Ardupilot2/ArduCopter/navigation.pde
Jason Short 8d0a2fae9b cleanup
added more ifdef for optflow
2011-09-15 23:41:15 -07:00

257 lines
7.3 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
//****************************************************************
// Function that will calculate the desired direction to fly and distance
//****************************************************************
static void navigate()
{
// do not navigate with corrupt data
// ---------------------------------
if (g_gps->fix == 0){
g_gps->new_data = false;
return;
}
if(next_WP.lat == 0){
return;
}
// waypoint distance from plane
// ----------------------------
wp_distance = get_distance(&current_loc, &next_WP);
if (wp_distance < 0){
//gcs.send_text_P(SEVERITY_HIGH,PSTR("<navigate> WP error - distance < 0"));
//Serial.println(wp_distance,DEC);
//print_current_waypoints();
return;
}
// target_bearing is where we should be heading
// --------------------------------------------
target_bearing = get_bearing(&current_loc, &next_WP);
}
static bool check_missed_wp()
{
long temp = target_bearing - saved_target_bearing;
temp = wrap_180(temp);
return (abs(temp) > 10000); //we pased the waypoint by 10 °
}
// ------------------------------
// long_error, lat_error
static void calc_location_error(struct Location *next_loc)
{
/*
Becuase we are using lat and lon to do our distance errors here's a quick chart:
100 = 1m
1000 = 11m = 36 feet
1800 = 19.80m = 60 feet
3000 = 33m
10000 = 111m
pitch_max = 22° (2200)
*/
// X ROLL
long_error = (float)(next_loc->lng - current_loc.lng) * scaleLongDown; // 500 - 0 = 500 roll EAST
// Y PITCH
lat_error = next_loc->lat - current_loc.lat; // 0 - 500 = -500 pitch NORTH
}
// nav_roll = g.pid_of_roll.get_pid(-optflow.x_cm * 10, dTnav, 1.0);
#define NAV_ERR_MAX 400
static void calc_nav_rate(int x_error, int y_error, int max_speed, int min_speed)
{
// moved to globals for logging
//int x_actual_speed, y_actual_speed;
//int x_rate_error, y_rate_error;
x_error = constrain(x_error, -NAV_ERR_MAX, NAV_ERR_MAX);
y_error = constrain(y_error, -NAV_ERR_MAX, NAV_ERR_MAX);
float scaler = (float)max_speed/(float)NAV_ERR_MAX;
g.pi_loiter_lat.kP(scaler);
g.pi_loiter_lon.kP(scaler);
int x_target_speed = g.pi_loiter_lon.get_pi(x_error, dTnav);
int y_target_speed = g.pi_loiter_lat.get_pi(y_error, dTnav);
//Serial.printf("scaler: %1.3f, y_target_speed %d",scaler,y_target_speed);
if(x_target_speed > 0){
x_target_speed = max(x_target_speed, min_speed);
}else{
x_target_speed = min(x_target_speed, -min_speed);
}
if(y_target_speed > 0){
y_target_speed = max(y_target_speed, min_speed);
}else{
y_target_speed = min(y_target_speed, -min_speed);
}
// find the rates:
float temp = radians((float)g_gps->ground_course/100.0);
#ifdef OPTFLOW_ENABLED
// calc the cos of the error to tell how fast we are moving towards the target in cm
if(g.optflow_enabled && current_loc.alt < 500 && g_gps->ground_speed < 150){
x_actual_speed = optflow.vlon * 10;
y_actual_speed = optflow.vlat * 10;
}else{
x_actual_speed = (float)g_gps->ground_speed * sin(temp);
y_actual_speed = (float)g_gps->ground_speed * cos(temp);
}
#else
x_actual_speed = (float)g_gps->ground_speed * sin(temp);
y_actual_speed = (float)g_gps->ground_speed * cos(temp);
#endif
y_rate_error = y_target_speed - y_actual_speed; // 413
y_rate_error = constrain(y_rate_error, -600, 600); // added a rate error limit to keep pitching down to a minimum
nav_lat = constrain(g.pi_nav_lat.get_pi(y_rate_error, dTnav), -3500, 3500);
//Serial.printf("yr: %d, nav_lat: %d, int:%d \n",y_rate_error, nav_lat, g.pi_nav_lat.get_integrator());
x_rate_error = x_target_speed - x_actual_speed;
x_rate_error = constrain(x_rate_error, -600, 600);
nav_lon = constrain(g.pi_nav_lon.get_pi(x_rate_error, dTnav), -3500, 3500);
}
// nav_roll, nav_pitch
static void calc_nav_pitch_roll()
{
// rotate the vector
nav_roll = (float)nav_lon * sin_yaw_y - (float)nav_lat * cos_yaw_x;
nav_pitch = (float)nav_lon * cos_yaw_x + (float)nav_lat * sin_yaw_y;
// flip pitch because forward is negative
nav_pitch = -nav_pitch;
}
static long get_altitude_error()
{
return next_WP.alt - current_loc.alt;
}
/*
static void calc_altitude_smoothing_error()
{
// limit climb rates - we draw a straight line between first location and edge of waypoint_radius
target_altitude = next_WP.alt - ((float)(wp_distance * (next_WP.alt - prev_WP.alt)) / (float)(wp_totalDistance - g.waypoint_radius));
// stay within a certain range
if(prev_WP.alt > next_WP.alt){
target_altitude = constrain(target_altitude, next_WP.alt, prev_WP.alt);
}else{
target_altitude = constrain(target_altitude, prev_WP.alt, next_WP.alt);
}
altitude_error = target_altitude - current_loc.alt;
}
*/
static int get_loiter_angle()
{
float power;
int angle;
if(wp_distance <= g.loiter_radius){
power = float(wp_distance) / float(g.loiter_radius);
power = constrain(power, 0.5, 1);
angle = 90.0 * (2.0 + power);
}else if(wp_distance < (g.loiter_radius + LOITER_RANGE)){
power = -((float)(wp_distance - g.loiter_radius - LOITER_RANGE) / LOITER_RANGE);
power = constrain(power, 0.5, 1); //power = constrain(power, 0, 1);
angle = power * 90;
}
return angle;
}
static long wrap_360(long error)
{
if (error > 36000) error -= 36000;
if (error < 0) error += 36000;
return error;
}
static long wrap_180(long error)
{
if (error > 18000) error -= 36000;
if (error < -18000) error += 36000;
return error;
}
/*
static long get_crosstrack_correction(void)
{
// Crosstrack Error
// ----------------
if (cross_track_test() < 9000) { // If we are too far off or too close we don't do track following
// Meters we are off track line
float error = sin(radians((target_bearing - crosstrack_bearing) / (float)100)) * (float)wp_distance;
// take meters * 100 to get adjustment to nav_bearing
long _crosstrack_correction = g.pi_crosstrack.get_pi(error, dTnav) * 100;
// constrain answer to 30° to avoid overshoot
return constrain(_crosstrack_correction, -g.crosstrack_entry_angle.get(), g.crosstrack_entry_angle.get());
}
return 0;
}
*/
/*
static long cross_track_test()
{
long temp = wrap_180(target_bearing - crosstrack_bearing);
return abs(temp);
}
*/
/*
static void reset_crosstrack()
{
crosstrack_bearing = get_bearing(&current_loc, &next_WP); // Used for track following
}
*/
static long get_altitude_above_home(void)
{
// This is the altitude above the home location
// The GPS gives us altitude at Sea Level
// if you slope soar, you should see a negative number sometimes
// -------------------------------------------------------------
return current_loc.alt - home.alt;
}
// distance is returned in meters
static long get_distance(struct Location *loc1, struct Location *loc2)
{
//if(loc1->lat == 0 || loc1->lng == 0)
// return -1;
//if(loc2->lat == 0 || loc2->lng == 0)
// return -1;
float dlat = (float)(loc2->lat - loc1->lat);
float dlong = ((float)(loc2->lng - loc1->lng)) * scaleLongDown;
return sqrt(sq(dlat) + sq(dlong)) * .01113195;
}
static long get_alt_distance(struct Location *loc1, struct Location *loc2)
{
return abs(loc1->alt - loc2->alt);
}
static long get_bearing(struct Location *loc1, struct Location *loc2)
{
long off_x = loc2->lng - loc1->lng;
long off_y = (loc2->lat - loc1->lat) * scaleLongUp;
long bearing = 9000 + atan2(-off_y, off_x) * 5729.57795;
if (bearing < 0) bearing += 36000;
return bearing;
}