Ardupilot2/libraries/AC_WPNav/AC_WPNav.cpp
Randy Mackay 5767aa47d9 AC_WPNav: reduce leash length for stopping
We now limit the target stopping point to 1x the xy leash length while
previously it was 2x.  This is justified because this limit is only used
when the copter is travelling at higher speeds but at higher speeds air
drag tends to make the copter stop more quickly naturally.
2013-12-13 22:12:30 +09:00

773 lines
29 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_HAL.h>
#include <AC_WPNav.h>
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo AC_WPNav::var_info[] PROGMEM = {
// index 0 was used for the old orientation matrix
// @Param: SPEED
// @DisplayName: Waypoint Horizontal Speed Target
// @Description: Defines the speed in cm/s which the aircraft will attempt to maintain horizontally during a WP mission
// @Units: cm/s
// @Range: 0 2000
// @Increment: 50
// @User: Standard
AP_GROUPINFO("SPEED", 0, AC_WPNav, _wp_speed_cms, WPNAV_WP_SPEED),
// @Param: RADIUS
// @DisplayName: Waypoint Radius
// @Description: Defines the distance from a waypoint, that when crossed indicates the wp has been hit.
// @Units: cm
// @Range: 100 1000
// @Increment: 1
// @User: Standard
AP_GROUPINFO("RADIUS", 1, AC_WPNav, _wp_radius_cm, WPNAV_WP_RADIUS),
// @Param: SPEED_UP
// @DisplayName: Waypoint Climb Speed Target
// @Description: Defines the speed in cm/s which the aircraft will attempt to maintain while climbing during a WP mission
// @Units: cm/s
// @Range: 0 1000
// @Increment: 50
// @User: Standard
AP_GROUPINFO("SPEED_UP", 2, AC_WPNav, _wp_speed_up_cms, WPNAV_WP_SPEED_UP),
// @Param: SPEED_DN
// @DisplayName: Waypoint Descent Speed Target
// @Description: Defines the speed in cm/s which the aircraft will attempt to maintain while descending during a WP mission
// @Units: cm/s
// @Range: 0 1000
// @Increment: 50
// @User: Standard
AP_GROUPINFO("SPEED_DN", 3, AC_WPNav, _wp_speed_down_cms, WPNAV_WP_SPEED_DOWN),
// @Param: LOIT_SPEED
// @DisplayName: Loiter Horizontal Maximum Speed
// @Description: Defines the maximum speed in cm/s which the aircraft will travel horizontally while in loiter mode
// @Units: cm/s
// @Range: 0 2000
// @Increment: 50
// @User: Standard
AP_GROUPINFO("LOIT_SPEED", 4, AC_WPNav, _loiter_speed_cms, WPNAV_LOITER_SPEED),
// @Param: ACCEL
// @DisplayName: Waypoint Acceleration
// @Description: Defines the horizontal acceleration in cm/s/s used during missions
// @Units: cm/s/s
// @Range: 0 980
// @Increment: 10
// @User: Standard
AP_GROUPINFO("ACCEL", 5, AC_WPNav, _wp_accel_cms, WPNAV_ACCELERATION),
AP_GROUPEND
};
// Default constructor.
// Note that the Vector/Matrix constructors already implicitly zero
// their values.
//
AC_WPNav::AC_WPNav(const AP_InertialNav* inav, const AP_AHRS* ahrs, APM_PI* pid_pos_lat, APM_PI* pid_pos_lon, AC_PID* pid_rate_lat, AC_PID* pid_rate_lon) :
_inav(inav),
_ahrs(ahrs),
_pid_pos_lat(pid_pos_lat),
_pid_pos_lon(pid_pos_lon),
_pid_rate_lat(pid_rate_lat),
_pid_rate_lon(pid_rate_lon),
_loiter_last_update(0),
_wpnav_last_update(0),
_cos_yaw(1.0),
_sin_yaw(0.0),
_cos_pitch(1.0),
_althold_kP(WPNAV_ALT_HOLD_P),
_desired_roll(0),
_desired_pitch(0),
_target(0,0,0),
_pilot_vel_forward_cms(0),
_pilot_vel_right_cms(0),
_target_vel(0,0,0),
_vel_last(0,0,0),
_loiter_leash(WPNAV_MIN_LEASH_LENGTH),
_loiter_accel_cms(WPNAV_LOITER_ACCEL_MAX),
_lean_angle_max_cd(MAX_LEAN_ANGLE),
_wp_leash_xy(WPNAV_MIN_LEASH_LENGTH),
_wp_leash_z(WPNAV_MIN_LEASH_LENGTH),
_track_accel(0),
_track_speed(0),
_track_leash_length(0),
dist_error(0,0),
desired_vel(0,0),
desired_accel(0,0)
{
AP_Param::setup_object_defaults(this, var_info);
// initialise leash lengths
calculate_wp_leash_length(true);
calculate_loiter_leash_length();
}
///
/// simple loiter controller
///
/// get_stopping_point - returns vector to stopping point based on a horizontal position and velocity
void AC_WPNav::get_stopping_point(const Vector3f& position, const Vector3f& velocity, Vector3f &target) const
{
float linear_distance; // half the distace we swap between linear and sqrt and the distace we offset sqrt.
float linear_velocity; // the velocity we swap between linear and sqrt.
float vel_total;
float target_dist;
float kP = _pid_pos_lat->kP();
// calculate current velocity
vel_total = safe_sqrt(velocity.x*velocity.x + velocity.y*velocity.y);
// avoid divide by zero by using current position if the velocity is below 10cm/s, kP is very low or acceleration is zero
if (vel_total < 10.0f || kP <= 0.0f || _wp_accel_cms <= 0.0f) {
target = position;
return;
}
// calculate point at which velocity switches from linear to sqrt
linear_velocity = _wp_accel_cms/kP;
// calculate distance within which we can stop
if (vel_total < linear_velocity) {
target_dist = vel_total/kP;
} else {
linear_distance = _wp_accel_cms/(2.0f*kP*kP);
target_dist = linear_distance + (vel_total*vel_total)/(2.0f*_wp_accel_cms);
}
target_dist = constrain_float(target_dist, 0, _wp_leash_xy);
target.x = position.x + (target_dist * velocity.x / vel_total);
target.y = position.y + (target_dist * velocity.y / vel_total);
target.z = position.z;
}
/// set_loiter_target in cm from home
void AC_WPNav::set_loiter_target(const Vector3f& position)
{
_target = position;
_target_vel.x = 0;
_target_vel.y = 0;
}
/// init_loiter_target - set initial loiter target based on current position and velocity
void AC_WPNav::init_loiter_target(const Vector3f& position, const Vector3f& velocity)
{
// set target position and velocity based on current pos and velocity
_target.x = position.x;
_target.y = position.y;
_target_vel.x = velocity.x;
_target_vel.y = velocity.y;
// initialise desired roll and pitch to current roll and pitch. This avoids a random twitch between now and when the loiter controller is first run
_desired_roll = constrain_int32(_ahrs->roll_sensor,-_lean_angle_max_cd,_lean_angle_max_cd);
_desired_pitch = constrain_int32(_ahrs->pitch_sensor,-_lean_angle_max_cd,_lean_angle_max_cd);
// initialise pilot input
_pilot_vel_forward_cms = 0;
_pilot_vel_right_cms = 0;
// set last velocity to current velocity
// To-Do: remove the line below by instead forcing reset_I to be called on the first loiter_update call
_vel_last = _inav->get_velocity();
}
/// move_loiter_target - move loiter target by velocity provided in front/right directions in cm/s
void AC_WPNav::move_loiter_target(float control_roll, float control_pitch, float dt)
{
// convert pilot input to desired velocity in cm/s
_pilot_vel_forward_cms = -control_pitch * _loiter_accel_cms / 4500.0f;
_pilot_vel_right_cms = control_roll * _loiter_accel_cms / 4500.0f;
}
/// translate_loiter_target_movements - consumes adjustments created by move_loiter_target
void AC_WPNav::translate_loiter_target_movements(float nav_dt)
{
Vector2f target_vel_adj;
float vel_total;
// range check nav_dt
if( nav_dt < 0 ) {
return;
}
// check loiter speed and avoid divide by zero
if( _loiter_speed_cms < 100.0f) {
_loiter_speed_cms = 100.0f;
}
// rotate pilot input to lat/lon frame
target_vel_adj.x = (_pilot_vel_forward_cms*_cos_yaw - _pilot_vel_right_cms*_sin_yaw);
target_vel_adj.y = (_pilot_vel_forward_cms*_sin_yaw + _pilot_vel_right_cms*_cos_yaw);
// add desired change in velocity to current target velocit
_target_vel.x += target_vel_adj.x*nav_dt;
_target_vel.y += target_vel_adj.y*nav_dt;
if(_target_vel.x > 0 ) {
_target_vel.x -= (_loiter_accel_cms-WPNAV_LOITER_ACCEL_MIN)*nav_dt*_target_vel.x/_loiter_speed_cms;
_target_vel.x = max(_target_vel.x - WPNAV_LOITER_ACCEL_MIN*nav_dt, 0);
}else if(_target_vel.x < 0) {
_target_vel.x -= (_loiter_accel_cms-WPNAV_LOITER_ACCEL_MIN)*nav_dt*_target_vel.x/_loiter_speed_cms;
_target_vel.x = min(_target_vel.x + WPNAV_LOITER_ACCEL_MIN*nav_dt, 0);
}
if(_target_vel.y > 0 ) {
_target_vel.y -= (_loiter_accel_cms-WPNAV_LOITER_ACCEL_MIN)*nav_dt*_target_vel.y/_loiter_speed_cms;
_target_vel.y = max(_target_vel.y - WPNAV_LOITER_ACCEL_MIN*nav_dt, 0);
}else if(_target_vel.y < 0) {
_target_vel.y -= (_loiter_accel_cms-WPNAV_LOITER_ACCEL_MIN)*nav_dt*_target_vel.y/_loiter_speed_cms;
_target_vel.y = min(_target_vel.y + WPNAV_LOITER_ACCEL_MIN*nav_dt, 0);
}
// constrain the velocity vector and scale if necessary
vel_total = safe_sqrt(_target_vel.x*_target_vel.x + _target_vel.y*_target_vel.y);
if (vel_total > _loiter_speed_cms && vel_total > 0.0f) {
_target_vel.x = _loiter_speed_cms * _target_vel.x/vel_total;
_target_vel.y = _loiter_speed_cms * _target_vel.y/vel_total;
}
// update target position
_target.x += _target_vel.x * nav_dt;
_target.y += _target_vel.y * nav_dt;
// constrain target position to within reasonable distance of current location
Vector3f curr_pos = _inav->get_position();
Vector3f distance_err = _target - curr_pos;
float distance = safe_sqrt(distance_err.x*distance_err.x + distance_err.y*distance_err.y);
if (distance > _loiter_leash && distance > 0.0f) {
_target.x = curr_pos.x + _loiter_leash * distance_err.x/distance;
_target.y = curr_pos.y + _loiter_leash * distance_err.y/distance;
}
}
/// get_distance_to_target - get horizontal distance to loiter target in cm
float AC_WPNav::get_distance_to_target() const
{
return _distance_to_target;
}
/// get_bearing_to_target - get bearing to loiter target in centi-degrees
int32_t AC_WPNav::get_bearing_to_target() const
{
return get_bearing_cd(_inav->get_position(), _target);
}
/// update_loiter - run the loiter controller - should be called at 10hz
void AC_WPNav::update_loiter()
{
// calculate dt
uint32_t now = hal.scheduler->millis();
float dt = (now - _loiter_last_update) / 1000.0f;
// catch if we've just been started
if( dt >= 1.0f ) {
dt = 0.0f;
reset_I();
_loiter_step = 0;
}
// reset step back to 0 if 0.1 seconds has passed and we completed the last full cycle
if (dt > 0.095f && _loiter_step > 3) {
_loiter_step = 0;
}
// run loiter steps
switch (_loiter_step) {
case 0:
// capture time since last iteration
_loiter_dt = dt;
_loiter_last_update = now;
// translate any adjustments from pilot to loiter target
translate_loiter_target_movements(_loiter_dt);
_loiter_step++;
break;
case 1:
// run loiter's position to velocity step
get_loiter_position_to_velocity(_loiter_dt, WPNAV_LOITER_SPEED_MAX_TO_CORRECT_ERROR);
_loiter_step++;
break;
case 2:
// run loiter's velocity to acceleration step
get_loiter_velocity_to_acceleration(desired_vel.x, desired_vel.y, _loiter_dt);
_loiter_step++;
break;
case 3:
// run loiter's acceleration to lean angle step
get_loiter_acceleration_to_lean_angles(desired_accel.x, desired_accel.y);
_loiter_step++;
break;
}
}
/// calculate_loiter_leash_length - calculates the maximum distance in cm that the target position may be from the current location
void AC_WPNav::calculate_loiter_leash_length()
{
// get loiter position P
float kP = _pid_pos_lat->kP();
// check loiter speed
if( _loiter_speed_cms < 100.0f) {
_loiter_speed_cms = 100.0f;
}
// set loiter acceleration to 1/2 loiter speed
_loiter_accel_cms = _loiter_speed_cms / 2.0f;
// avoid divide by zero
if (kP <= 0.0f || _wp_accel_cms <= 0.0f) {
_loiter_leash = WPNAV_MIN_LEASH_LENGTH;
return;
}
// calculate horizontal leash length
if(WPNAV_LOITER_SPEED_MAX_TO_CORRECT_ERROR <= _wp_accel_cms / kP) {
// linear leash length based on speed close in
_loiter_leash = WPNAV_LOITER_SPEED_MAX_TO_CORRECT_ERROR / kP;
}else{
// leash length grows at sqrt of speed further out
_loiter_leash = (_wp_accel_cms / (2.0f*kP*kP)) + (WPNAV_LOITER_SPEED_MAX_TO_CORRECT_ERROR*WPNAV_LOITER_SPEED_MAX_TO_CORRECT_ERROR / (2.0f*_wp_accel_cms));
}
// ensure leash is at least 1m long
if( _loiter_leash < WPNAV_MIN_LEASH_LENGTH ) {
_loiter_leash = WPNAV_MIN_LEASH_LENGTH;
}
}
///
/// waypoint navigation
///
/// set_destination - set destination using cm from home
void AC_WPNav::set_destination(const Vector3f& destination)
{
// if waypoint controlls is active and copter has reached the previous waypoint use it for the origin
if( _flags.reached_destination && ((hal.scheduler->millis() - _wpnav_last_update) < 1000) ) {
_origin = _destination;
}else{
// otherwise calculate origin from the current position and velocity
get_stopping_point(_inav->get_position(), _inav->get_velocity(), _origin);
}
// set origin and destination
set_origin_and_destination(_origin, destination);
}
/// set_origin_and_destination - set origin and destination using lat/lon coordinates
void AC_WPNav::set_origin_and_destination(const Vector3f& origin, const Vector3f& destination)
{
// store origin and destination locations
_origin = origin;
_destination = destination;
Vector3f pos_delta = _destination - _origin;
// calculate leash lengths
bool climb = pos_delta.z >= 0; // climbing vs descending leads to different leash lengths because speed_up_cms and speed_down_cms can be different
_track_length = pos_delta.length(); // get track length
// calculate each axis' percentage of the total distance to the destination
if (_track_length == 0.0f) {
// avoid possible divide by zero
_pos_delta_unit.x = 0;
_pos_delta_unit.y = 0;
_pos_delta_unit.z = 0;
}else{
_pos_delta_unit = pos_delta/_track_length;
}
calculate_wp_leash_length(climb); // update leash lengths
// initialise intermediate point to the origin
_track_desired = 0;
_target = origin;
_flags.reached_destination = false;
// initialise the limited speed to current speed along the track
const Vector3f &curr_vel = _inav->get_velocity();
// get speed along track (note: we convert vertical speed into horizontal speed equivalent)
float speed_along_track = curr_vel.x * _pos_delta_unit.x + curr_vel.y * _pos_delta_unit.y + curr_vel.z * _pos_delta_unit.z;
_limited_speed_xy_cms = constrain_float(speed_along_track,0,_wp_speed_cms);
// default waypoint back to slow
_flags.fast_waypoint = false;
// initialise desired roll and pitch to current roll and pitch. This avoids a random twitch between now and when the wpnav controller is first run
_desired_roll = constrain_int32(_ahrs->roll_sensor,-_lean_angle_max_cd,_lean_angle_max_cd);
_desired_pitch = constrain_int32(_ahrs->pitch_sensor,-_lean_angle_max_cd,_lean_angle_max_cd);
// reset target velocity - only used by loiter controller's interpretation of pilot input
_target_vel.x = 0;
_target_vel.y = 0;
}
/// advance_target_along_track - move target location along track from origin to destination
void AC_WPNav::advance_target_along_track(float dt)
{
float track_covered;
Vector3f track_error;
float track_desired_max;
float track_desired_temp = _track_desired;
float track_extra_max;
// get current location
Vector3f curr_pos = _inav->get_position();
Vector3f curr_delta = curr_pos - _origin;
// calculate how far along the track we are
track_covered = curr_delta.x * _pos_delta_unit.x + curr_delta.y * _pos_delta_unit.y + curr_delta.z * _pos_delta_unit.z;
Vector3f track_covered_pos = _pos_delta_unit * track_covered;
track_error = curr_delta - track_covered_pos;
// calculate the horizontal error
float track_error_xy = safe_sqrt(track_error.x*track_error.x + track_error.y*track_error.y);
// calculate the vertical error
float track_error_z = fabsf(track_error.z);
// calculate how far along the track we could move the intermediate target before reaching the end of the leash
track_extra_max = min(_track_leash_length*(_wp_leash_z-track_error_z)/_wp_leash_z, _track_leash_length*(_wp_leash_xy-track_error_xy)/_wp_leash_xy);
if(track_extra_max <0) {
track_desired_max = track_covered;
}else{
track_desired_max = track_covered + track_extra_max;
}
// get current velocity
const Vector3f &curr_vel = _inav->get_velocity();
// get speed along track
float speed_along_track = curr_vel.x * _pos_delta_unit.x + curr_vel.y * _pos_delta_unit.y + curr_vel.z * _pos_delta_unit.z;
// calculate point at which velocity switches from linear to sqrt
float linear_velocity = _wp_speed_cms;
float kP = _pid_pos_lat->kP();
if (kP >= 0.0f) { // avoid divide by zero
linear_velocity = _track_accel/kP;
}
// let the limited_speed_xy_cms be some range above or below current velocity along track
if (speed_along_track < -linear_velocity) {
// we are travelling fast in the opposite direction of travel to the waypoint so do not move the intermediate point
_limited_speed_xy_cms = 0;
}else{
// increase intermediate target point's velocity if not yet at target speed (we will limit it below)
if(dt > 0) {
if(track_desired_max > _track_desired) {
_limited_speed_xy_cms += 2.0f * _track_accel * dt;
}else{
// do nothing, velocity stays constant
_track_desired = track_desired_max;
}
}
// do not go over top speed
if(_limited_speed_xy_cms > _track_speed) {
_limited_speed_xy_cms = _track_speed;
}
// if our current velocity is within the linear velocity range limit the intermediate point's velocity to be no more than the linear_velocity above or below our current velocity
if (fabsf(speed_along_track) < linear_velocity) {
_limited_speed_xy_cms = constrain_float(_limited_speed_xy_cms,speed_along_track-linear_velocity,speed_along_track+linear_velocity);
}
}
// advance the current target
track_desired_temp += _limited_speed_xy_cms * dt;
// do not let desired point go past the end of the segment
track_desired_temp = constrain_float(track_desired_temp, 0, _track_length);
_track_desired = max(_track_desired, track_desired_temp);
// recalculate the desired position
_target = _origin + _pos_delta_unit * _track_desired;
// check if we've reached the waypoint
if( !_flags.reached_destination ) {
if( _track_desired >= _track_length ) {
// "fast" waypoints are complete once the intermediate point reaches the destination
if (_flags.fast_waypoint) {
_flags.reached_destination = true;
}else{
// regular waypoints also require the copter to be within the waypoint radius
Vector3f dist_to_dest = curr_pos - _destination;
if( dist_to_dest.length() <= _wp_radius_cm ) {
_flags.reached_destination = true;
}
}
}
}
}
/// get_distance_to_destination - get horizontal distance to destination in cm
float AC_WPNav::get_distance_to_destination()
{
// get current location
Vector3f curr = _inav->get_position();
return pythagorous2(_destination.x-curr.x,_destination.y-curr.y);
}
/// get_bearing_to_destination - get bearing to next waypoint in centi-degrees
int32_t AC_WPNav::get_bearing_to_destination()
{
return get_bearing_cd(_inav->get_position(), _destination);
}
/// update_wpnav - run the wp controller - should be called at 10hz
void AC_WPNav::update_wpnav()
{
// calculate dt
uint32_t now = hal.scheduler->millis();
float dt = (now - _wpnav_last_update) / 1000.0f;
// catch if we've just been started
if( dt >= 1.0f ) {
dt = 0.0;
reset_I();
_wpnav_step = 0;
}
// reset step back to 0 if 0.1 seconds has passed and we completed the last full cycle
if (dt > 0.095f && _wpnav_step > 3) {
_wpnav_step = 0;
}
// run loiter steps
switch (_wpnav_step) {
case 0:
// capture time since last iteration
_wpnav_dt = dt;
_wpnav_last_update = now;
// advance the target if necessary
if (dt > 0.0f) {
advance_target_along_track(dt);
}
_wpnav_step++;
break;
case 1:
// run loiter's position to velocity step
get_loiter_position_to_velocity(_wpnav_dt, _wp_speed_cms);
_wpnav_step++;
break;
case 2:
// run loiter's velocity to acceleration step
get_loiter_velocity_to_acceleration(desired_vel.x, desired_vel.y, _wpnav_dt);
_wpnav_step++;
break;
case 3:
// run loiter's acceleration to lean angle step
get_loiter_acceleration_to_lean_angles(desired_accel.x, desired_accel.y);
_wpnav_step++;
break;
}
}
///
/// shared methods
///
/// get_loiter_position_to_velocity - loiter position controller
/// converts desired position held in _target vector to desired velocity
void AC_WPNav::get_loiter_position_to_velocity(float dt, float max_speed_cms)
{
Vector3f curr = _inav->get_position();
float dist_error_total;
float vel_sqrt;
float vel_total;
float linear_distance; // the distace we swap between linear and sqrt.
float kP = _pid_pos_lat->kP();
// avoid divide by zero
if (kP <= 0.0f) {
desired_vel.x = 0.0;
desired_vel.y = 0.0;
}else{
// calculate distance error
dist_error.x = _target.x - curr.x;
dist_error.y = _target.y - curr.y;
linear_distance = _wp_accel_cms/(2.0f*kP*kP);
dist_error_total = safe_sqrt(dist_error.x*dist_error.x + dist_error.y*dist_error.y);
_distance_to_target = dist_error_total; // for reporting purposes
if( dist_error_total > 2.0f*linear_distance ) {
vel_sqrt = safe_sqrt(2.0f*_wp_accel_cms*(dist_error_total-linear_distance));
desired_vel.x = vel_sqrt * dist_error.x/dist_error_total;
desired_vel.y = vel_sqrt * dist_error.y/dist_error_total;
}else{
desired_vel.x = _pid_pos_lat->kP() * dist_error.x;
desired_vel.y = _pid_pos_lon->kP() * dist_error.y;
}
// ensure velocity stays within limits
vel_total = safe_sqrt(desired_vel.x*desired_vel.x + desired_vel.y*desired_vel.y);
if( vel_total > max_speed_cms ) {
desired_vel.x = max_speed_cms * desired_vel.x/vel_total;
desired_vel.y = max_speed_cms * desired_vel.y/vel_total;
}
// feed forward velocity request
desired_vel.x += _target_vel.x;
desired_vel.y += _target_vel.y;
}
}
/// get_loiter_velocity_to_acceleration - loiter velocity controller
/// converts desired velocities in lat/lon directions to accelerations in lat/lon frame
void AC_WPNav::get_loiter_velocity_to_acceleration(float vel_lat, float vel_lon, float dt)
{
const Vector3f &vel_curr = _inav->get_velocity(); // current velocity in cm/s
Vector3f vel_error; // The velocity error in cm/s.
float accel_total; // total acceleration in cm/s/s
// reset last velocity if this controller has just been engaged or dt is zero
if( dt == 0.0f ) {
desired_accel.x = 0;
desired_accel.y = 0;
} else {
// feed forward desired acceleration calculation
desired_accel.x = (vel_lat - _vel_last.x)/dt;
desired_accel.y = (vel_lon - _vel_last.y)/dt;
}
// store this iteration's velocities for the next iteration
_vel_last.x = vel_lat;
_vel_last.y = vel_lon;
// calculate velocity error
vel_error.x = vel_lat - vel_curr.x;
vel_error.y = vel_lon - vel_curr.y;
// combine feed foward accel with PID outpu from velocity error
desired_accel.x += _pid_rate_lat->get_pid(vel_error.x, dt);
desired_accel.y += _pid_rate_lon->get_pid(vel_error.y, dt);
// scale desired acceleration if it's beyond acceptable limit
accel_total = safe_sqrt(desired_accel.x*desired_accel.x + desired_accel.y*desired_accel.y);
if( accel_total > WPNAV_ACCEL_MAX ) {
desired_accel.x = WPNAV_ACCEL_MAX * desired_accel.x/accel_total;
desired_accel.y = WPNAV_ACCEL_MAX * desired_accel.y/accel_total;
}
}
/// get_loiter_acceleration_to_lean_angles - loiter acceleration controller
/// converts desired accelerations provided in lat/lon frame to roll/pitch angles
void AC_WPNav::get_loiter_acceleration_to_lean_angles(float accel_lat, float accel_lon)
{
float z_accel_meas = -GRAVITY_MSS * 100; // gravity in cm/s/s
float accel_forward;
float accel_right;
// To-Do: add 1hz filter to accel_lat, accel_lon
// rotate accelerations into body forward-right frame
accel_forward = accel_lat*_cos_yaw + accel_lon*_sin_yaw;
accel_right = -accel_lat*_sin_yaw + accel_lon*_cos_yaw;
// update angle targets that will be passed to stabilize controller
_desired_roll = constrain_float(fast_atan(accel_right*_cos_pitch/(-z_accel_meas))*(18000/M_PI_F), -_lean_angle_max_cd, _lean_angle_max_cd);
_desired_pitch = constrain_float(fast_atan(-accel_forward/(-z_accel_meas))*(18000/M_PI_F), -_lean_angle_max_cd, _lean_angle_max_cd);
}
// get_bearing_cd - return bearing in centi-degrees between two positions
// To-Do: move this to math library
float AC_WPNav::get_bearing_cd(const Vector3f &origin, const Vector3f &destination) const
{
float bearing = 9000 + atan2f(-(destination.x-origin.x), destination.y-origin.y) * 5729.57795f;
if (bearing < 0) {
bearing += 36000;
}
return bearing;
}
/// reset_I - clears I terms from loiter PID controller
void AC_WPNav::reset_I()
{
_pid_pos_lon->reset_I();
_pid_pos_lat->reset_I();
_pid_rate_lon->reset_I();
_pid_rate_lat->reset_I();
// set last velocity to current velocity
_vel_last = _inav->get_velocity();
}
/// calculate_wp_leash_length - calculates horizontal and vertical leash lengths for waypoint controller
void AC_WPNav::calculate_wp_leash_length(bool climb)
{
// get loiter position P
float kP = _pid_pos_lat->kP();
// sanity check acceleration and avoid divide by zero
if (_wp_accel_cms <= 0.0f) {
_wp_accel_cms = WPNAV_ACCELERATION_MIN;
}
// avoid divide by zero
if (kP <= 0.0f) {
_wp_leash_xy = WPNAV_MIN_LEASH_LENGTH;
return;
}
// calculate horiztonal leash length
if(_wp_speed_cms <= _wp_accel_cms / kP) {
// linear leash length based on speed close in
_wp_leash_xy = _wp_speed_cms / kP;
}else{
// leash length grows at sqrt of speed further out
_wp_leash_xy = (_wp_accel_cms / (2.0f*kP*kP)) + (_wp_speed_cms*_wp_speed_cms / (2.0f*_wp_accel_cms));
}
// ensure leash is at least 1m long
if( _wp_leash_xy < WPNAV_MIN_LEASH_LENGTH ) {
_wp_leash_xy = WPNAV_MIN_LEASH_LENGTH;
}
// calculate vertical leash length
float speed_vert;
if( climb ) {
speed_vert = _wp_speed_up_cms;
}else{
speed_vert = _wp_speed_down_cms;
}
if(speed_vert <= WPNAV_ALT_HOLD_ACCEL_MAX / _althold_kP) {
// linear leash length based on speed close in
_wp_leash_z = speed_vert / _althold_kP;
}else{
// leash length grows at sqrt of speed further out
_wp_leash_z = (WPNAV_ALT_HOLD_ACCEL_MAX / (2.0*_althold_kP*_althold_kP)) + (speed_vert*speed_vert / (2*WPNAV_ALT_HOLD_ACCEL_MAX));
}
// ensure leash is at least 1m long
if( _wp_leash_z < WPNAV_MIN_LEASH_LENGTH ) {
_wp_leash_z = WPNAV_MIN_LEASH_LENGTH;
}
// length of the unit direction vector in the horizontal
float pos_delta_unit_xy = sqrt(_pos_delta_unit.x*_pos_delta_unit.x+_pos_delta_unit.y*_pos_delta_unit.y);
float pos_delta_unit_z = fabsf(_pos_delta_unit.z);
// calculate the maximum acceleration, maximum velocity, and leash length in the direction of travel
if(pos_delta_unit_z == 0 && pos_delta_unit_xy == 0){
_track_accel = 0;
_track_speed = 0;
_track_leash_length = WPNAV_MIN_LEASH_LENGTH;
}else if(_pos_delta_unit.z == 0){
_track_accel = _wp_accel_cms/pos_delta_unit_xy;
_track_speed = _wp_speed_cms/pos_delta_unit_xy;
_track_leash_length = _wp_leash_xy/pos_delta_unit_xy;
}else if(pos_delta_unit_xy == 0){
_track_accel = WPNAV_ALT_HOLD_ACCEL_MAX/pos_delta_unit_z;
_track_speed = speed_vert/pos_delta_unit_z;
_track_leash_length = _wp_leash_z/pos_delta_unit_z;
}else{
_track_accel = min(WPNAV_ALT_HOLD_ACCEL_MAX/pos_delta_unit_z, _wp_accel_cms/pos_delta_unit_xy);
_track_speed = min(speed_vert/pos_delta_unit_z, _wp_speed_cms/pos_delta_unit_xy);
_track_leash_length = min(_wp_leash_z/pos_delta_unit_z, _wp_leash_xy/pos_delta_unit_xy);
}
}