Ardupilot2/libraries/AP_HAL_SITL/UARTDriver.cpp
2018-01-20 17:35:08 +11:00

496 lines
12 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
//
// Copyright (c) 2010 Michael Smith. All rights reserved.
//
#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
#include <limits.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <stdarg.h>
#include <AP_Math/AP_Math.h>
#include <errno.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <sys/select.h>
#include <termios.h>
#include <sys/time.h>
#include "UARTDriver.h"
#include "SITL_State.h"
extern const AP_HAL::HAL& hal;
using namespace HALSITL;
bool UARTDriver::_console;
/* UARTDriver method implementations */
void UARTDriver::begin(uint32_t baud, uint16_t rxSpace, uint16_t txSpace)
{
const char *path = _sitlState->_uart_path[_portNumber];
if (strcmp(path, "GPS1") == 0) {
/* gps */
_connected = true;
_fd = _sitlState->gps_pipe();
} else if (strcmp(path, "GPS2") == 0) {
/* 2nd gps */
_connected = true;
_fd = _sitlState->gps2_pipe();
} else {
/* parse type:args:flags string for path.
For example:
tcp:5760:wait // tcp listen on port 5760
tcp:0:wait // tcp listen on use base_port + 0
tcpclient:192.168.2.15:5762
uart:/dev/ttyUSB0:57600
*/
char *saveptr = nullptr;
char *s = strdup(path);
char *devtype = strtok_r(s, ":", &saveptr);
char *args1 = strtok_r(nullptr, ":", &saveptr);
char *args2 = strtok_r(nullptr, ":", &saveptr);
if (strcmp(devtype, "tcp") == 0) {
uint16_t port = atoi(args1);
bool wait = (args2 && strcmp(args2, "wait") == 0);
_tcp_start_connection(port, wait);
} else if (strcmp(devtype, "tcpclient") == 0) {
if (args2 == nullptr) {
AP_HAL::panic("Invalid tcp client path: %s", path);
}
uint16_t port = atoi(args2);
_tcp_start_client(args1, port);
} else if (strcmp(devtype, "uart") == 0) {
uint32_t baudrate = args2? atoi(args2) : baud;
::printf("UART connection %s:%u\n", args1, baudrate);
_uart_path = strdup(args1);
_uart_baudrate = baudrate;
_uart_start_connection();
} else {
AP_HAL::panic("Invalid device path: %s", path);
}
free(s);
}
_set_nonblocking(_fd);
}
void UARTDriver::end()
{
}
uint32_t UARTDriver::available(void)
{
_check_connection();
if (!_connected) {
return 0;
}
return _readbuffer.available();
}
uint32_t UARTDriver::txspace(void)
{
_check_connection();
if (!_connected) {
return 0;
}
return _writebuffer.space();
}
int16_t UARTDriver::read(void)
{
if (available() <= 0) {
return -1;
}
uint8_t c;
_readbuffer.read(&c, 1);
return c;
}
void UARTDriver::flush(void)
{
}
size_t UARTDriver::write(uint8_t c)
{
if (txspace() <= 0) {
return 0;
}
_writebuffer.write(&c, 1);
return 1;
}
size_t UARTDriver::write(const uint8_t *buffer, size_t size)
{
if (txspace() <= (ssize_t)size) {
size = txspace();
}
if (size <= 0) {
return 0;
}
if (_unbuffered_writes) {
// write buffer straight to the file descriptor
const ssize_t nwritten = ::write(_fd, buffer, size);
if (nwritten == -1 && errno != EAGAIN && _uart_path) {
close(_fd);
_fd = -1;
_connected = false;
}
// these have no effect
tcdrain(_fd);
} else {
_writebuffer.write(buffer, size);
}
return size;
}
/*
start a TCP connection for the serial port. If wait_for_connection
is true then block until a client connects
*/
void UARTDriver::_tcp_start_connection(uint16_t port, bool wait_for_connection)
{
int one=1;
struct sockaddr_in sockaddr;
int ret;
if (_connected) {
return;
}
_use_send_recv = true;
if (_console) {
// hack for console access
_connected = true;
_use_send_recv = false;
_listen_fd = -1;
_fd = 1;
return;
}
if (_fd != -1) {
close(_fd);
}
if (_listen_fd == -1) {
memset(&sockaddr,0,sizeof(sockaddr));
#ifdef HAVE_SOCK_SIN_LEN
sockaddr.sin_len = sizeof(sockaddr);
#endif
if (port > 1000) {
sockaddr.sin_port = htons(port);
} else {
sockaddr.sin_port = htons(_sitlState->base_port() + port);
}
sockaddr.sin_family = AF_INET;
_listen_fd = socket(AF_INET, SOCK_STREAM, 0);
if (_listen_fd == -1) {
fprintf(stderr, "socket failed - %s\n", strerror(errno));
exit(1);
}
/* we want to be able to re-use ports quickly */
setsockopt(_listen_fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));
fprintf(stderr, "bind port %u for %u\n",
(unsigned)ntohs(sockaddr.sin_port),
(unsigned)_portNumber);
ret = bind(_listen_fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
if (ret == -1) {
fprintf(stderr, "bind failed on port %u - %s\n",
(unsigned)ntohs(sockaddr.sin_port),
strerror(errno));
exit(1);
}
ret = listen(_listen_fd, 5);
if (ret == -1) {
fprintf(stderr, "listen failed - %s\n", strerror(errno));
exit(1);
}
fprintf(stderr, "Serial port %u on TCP port %u\n", _portNumber,
_sitlState->base_port() + _portNumber);
fflush(stdout);
}
if (wait_for_connection) {
fprintf(stdout, "Waiting for connection ....\n");
fflush(stdout);
_fd = accept(_listen_fd, nullptr, nullptr);
if (_fd == -1) {
fprintf(stderr, "accept() error - %s", strerror(errno));
exit(1);
}
setsockopt(_fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));
setsockopt(_fd, IPPROTO_TCP, TCP_NODELAY, &one, sizeof(one));
_connected = true;
}
}
/*
start a TCP client connection for the serial port.
*/
void UARTDriver::_tcp_start_client(const char *address, uint16_t port)
{
int one=1;
struct sockaddr_in sockaddr;
int ret;
if (_connected) {
return;
}
_use_send_recv = true;
if (_fd != -1) {
close(_fd);
}
memset(&sockaddr,0,sizeof(sockaddr));
#ifdef HAVE_SOCK_SIN_LEN
sockaddr.sin_len = sizeof(sockaddr);
#endif
sockaddr.sin_port = htons(port);
sockaddr.sin_family = AF_INET;
sockaddr.sin_addr.s_addr = inet_addr(address);
_fd = socket(AF_INET, SOCK_STREAM, 0);
if (_fd == -1) {
fprintf(stderr, "socket failed - %s\n", strerror(errno));
exit(1);
}
/* we want to be able to re-use ports quickly */
setsockopt(_fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));
ret = connect(_fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
if (ret == -1) {
fprintf(stderr, "connect failed on port %u - %s\n",
(unsigned)ntohs(sockaddr.sin_port),
strerror(errno));
exit(1);
}
setsockopt(_fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));
setsockopt(_fd, IPPROTO_TCP, TCP_NODELAY, &one, sizeof(one));
_connected = true;
}
/*
start a UART connection for the serial port
*/
void UARTDriver::_uart_start_connection(void)
{
struct termios t {};
if (!_connected) {
_fd = ::open(_uart_path, O_RDWR | O_CLOEXEC);
if (_fd == -1) {
return;
}
// use much smaller buffer sizes on real UARTs
_writebuffer.set_size(1024);
_readbuffer.set_size(512);
::printf("Opened %s\n", _uart_path);
}
if (_fd == -1) {
AP_HAL::panic("Unable to open UART %s", _uart_path);
}
// set non-blocking
int flags = fcntl(_fd, F_GETFL, 0);
flags = flags | O_NONBLOCK;
fcntl(_fd, F_SETFL, flags);
// disable LF -> CR/LF
tcgetattr(_fd, &t);
t.c_iflag &= ~(BRKINT | ICRNL | IMAXBEL | IXON | IXOFF);
t.c_oflag &= ~(OPOST | ONLCR);
t.c_lflag &= ~(ISIG | ICANON | IEXTEN | ECHO | ECHOE | ECHOK | ECHOCTL | ECHOKE);
t.c_cc[VMIN] = 0;
if (_sitlState->use_rtscts()) {
t.c_cflag |= CRTSCTS;
}
tcsetattr(_fd, TCSANOW, &t);
// set baudrate
set_speed(_uart_baudrate);
_connected = true;
_use_send_recv = false;
}
/*
see if a new connection is coming in
*/
void UARTDriver::_check_connection(void)
{
if (_connected) {
// we only want 1 connection at a time
return;
}
if (_select_check(_listen_fd)) {
_fd = accept(_listen_fd, nullptr, nullptr);
if (_fd != -1) {
int one = 1;
_connected = true;
setsockopt(_fd, IPPROTO_TCP, TCP_NODELAY, &one, sizeof(one));
setsockopt(_fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));
fprintf(stdout, "New connection on serial port %u\n", _portNumber);
}
}
}
/*
use select() to see if something is pending
*/
bool UARTDriver::_select_check(int fd)
{
if (fd == -1) {
return false;
}
fd_set fds;
struct timeval tv;
FD_ZERO(&fds);
FD_SET(fd, &fds);
// zero time means immediate return from select()
tv.tv_sec = 0;
tv.tv_usec = 0;
if (select(fd+1, &fds, nullptr, nullptr, &tv) == 1) {
return true;
}
return false;
}
void UARTDriver::_set_nonblocking(int fd)
{
unsigned v = fcntl(fd, F_GETFL, 0);
fcntl(fd, F_SETFL, v | O_NONBLOCK);
}
bool UARTDriver::set_unbuffered_writes(bool on) {
if (_fd == -1) {
return false;
}
_unbuffered_writes = on;
// this has no effect
unsigned v = fcntl(_fd, F_GETFL, 0);
v &= ~O_NONBLOCK;
#if defined(__APPLE__) && defined(__MACH__)
fcntl(_fd, F_SETFL | F_NOCACHE, v | O_SYNC);
#else
fcntl(_fd, F_SETFL, v | O_DIRECT | O_SYNC);
#endif
return _unbuffered_writes;
}
void UARTDriver::_check_reconnect(void)
{
if (!_uart_path) {
return;
}
_uart_start_connection();
}
void UARTDriver::_timer_tick(void)
{
if (!_connected) {
_check_reconnect();
return;
}
uint32_t navail;
ssize_t nwritten;
const uint8_t *readptr = _writebuffer.readptr(navail);
if (readptr && navail > 0) {
if (!_use_send_recv) {
nwritten = ::write(_fd, readptr, navail);
if (nwritten == -1 && errno != EAGAIN && _uart_path) {
close(_fd);
_fd = -1;
_connected = false;
}
} else {
nwritten = send(_fd, readptr, navail, MSG_DONTWAIT);
}
if (nwritten > 0) {
_writebuffer.advance(nwritten);
}
}
uint32_t space = _readbuffer.space();
if (space == 0) {
return;
}
char buf[space];
ssize_t nread = 0;
if (!_use_send_recv) {
int fd = _console?0:_fd;
nread = ::read(fd, buf, space);
if (nread == -1 && errno != EAGAIN && _uart_path) {
close(_fd);
_fd = -1;
_connected = false;
}
} else {
if (_select_check(_fd)) {
nread = recv(_fd, buf, space, MSG_DONTWAIT);
if (nread <= 0) {
// the socket has reached EOF
close(_fd);
_connected = false;
fprintf(stdout, "Closed connection on serial port %u\n", _portNumber);
fflush(stdout);
return;
}
} else {
nread = 0;
}
}
if (nread > 0) {
_readbuffer.write((uint8_t *)buf, nread);
}
}
#endif // CONFIG_HAL_BOARD