135 lines
5.3 KiB
C++
135 lines
5.3 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/*
|
|
The SlewLimiter filter provides an actuator slew rate limiter for
|
|
PID controllers. It is used to reduce the P and D gains when the
|
|
filter detects that the P+D components are pushing the actuator
|
|
beyond the configured actuator rate limit. This can prevent
|
|
oscillations that are caused by the output actuation rate going
|
|
beyond the actuator maximum physical rate, which causes the
|
|
actuation demand and achieved rate to get out of phase.
|
|
|
|
this filter was originally written by Paul Riseborough for fixed
|
|
wing use. It was adapted for wider use in AC_PID by Andrew Tridgell
|
|
*/
|
|
#include "SlewLimiter.h"
|
|
|
|
SlewLimiter::SlewLimiter(const float &_slew_rate_max, const float &_slew_rate_tau) :
|
|
slew_rate_max(_slew_rate_max),
|
|
slew_rate_tau(_slew_rate_tau)
|
|
{
|
|
slew_filter.set_cutoff_frequency(DERIVATIVE_CUTOFF_FREQ);
|
|
slew_filter.reset(0.0);
|
|
}
|
|
|
|
/*
|
|
apply filter to sample, returning multiplier between 0 and 1 to keep
|
|
output within slew rate
|
|
*/
|
|
float SlewLimiter::modifier(float sample, float dt)
|
|
{
|
|
if (!is_positive(dt)) {
|
|
return 1.0;
|
|
}
|
|
|
|
// Calculate a low pass filtered slew rate
|
|
const float slew_rate = slew_filter.apply((sample - last_sample) / dt, dt);
|
|
last_sample = sample;
|
|
|
|
uint32_t now_ms = AP_HAL::millis();
|
|
|
|
// Apply a filter to decay maximum seen slew rate once the value had left the window period
|
|
const float decay_alpha = fminf(dt, slew_rate_tau) / slew_rate_tau;
|
|
|
|
// Apply a filter to increases in slew rate only to reduce the effect of gusts and large controller setpoint changes
|
|
const float attack_alpha = fminf(2.0f * decay_alpha, 1.0f);
|
|
|
|
// Decay the peak positive and negative slew rate if they are outside the window
|
|
// Never drop PID gains below 10% of configured value
|
|
if (slew_rate > _max_pos_slew_rate) {
|
|
_max_pos_slew_rate = slew_rate;
|
|
_max_pos_slew_event_ms = now_ms;
|
|
} else if (now_ms - _max_pos_slew_event_ms > WINDOW_MS) {
|
|
_max_pos_slew_rate *= (1.0f - decay_alpha);
|
|
}
|
|
|
|
if (-slew_rate > _max_neg_slew_rate) {
|
|
_max_neg_slew_rate = -slew_rate;
|
|
_max_neg_slew_event_ms = now_ms;
|
|
} else if (now_ms - _max_neg_slew_event_ms > WINDOW_MS) {
|
|
_max_neg_slew_rate *= (1.0f - decay_alpha);
|
|
}
|
|
|
|
const float raw_slew_rate = 0.5f*(_max_pos_slew_rate + _max_neg_slew_rate);
|
|
_output_slew_rate = (1.0f - attack_alpha) * _output_slew_rate + attack_alpha * raw_slew_rate;
|
|
_output_slew_rate = fminf(_output_slew_rate, raw_slew_rate);
|
|
|
|
if (slew_rate_max <= 0) {
|
|
return 1.0;
|
|
}
|
|
|
|
// Constrain slew rate used for calculation
|
|
const float limited_raw_slew_rate = 0.5f*(fminf(_max_pos_slew_rate, 10.0f * slew_rate_max) + fminf(_max_neg_slew_rate, 10.0f * slew_rate_max));
|
|
|
|
// Store a series of positive slew rate exceedance events
|
|
if (!_pos_event_stored && slew_rate > slew_rate_max) {
|
|
if (_pos_event_index >= N_EVENTS) {
|
|
_pos_event_index = 0;
|
|
}
|
|
_pos_event_ms[_pos_event_index] = now_ms;
|
|
_pos_event_index++;
|
|
_pos_event_stored = true;
|
|
_neg_event_stored = false;
|
|
}
|
|
|
|
// Store a series of negative slew rate exceedance events
|
|
if (!_neg_event_stored && -slew_rate > slew_rate_max) {
|
|
if (_neg_event_index >= N_EVENTS) {
|
|
_neg_event_index = 0;
|
|
}
|
|
_neg_event_ms[_neg_event_index] = now_ms;
|
|
_neg_event_index++;
|
|
_neg_event_stored = true;
|
|
_pos_event_stored = false;
|
|
}
|
|
|
|
// Find the oldest event time
|
|
uint32_t oldest_ms = now_ms;
|
|
for (uint8_t index = 0; index < N_EVENTS; index++) {
|
|
oldest_ms = MIN(oldest_ms, _pos_event_ms[index]);
|
|
oldest_ms = MIN(oldest_ms, _neg_event_ms[index]);
|
|
}
|
|
|
|
// Apply a further reduction when the oldest exceedance event falls outside the window required for the
|
|
// specified number of exceedance events. This prevents spikes due to control mode changed, etc causing
|
|
// unwanted gain reduction and is only applied to the slew rate used for gain reduction
|
|
float modifier_input = limited_raw_slew_rate;
|
|
if (now_ms - oldest_ms > (N_EVENTS + 1) * WINDOW_MS) {
|
|
const float oldest_time_from_window = 0.001f*(float)(now_ms - oldest_ms - (N_EVENTS + 1) * WINDOW_MS);
|
|
modifier_input *= expf(-oldest_time_from_window / slew_rate_tau);
|
|
}
|
|
|
|
_modifier_slew_rate = (1.0f - attack_alpha) * _modifier_slew_rate + attack_alpha * modifier_input;
|
|
_modifier_slew_rate = fminf(_modifier_slew_rate, modifier_input);
|
|
|
|
// Calculate the gain adjustment
|
|
float mod = 1.0f;
|
|
if (_modifier_slew_rate > slew_rate_max) {
|
|
mod = slew_rate_max / (slew_rate_max + MODIFIER_GAIN * (_modifier_slew_rate - slew_rate_max));
|
|
}
|
|
|
|
return mod;
|
|
}
|