw - ask the rate controller to calculate the motor outputs to achieve the target rate in centi-degrees / second
float AC_AttitudeControl::rate_bf_to_motor_yaw(float rate_target_cds)
{
float p,i,d; // used to capture pid values for logging
float current_rate; // this iteration's rate
float rate_error; // simply target_rate - current_rate
// get current rate
// To-Do: make getting gyro rates more efficient?
current_rate = (_ins.get_gyro().z * AC_ATTITUDE_CONTROL_DEGX100);
// calculate error and call pid controller
rate_error = rate_target_cds - current_rate;
p = _pid_rate_yaw.get_p(rate_error);
// separately calculate p, i, d values for logging
p = _pid_rate_yaw.get_p(rate_error);
// get i term
i = _pid_rate_yaw.get_integrator();
// update i term as long as we haven't breached the limits or the I term will certainly reduce
if (!_motors.limit.yaw || ((i>0&&rate_error<0)||(i<0&&rate_error>0))) {
i = _pid_rate_yaw.get_i(rate_error, _dt);
}
// get d value
d = _pid_rate_yaw.get_d(rate_error, _dt);
// constrain output and return
return constrain_float((p+i+d), -AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX, AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX);
// To-Do: allow logging of PIDs?
}
//
// throttle functions
//
// set_throttle_out - to be called by upper throttle controllers when they wish to provide throttle output directly to motors
// provide 0 to cut motors
void AC_AttitudeControl::set_throttle_out(int16_t throttle_out, bool apply_angle_boost)
{
if (apply_angle_boost) {
_motors.set_throttle(get_angle_boost(throttle_out));
}else{
_motors.set_throttle(throttle_out);
// clear angle_boost for logging purposes
_angle_boost = 0;
}
// update compass with throttle value
// To-Do: find another method to grab the throttle out and feed to the compass. Could be done completely outside this class
//compass.set_throttle((float)g.rc_3.servo_out/1000.0f);
}
// get_angle_boost - returns a throttle including compensation for roll/pitch angle
// throttle value should be 0 ~ 1000
int16_t AC_AttitudeControl::get_angle_boost(int16_t throttle_pwm)
{
float temp = _ahrs.cos_pitch() * _ahrs.cos_roll();
int16_t throttle_out;
temp = constrain_float(temp, 0.5f, 1.0f);
// reduce throttle if we go inverted
temp = constrain_float(9000-max(labs(_ahrs.roll_sensor),labs(_ahrs.pitch_sensor)), 0, 3000) / (3000 * temp);
// apply scale and constrain throttle
// To-Do: move throttle_min and throttle_max into the AP_Vehicles class?
throttle_out = constrain_float((float)(throttle_pwm-_motors.throttle_min()) * temp + _motors.throttle_min(), _motors.throttle_min(), 1000);
// record angle boost for logging
_angle_boost = throttle_out - throttle_pwm;
return throttle_out;
}