Ardupilot2/libraries/AP_BattMonitor/AP_BattMonitor_SMBus_Solo.cpp
Michael du Breuil 8f24d211ce AP_BattMonitor: Solo add support for temperature and cells
Also fixs a buffer overflow when reading the ManufacturerData
2017-04-19 14:17:24 +01:00

229 lines
7.5 KiB
C++

#include <AP_HAL/AP_HAL.h>
#include <AP_Common/AP_Common.h>
#include <AP_Math/AP_Math.h>
#include <AP_Notify/AP_Notify.h>
#include "AP_BattMonitor.h"
#include "AP_BattMonitor_SMBus_Solo.h"
#include <utility>
extern const AP_HAL::HAL& hal;
#include <AP_HAL/AP_HAL.h>
#define BATTMONITOR_SMBUS_SOLO_TEMP 0x08 // temperature register
#define BATTMONITOR_SMBUS_SOLO_VOLTAGE 0x09 // voltage register
#define BATTMONITOR_SMBUS_SOLO_REMAINING_CAPACITY 0x0f // predicted remaining battery capacity in milliamps
#define BATTMONITOR_SMBUS_SOLO_FULL_CHARGE_CAPACITY 0x10 // full capacity register
#define BATTMONITOR_SMBUS_SOLO_MANUFACTURE_DATA 0x23 /// manufacturer data
#define BATTMONITOR_SMBUS_SOLO_CELL_VOLTAGE 0x28 // cell voltage register
#define BATTMONITOR_SMBUS_SOLO_CURRENT 0x2a // current register
#define BATTMONITOR_SMBUS_SOLO_BUTTON_DEBOUNCE 3 // button held down for 3 intervals will cause a power off event
#define BATTMONITOR_SMBUS_SOLO_NUM_CELLS 4
/*
* Other potentially useful registers, listed here for future use
* #define BATTMONITOR_SMBUS_SOLO_BATTERY_STATUS 0x16 // battery status register including alarms
* #define BATTMONITOR_SMBUS_SOLO_DESIGN_CAPACITY 0x18 // design capacity register
* #define BATTMONITOR_SMBUS_SOLO_DESIGN_VOLTAGE 0x19 // design voltage register
* #define BATTMONITOR_SMBUS_SOLO_SERIALNUM 0x1c // serial number register
* #define BATTMONITOR_SMBUS_SOLO_MANUFACTURE_NAME 0x20 // manufacturer name
* #define BATTMONITOR_SMBUS_SOLO_DEVICE_NAME 0x21 // device name
* #define BATTMONITOR_SMBUS_SOLO_DEVICE_CHEMISTRY 0x22 // device chemistry
* #define BATTMONITOR_SMBUS_SOLO_MANUFACTURE_INFO 0x25 // manufacturer info including cell voltage
*/
// Constructor
AP_BattMonitor_SMBus_Solo::AP_BattMonitor_SMBus_Solo(AP_BattMonitor &mon, uint8_t instance,
AP_BattMonitor::BattMonitor_State &mon_state,
AP_HAL::OwnPtr<AP_HAL::I2CDevice> dev)
: AP_BattMonitor_SMBus(mon, instance, mon_state)
, _dev(std::move(dev))
{
_dev->register_periodic_callback(100000, FUNCTOR_BIND_MEMBER(&AP_BattMonitor_SMBus_Solo::timer, void));
}
/// Read the battery voltage and current. Should be called at 10hz
void AP_BattMonitor_SMBus_Solo::read()
{
// nothing to do - all done in timer()
}
void AP_BattMonitor_SMBus_Solo::timer()
{
uint16_t data;
uint8_t buff[8];
uint32_t tnow = AP_HAL::micros();
// read voltage
if (read_word(BATTMONITOR_SMBUS_SOLO_VOLTAGE, data)) {
_state.voltage = (float)data / 1000.0f;
_state.last_time_micros = tnow;
_state.healthy = true;
}
// timeout after 5 seconds
if ((tnow - _state.last_time_micros) > AP_BATTMONITOR_SMBUS_TIMEOUT_MICROS) {
_state.healthy = false;
// do not attempt to ready any more data from battery
return;
}
// read current
if (read_block(BATTMONITOR_SMBUS_SOLO_CURRENT, buff, 4, false) == 4) {
_state.current_amps = -(float)((int32_t)((uint32_t)buff[3]<<24 | (uint32_t)buff[2]<<16 | (uint32_t)buff[1]<<8 | (uint32_t)buff[0])) / 1000.0f;
_state.last_time_micros = tnow;
}
// read battery design capacity
if (get_capacity() == 0) {
if (read_word(BATTMONITOR_SMBUS_SOLO_FULL_CHARGE_CAPACITY, data)) {
if (data > 0) {
set_capacity(data);
}
}
}
// read remaining capacity
if (get_capacity() > 0) {
if (read_word(BATTMONITOR_SMBUS_SOLO_REMAINING_CAPACITY, data)) {
_state.current_total_mah = MAX(0, get_capacity() - data);
}
}
// read the button press indicator
if (read_block(BATTMONITOR_SMBUS_SOLO_MANUFACTURE_DATA, buff, 6, false) == 6) {
bool pressed = (buff[1] >> 3) & 0x01;
if (_button_press_count >= BATTMONITOR_SMBUS_SOLO_BUTTON_DEBOUNCE) {
// battery will power off
_state.is_powering_off = true;
} else if (pressed) {
// battery will power off if the button is held
_button_press_count++;
} else {
// button released, reset counters
_button_press_count = 0;
_state.is_powering_off = false;
}
AP_Notify::flags.powering_off = _state.is_powering_off;
}
// read temperature
if (read_word(BATTMONITOR_SMBUS_SOLO_TEMP, data)) {
_state.temperature_time = AP_HAL::millis();
_state.temperature = ((float)(data - 2731)) * 0.1f;
}
// read cell voltages
if (read_block(BATTMONITOR_SMBUS_SOLO_CELL_VOLTAGE, buff, 8, false)) {
for (uint8_t i = 0; i < BATTMONITOR_SMBUS_SOLO_NUM_CELLS; i++) {
_state.cell_voltages.cells[i] = buff[(i * 2) + 1] << 8 | buff[i * 2];
}
}
}
// read word from register
// returns true if read was successful, false if failed
bool AP_BattMonitor_SMBus_Solo::read_word(uint8_t reg, uint16_t& data) const
{
uint8_t buff[3]; // buffer to hold results
// read three bytes and place in last three bytes of buffer
if (!_dev->read_registers(reg, buff, sizeof(buff))) {
return false;
}
// check PEC
uint8_t pec = get_PEC(AP_BATTMONITOR_SMBUS_I2C_ADDR, reg, true, buff, 2);
if (pec != buff[2]) {
return false;
}
// convert buffer to word
data = (uint16_t)buff[1]<<8 | (uint16_t)buff[0];
// return success
return true;
}
// read_block - returns number of characters read if successful, zero if unsuccessful
uint8_t AP_BattMonitor_SMBus_Solo::read_block(uint8_t reg, uint8_t* data, uint8_t max_len, bool append_zero) const
{
uint8_t buff[max_len+2]; // buffer to hold results (2 extra byte returned holding length and PEC)
// read bytes
if (!_dev->read_registers(reg, buff, sizeof(buff))) {
return 0;
}
// get length
uint8_t bufflen = buff[0];
// sanity check length returned by smbus
if (bufflen == 0 || bufflen > max_len) {
return 0;
}
// check PEC
uint8_t pec = get_PEC(AP_BATTMONITOR_SMBUS_I2C_ADDR, reg, true, buff, bufflen+1);
if (pec != buff[bufflen+1]) {
return 0;
}
// copy data (excluding PEC)
memcpy(data, &buff[1], bufflen);
// optionally add zero to end
if (append_zero) {
data[bufflen] = '\0';
}
// return success
return bufflen;
}
#define SMBUS_PEC_POLYNOME 0x07 // Polynome for CRC generation
/// get_PEC - calculate packet error correction code of buffer
uint8_t AP_BattMonitor_SMBus_Solo::get_PEC(const uint8_t i2c_addr, uint8_t cmd, bool reading, const uint8_t buff[], uint8_t len) const
{
// exit immediately if no data
if (len <= 0) {
return 0;
}
// prepare temp buffer for calcing crc
uint8_t tmp_buff[len+3];
tmp_buff[0] = i2c_addr << 1;
tmp_buff[1] = cmd;
tmp_buff[2] = tmp_buff[0] | (uint8_t)reading;
memcpy(&tmp_buff[3],buff,len);
// initialise crc to zero
uint8_t crc = 0;
uint8_t shift_reg = 0;
bool do_invert;
// for each byte in the stream
for (uint8_t i=0; i<sizeof(tmp_buff); i++) {
// load next data byte into the shift register
shift_reg = tmp_buff[i];
// for each bit in the current byte
for (uint8_t j=0; j<8; j++) {
do_invert = (crc ^ shift_reg) & 0x80;
crc <<= 1;
shift_reg <<= 1;
if(do_invert) {
crc ^= SMBUS_PEC_POLYNOME;
}
}
}
// return result
return crc;
}