Ardupilot2/libraries/AP_Common/Location.cpp
Peter Barker 5488ca6403 AP_Common: add ASSERT_STORAGE_SIZE macro
saves havin gto name the dummy variable yourself
2024-01-22 22:44:05 +11:00

508 lines
15 KiB
C++

/*
* Location.cpp
*/
#include "Location.h"
#include <AP_AHRS/AP_AHRS.h>
#include <AP_Terrain/AP_Terrain.h>
/// constructors
Location::Location()
{
zero();
}
const Location definitely_zero{};
bool Location::is_zero(void) const
{
return !memcmp(this, &definitely_zero, sizeof(*this));
}
void Location::zero(void)
{
memset(this, 0, sizeof(*this));
}
// Construct location using position (NEU) from ekf_origin for the given altitude frame
Location::Location(int32_t latitude, int32_t longitude, int32_t alt_in_cm, AltFrame frame)
{
// make sure we know what size the Location object is:
ASSERT_STORAGE_SIZE(Location, 16);
zero();
lat = latitude;
lng = longitude;
set_alt_cm(alt_in_cm, frame);
}
#if AP_AHRS_ENABLED
Location::Location(const Vector3f &ekf_offset_neu, AltFrame frame)
{
zero();
// store alt and alt frame
set_alt_cm(ekf_offset_neu.z, frame);
// calculate lat, lon
Location ekf_origin;
if (AP::ahrs().get_origin(ekf_origin)) {
lat = ekf_origin.lat;
lng = ekf_origin.lng;
offset(ekf_offset_neu.x * 0.01, ekf_offset_neu.y * 0.01);
}
}
#endif // AP_AHRS_ENABLED
void Location::set_alt_cm(int32_t alt_cm, AltFrame frame)
{
alt = alt_cm;
relative_alt = false;
terrain_alt = false;
origin_alt = false;
switch (frame) {
case AltFrame::ABSOLUTE:
// do nothing
break;
case AltFrame::ABOVE_HOME:
relative_alt = true;
break;
case AltFrame::ABOVE_ORIGIN:
origin_alt = true;
break;
case AltFrame::ABOVE_TERRAIN:
// we mark it as a relative altitude, as it doesn't have
// home alt added
relative_alt = true;
terrain_alt = true;
break;
}
}
// converts altitude to new frame
bool Location::change_alt_frame(AltFrame desired_frame)
{
int32_t new_alt_cm;
if (!get_alt_cm(desired_frame, new_alt_cm)) {
return false;
}
set_alt_cm(new_alt_cm, desired_frame);
return true;
}
// get altitude frame
Location::AltFrame Location::get_alt_frame() const
{
if (terrain_alt) {
return AltFrame::ABOVE_TERRAIN;
}
if (origin_alt) {
return AltFrame::ABOVE_ORIGIN;
}
if (relative_alt) {
return AltFrame::ABOVE_HOME;
}
return AltFrame::ABSOLUTE;
}
/// get altitude in desired frame
bool Location::get_alt_cm(AltFrame desired_frame, int32_t &ret_alt_cm) const
{
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
if (!initialised()) {
AP_HAL::panic("Should not be called on invalid location: Location cannot be (0, 0, 0)");
}
#endif
Location::AltFrame frame = get_alt_frame();
// shortcut if desired and underlying frame are the same
if (desired_frame == frame) {
ret_alt_cm = alt;
return true;
}
// check for terrain altitude
float alt_terr_cm = 0;
if (frame == AltFrame::ABOVE_TERRAIN || desired_frame == AltFrame::ABOVE_TERRAIN) {
#if AP_TERRAIN_AVAILABLE
AP_Terrain *terrain = AP::terrain();
if (terrain == nullptr) {
return false;
}
if (!terrain->height_amsl(*this, alt_terr_cm)) {
return false;
}
// convert terrain alt to cm
alt_terr_cm *= 100.0f;
#else
return false;
#endif
}
// convert alt to absolute
int32_t alt_abs = 0;
switch (frame) {
case AltFrame::ABSOLUTE:
alt_abs = alt;
break;
case AltFrame::ABOVE_HOME:
#if AP_AHRS_ENABLED
if (!AP::ahrs().home_is_set()) {
return false;
}
alt_abs = alt + AP::ahrs().get_home().alt;
#else
return false;
#endif // AP_AHRS_ENABLED
break;
case AltFrame::ABOVE_ORIGIN:
#if AP_AHRS_ENABLED
{
// fail if we cannot get ekf origin
Location ekf_origin;
if (!AP::ahrs().get_origin(ekf_origin)) {
return false;
}
alt_abs = alt + ekf_origin.alt;
}
break;
#else
return false;
#endif // AP_AHRS_ENABLED
case AltFrame::ABOVE_TERRAIN:
alt_abs = alt + alt_terr_cm;
break;
}
// convert absolute to desired frame
switch (desired_frame) {
case AltFrame::ABSOLUTE:
ret_alt_cm = alt_abs;
return true;
case AltFrame::ABOVE_HOME:
#if AP_AHRS_ENABLED
if (!AP::ahrs().home_is_set()) {
return false;
}
ret_alt_cm = alt_abs - AP::ahrs().get_home().alt;
#else
return false;
#endif // AP_AHRS_ENABLED
return true;
case AltFrame::ABOVE_ORIGIN:
#if AP_AHRS_ENABLED
{
// fail if we cannot get ekf origin
Location ekf_origin;
if (!AP::ahrs().get_origin(ekf_origin)) {
return false;
}
ret_alt_cm = alt_abs - ekf_origin.alt;
return true;
}
#else
return false;
#endif // AP_AHRS_ENABLED
case AltFrame::ABOVE_TERRAIN:
ret_alt_cm = alt_abs - alt_terr_cm;
return true;
}
return false; // LCOV_EXCL_LINE - not reachable
}
#if AP_AHRS_ENABLED
bool Location::get_vector_xy_from_origin_NE(Vector2f &vec_ne) const
{
Location ekf_origin;
if (!AP::ahrs().get_origin(ekf_origin)) {
return false;
}
vec_ne.x = (lat-ekf_origin.lat) * LATLON_TO_CM;
vec_ne.y = diff_longitude(lng,ekf_origin.lng) * LATLON_TO_CM * longitude_scale((lat+ekf_origin.lat)/2);
return true;
}
bool Location::get_vector_from_origin_NEU(Vector3f &vec_neu) const
{
// convert lat, lon
if (!get_vector_xy_from_origin_NE(vec_neu.xy())) {
return false;
}
// convert altitude
int32_t alt_above_origin_cm = 0;
if (!get_alt_cm(AltFrame::ABOVE_ORIGIN, alt_above_origin_cm)) {
return false;
}
vec_neu.z = alt_above_origin_cm;
return true;
}
#endif // AP_AHRS_ENABLED
// return horizontal distance in meters between two locations
ftype Location::get_distance(const Location &loc2) const
{
ftype dlat = (ftype)(loc2.lat - lat);
ftype dlng = ((ftype)diff_longitude(loc2.lng,lng)) * longitude_scale((lat+loc2.lat)/2);
return norm(dlat, dlng) * LOCATION_SCALING_FACTOR;
}
// return the altitude difference in meters taking into account alt frame.
bool Location::get_alt_distance(const Location &loc2, ftype &distance) const
{
int32_t alt1, alt2;
if (!get_alt_cm(AltFrame::ABSOLUTE, alt1) || !loc2.get_alt_cm(AltFrame::ABSOLUTE, alt2)) {
return false;
}
distance = (alt1 - alt2) * 0.01;
return true;
}
/*
return the distance in meters in North/East plane as a N/E vector
from loc1 to loc2
*/
Vector2f Location::get_distance_NE(const Location &loc2) const
{
return Vector2f((loc2.lat - lat) * LOCATION_SCALING_FACTOR,
diff_longitude(loc2.lng,lng) * LOCATION_SCALING_FACTOR * longitude_scale((loc2.lat+lat)/2));
}
// return the distance in meters in North/East/Down plane as a N/E/D vector to loc2, NOT CONSIDERING ALT FRAME!
Vector3f Location::get_distance_NED(const Location &loc2) const
{
return Vector3f((loc2.lat - lat) * LOCATION_SCALING_FACTOR,
diff_longitude(loc2.lng,lng) * LOCATION_SCALING_FACTOR * longitude_scale((lat+loc2.lat)/2),
(alt - loc2.alt) * 0.01);
}
// return the distance in meters in North/East/Down plane as a N/E/D vector to loc2
Vector3d Location::get_distance_NED_double(const Location &loc2) const
{
return Vector3d((loc2.lat - lat) * double(LOCATION_SCALING_FACTOR),
diff_longitude(loc2.lng,lng) * LOCATION_SCALING_FACTOR * longitude_scale((lat+loc2.lat)/2),
(alt - loc2.alt) * 0.01);
}
Vector2d Location::get_distance_NE_double(const Location &loc2) const
{
return Vector2d((loc2.lat - lat) * double(LOCATION_SCALING_FACTOR),
diff_longitude(loc2.lng,lng) * double(LOCATION_SCALING_FACTOR) * longitude_scale((lat+loc2.lat)/2));
}
Vector2F Location::get_distance_NE_ftype(const Location &loc2) const
{
return Vector2F((loc2.lat - lat) * ftype(LOCATION_SCALING_FACTOR),
diff_longitude(loc2.lng,lng) * ftype(LOCATION_SCALING_FACTOR) * longitude_scale((lat+loc2.lat)/2));
}
// extrapolate latitude/longitude given distances (in meters) north and east
void Location::offset_latlng(int32_t &lat, int32_t &lng, ftype ofs_north, ftype ofs_east)
{
const int32_t dlat = ofs_north * LOCATION_SCALING_FACTOR_INV;
const int64_t dlng = (ofs_east * LOCATION_SCALING_FACTOR_INV) / longitude_scale(lat+dlat/2);
lat += dlat;
lat = limit_lattitude(lat);
lng = wrap_longitude(dlng+lng);
}
// extrapolate latitude/longitude given distances (in meters) north and east
void Location::offset(ftype ofs_north, ftype ofs_east)
{
offset_latlng(lat, lng, ofs_north, ofs_east);
}
// extrapolate latitude/longitude given distances (in meters) north
// and east. Note that this is metres, *even for the altitude*.
void Location::offset(const Vector3p &ofs_ned)
{
offset_latlng(lat, lng, ofs_ned.x, ofs_ned.y);
alt += -ofs_ned.z * 100; // m -> cm
}
/*
* extrapolate latitude/longitude given bearing and distance
* Note that this function is accurate to about 1mm at a distance of
* 100m. This function has the advantage that it works in relative
* positions, so it keeps the accuracy even when dealing with small
* distances and floating point numbers
*/
void Location::offset_bearing(ftype bearing_deg, ftype distance)
{
const ftype ofs_north = cosF(radians(bearing_deg)) * distance;
const ftype ofs_east = sinF(radians(bearing_deg)) * distance;
offset(ofs_north, ofs_east);
}
// extrapolate latitude/longitude given bearing, pitch and distance
void Location::offset_bearing_and_pitch(ftype bearing_deg, ftype pitch_deg, ftype distance)
{
const ftype ofs_north = cosF(radians(pitch_deg)) * cosF(radians(bearing_deg)) * distance;
const ftype ofs_east = cosF(radians(pitch_deg)) * sinF(radians(bearing_deg)) * distance;
offset(ofs_north, ofs_east);
const int32_t dalt = sinF(radians(pitch_deg)) * distance *100.0f;
alt += dalt;
}
ftype Location::longitude_scale(int32_t lat)
{
ftype scale = cosF(lat * (1.0e-7 * DEG_TO_RAD));
return MAX(scale, 0.01);
}
/*
* convert invalid waypoint with useful data. return true if location changed
*/
bool Location::sanitize(const Location &defaultLoc)
{
bool has_changed = false;
// convert lat/lng=0 to mean current point
if (lat == 0 && lng == 0) {
lat = defaultLoc.lat;
lng = defaultLoc.lng;
has_changed = true;
}
// convert relative alt=0 to mean current alt
if (alt == 0 && relative_alt) {
int32_t defaultLoc_alt;
if (defaultLoc.get_alt_cm(get_alt_frame(), defaultLoc_alt)) {
alt = defaultLoc_alt;
has_changed = true;
}
}
// limit lat/lng to appropriate ranges
if (!check_latlng()) {
lat = defaultLoc.lat;
lng = defaultLoc.lng;
has_changed = true;
}
return has_changed;
}
// return bearing in radians from location to loc2, return is 0 to 2*Pi
ftype Location::get_bearing(const Location &loc2) const
{
const int32_t off_x = diff_longitude(loc2.lng,lng);
const int32_t off_y = (loc2.lat - lat) / loc2.longitude_scale((lat+loc2.lat)/2);
ftype bearing = (M_PI*0.5) + atan2F(-off_y, off_x);
if (bearing < 0) {
bearing += 2*M_PI;
}
return bearing;
}
/*
return true if lat and lng match. Ignores altitude and options
*/
bool Location::same_latlon_as(const Location &loc2) const
{
return (lat == loc2.lat) && (lng == loc2.lng);
}
bool Location::same_alt_as(const Location &loc2) const
{
// fast path if the altitude frame is the same
if (this->get_alt_frame() == loc2.get_alt_frame()) {
return this->alt == loc2.alt;
}
ftype alt_diff;
bool have_diff = this->get_alt_distance(loc2, alt_diff);
const ftype tolerance = FLT_EPSILON;
return have_diff && (fabsF(alt_diff) < tolerance);
}
// return true when lat and lng are within range
bool Location::check_latlng() const
{
return check_lat(lat) && check_lng(lng);
}
// see if location is past a line perpendicular to
// the line between point1 and point2 and passing through point2.
// If point1 is our previous waypoint and point2 is our target waypoint
// then this function returns true if we have flown past
// the target waypoint
bool Location::past_interval_finish_line(const Location &point1, const Location &point2) const
{
return this->line_path_proportion(point1, point2) >= 1.0f;
}
/*
return the proportion we are along the path from point1 to
point2, along a line parallel to point1<->point2.
This will be more than 1 if we have passed point2
*/
float Location::line_path_proportion(const Location &point1, const Location &point2) const
{
const Vector2f vec1 = point1.get_distance_NE(point2);
const Vector2f vec2 = point1.get_distance_NE(*this);
const ftype dsquared = sq(vec1.x) + sq(vec1.y);
if (dsquared < 0.001f) {
// the two points are very close together
return 1.0f;
}
return (vec1 * vec2) / dsquared;
}
/*
wrap longitude for -180e7 to 180e7
*/
int32_t Location::wrap_longitude(int64_t lon)
{
if (lon > 1800000000L) {
lon = int32_t(lon-3600000000LL);
} else if (lon < -1800000000L) {
lon = int32_t(lon+3600000000LL);
}
return int32_t(lon);
}
/*
get lon1-lon2, wrapping at -180e7 to 180e7
*/
int32_t Location::diff_longitude(int32_t lon1, int32_t lon2)
{
if ((lon1 & 0x80000000) == (lon2 & 0x80000000)) {
// common case of same sign
return lon1 - lon2;
}
int64_t dlon = int64_t(lon1)-int64_t(lon2);
if (dlon > 1800000000LL) {
dlon -= 3600000000LL;
} else if (dlon < -1800000000LL) {
dlon += 3600000000LL;
}
return int32_t(dlon);
}
/*
limit latitude to -90e7 to 90e7
*/
int32_t Location::limit_lattitude(int32_t lat)
{
if (lat > 900000000L) {
lat = 1800000000LL - lat;
} else if (lat < -900000000L) {
lat = -(1800000000LL + lat);
}
return lat;
}
// update altitude and alt-frame base on this location's horizontal position between point1 and point2
// this location's lat,lon is used to calculate the alt of the closest point on the line between point1 and point2
// origin and destination's altitude frames must be the same
// this alt-frame will be updated to match the destination alt frame
void Location::linearly_interpolate_alt(const Location &point1, const Location &point2)
{
// new target's distance along the original track and then linear interpolate between the original origin and destination altitudes
set_alt_cm(point1.alt + (point2.alt - point1.alt) * constrain_float(line_path_proportion(point1, point2), 0.0f, 1.0f), point2.get_alt_frame());
}