2238 lines
68 KiB
Plaintext
2238 lines
68 KiB
Plaintext
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
||
|
||
#define THISFIRMWARE "ArduCopter V2.5"
|
||
/*
|
||
ArduCopter Version 2.5
|
||
Lead author: Jason Short
|
||
Based on code and ideas from the Arducopter team: Randy Mackay, Pat Hickey, Jose Julio, Jani Hirvinen, Andrew Tridgell, Justin Beech, Adam Rivera, Jean-Louis Naudin, Roberto Navoni
|
||
Thanks to: Chris Anderson, Mike Smith, Jordi Munoz, Doug Weibel, James Goppert, Benjamin Pelletier, Robert Lefebvre, Marco Robustini
|
||
|
||
This firmware is free software; you can redistribute it and/or
|
||
modify it under the terms of the GNU Lesser General Public
|
||
License as published by the Free Software Foundation; either
|
||
version 2.1 of the License, or (at your option) any later version.
|
||
|
||
Special Thanks for Contributors:
|
||
|
||
Hein Hollander :Octo Support
|
||
Dani Saez :V Ocoto Support
|
||
Max Levine :Tri Support, Graphics
|
||
Jose Julio :Stabilization Control laws
|
||
Randy MacKay :Heli Support
|
||
Jani Hiriven :Testing feedback
|
||
Andrew Tridgell :Mavlink Support
|
||
James Goppert :Mavlink Support
|
||
Doug Weibel :Libraries
|
||
Mike Smith :Libraries, Coding support
|
||
HappyKillmore :Mavlink GCS
|
||
Michael Oborne :Mavlink GCS
|
||
Jack Dunkle :Alpha testing
|
||
Christof Schmid :Alpha testing
|
||
Oliver :Piezo support
|
||
Guntars :Arming safety suggestion
|
||
Igor van Airde :Control Law optimization
|
||
Jean-Louis Naudin :Auto Landing
|
||
Sandro Benigno :Camera support
|
||
Olivier Adler :PPM Encoder
|
||
John Arne Birkeland :PPM Encoder
|
||
Adam M Rivera :Auto Compass Declination
|
||
|
||
And much more so PLEASE PM me on DIYDRONES to add your contribution to the List
|
||
|
||
Requires modified "mrelax" version of Arduino, which can be found here:
|
||
http://code.google.com/p/ardupilot-mega/downloads/list
|
||
|
||
*/
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Header includes
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
|
||
// AVR runtime
|
||
#include <avr/io.h>
|
||
#include <avr/eeprom.h>
|
||
#include <avr/pgmspace.h>
|
||
#include <math.h>
|
||
|
||
// Libraries
|
||
#include <FastSerial.h>
|
||
#include <AP_Common.h>
|
||
#include <Arduino_Mega_ISR_Registry.h>
|
||
#include <APM_RC.h> // ArduPilot Mega RC Library
|
||
#include <AP_GPS.h> // ArduPilot GPS library
|
||
#include <I2C.h> // Arduino I2C lib
|
||
#include <SPI.h> // Arduino SPI lib
|
||
#include <DataFlash.h> // ArduPilot Mega Flash Memory Library
|
||
#include <AP_ADC.h> // ArduPilot Mega Analog to Digital Converter Library
|
||
#include <AP_AnalogSource.h>
|
||
#include <AP_Baro.h>
|
||
#include <AP_Compass.h> // ArduPilot Mega Magnetometer Library
|
||
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
|
||
#include <AP_InertialSensor.h> // ArduPilot Mega Inertial Sensor (accel & gyro) Library
|
||
#include <AP_IMU.h> // ArduPilot Mega IMU Library
|
||
#include <AP_PeriodicProcess.h> // Parent header of Timer
|
||
// (only included for makefile libpath to work)
|
||
#include <AP_TimerProcess.h> // TimerProcess is the scheduler for MPU6000 reads.
|
||
#include <AP_Quaternion.h> // Madgwick quaternion system
|
||
#include <AP_DCM.h> // ArduPilot Mega DCM Library
|
||
#include <APM_PI.h> // PI library
|
||
#include <AC_PID.h> // PID library
|
||
#include <RC_Channel.h> // RC Channel Library
|
||
#include <AP_RangeFinder.h> // Range finder library
|
||
#include <AP_OpticalFlow.h> // Optical Flow library
|
||
#include <Filter.h> // Filter library
|
||
#include <ModeFilter.h> // Mode Filter from Filter library
|
||
#include <AverageFilter.h> // Mode Filter from Filter library
|
||
#include <AP_Relay.h> // APM relay
|
||
#include <GCS_MAVLink.h> // MAVLink GCS definitions
|
||
#include <memcheck.h>
|
||
|
||
// Configuration
|
||
#include "defines.h"
|
||
#include "config.h"
|
||
#include "config_channels.h"
|
||
|
||
// Local modules
|
||
#include "Parameters.h"
|
||
#include "GCS.h"
|
||
|
||
#if AUTOMATIC_DECLINATION == ENABLED
|
||
// this is in an #if to avoid the static data
|
||
#include <AP_Declination.h> // ArduPilot Mega Declination Helper Library
|
||
#endif
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Serial ports
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
//
|
||
// Note that FastSerial port buffers are allocated at ::begin time,
|
||
// so there is not much of a penalty to defining ports that we don't
|
||
// use.
|
||
//
|
||
FastSerialPort0(Serial); // FTDI/console
|
||
FastSerialPort1(Serial1); // GPS port
|
||
FastSerialPort3(Serial3); // Telemetry port
|
||
|
||
Arduino_Mega_ISR_Registry isr_registry;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Parameters
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
//
|
||
// Global parameters are all contained within the 'g' class.
|
||
//
|
||
static Parameters g;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// prototypes
|
||
static void update_events(void);
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// RC Hardware
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
|
||
APM_RC_APM2 APM_RC;
|
||
#else
|
||
APM_RC_APM1 APM_RC;
|
||
#endif
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Dataflash
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
|
||
DataFlash_APM2 DataFlash;
|
||
#else
|
||
DataFlash_APM1 DataFlash;
|
||
#endif
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Sensors
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
//
|
||
// There are three basic options related to flight sensor selection.
|
||
//
|
||
// - Normal flight mode. Real sensors are used.
|
||
// - HIL Attitude mode. Most sensors are disabled, as the HIL
|
||
// protocol supplies attitude information directly.
|
||
// - HIL Sensors mode. Synthetic sensors are configured that
|
||
// supply data from the simulation.
|
||
//
|
||
|
||
// All GPS access should be through this pointer.
|
||
static GPS *g_gps;
|
||
|
||
// flight modes convenience array
|
||
static AP_Int8 *flight_modes = &g.flight_mode1;
|
||
|
||
#if HIL_MODE == HIL_MODE_DISABLED
|
||
|
||
// real sensors
|
||
#if CONFIG_ADC == ENABLED
|
||
AP_ADC_ADS7844 adc;
|
||
#endif
|
||
|
||
#ifdef DESKTOP_BUILD
|
||
AP_Baro_BMP085_HIL barometer;
|
||
AP_Compass_HIL compass;
|
||
#else
|
||
|
||
#if CONFIG_BARO == AP_BARO_BMP085
|
||
# if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
|
||
AP_Baro_BMP085 barometer(true);
|
||
# else
|
||
AP_Baro_BMP085 barometer(false);
|
||
# endif
|
||
#elif CONFIG_BARO == AP_BARO_MS5611
|
||
AP_Baro_MS5611 barometer;
|
||
#endif
|
||
|
||
AP_Compass_HMC5843 compass;
|
||
#endif
|
||
|
||
#ifdef OPTFLOW_ENABLED
|
||
AP_OpticalFlow_ADNS3080 optflow(OPTFLOW_CS_PIN);
|
||
#else
|
||
AP_OpticalFlow optflow;
|
||
#endif
|
||
|
||
// real GPS selection
|
||
#if GPS_PROTOCOL == GPS_PROTOCOL_AUTO
|
||
AP_GPS_Auto g_gps_driver(&Serial1, &g_gps);
|
||
|
||
#elif GPS_PROTOCOL == GPS_PROTOCOL_NMEA
|
||
AP_GPS_NMEA g_gps_driver(&Serial1);
|
||
|
||
#elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF
|
||
AP_GPS_SIRF g_gps_driver(&Serial1);
|
||
|
||
#elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX
|
||
AP_GPS_UBLOX g_gps_driver(&Serial1);
|
||
|
||
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK
|
||
AP_GPS_MTK g_gps_driver(&Serial1);
|
||
|
||
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK16
|
||
AP_GPS_MTK16 g_gps_driver(&Serial1);
|
||
|
||
#elif GPS_PROTOCOL == GPS_PROTOCOL_NONE
|
||
AP_GPS_None g_gps_driver(NULL);
|
||
|
||
#else
|
||
#error Unrecognised GPS_PROTOCOL setting.
|
||
#endif // GPS PROTOCOL
|
||
|
||
#if CONFIG_IMU_TYPE == CONFIG_IMU_MPU6000
|
||
AP_InertialSensor_MPU6000 ins( CONFIG_MPU6000_CHIP_SELECT_PIN );
|
||
#else
|
||
AP_InertialSensor_Oilpan ins(&adc);
|
||
#endif
|
||
AP_IMU_INS imu(&ins);
|
||
|
||
// we don't want to use gps for yaw correction on ArduCopter, so pass
|
||
// a NULL GPS object pointer
|
||
static GPS *g_gps_null;
|
||
|
||
#if QUATERNION_ENABLE == ENABLED
|
||
// this shouldn't be called dcm of course, but until we
|
||
// decide to actually use something else, I don't want the patch
|
||
// size to be huge
|
||
AP_Quaternion dcm(&imu, g_gps_null);
|
||
#else
|
||
AP_DCM dcm(&imu, g_gps_null);
|
||
#endif
|
||
|
||
AP_TimerProcess timer_scheduler;
|
||
#elif HIL_MODE == HIL_MODE_SENSORS
|
||
// sensor emulators
|
||
AP_ADC_HIL adc;
|
||
AP_Baro_BMP085_HIL barometer;
|
||
AP_Compass_HIL compass;
|
||
AP_GPS_HIL g_gps_driver(NULL);
|
||
AP_IMU_Shim imu;
|
||
AP_DCM dcm(&imu, g_gps);
|
||
AP_PeriodicProcessStub timer_scheduler;
|
||
AP_InertialSensor_Stub ins;
|
||
|
||
static int32_t gps_base_alt;
|
||
|
||
#elif HIL_MODE == HIL_MODE_ATTITUDE
|
||
AP_ADC_HIL adc;
|
||
AP_DCM_HIL dcm;
|
||
AP_GPS_HIL g_gps_driver(NULL);
|
||
AP_Compass_HIL compass; // never used
|
||
AP_Baro_BMP085_HIL barometer;
|
||
AP_IMU_Shim imu; // never used
|
||
AP_InertialSensor_Stub ins;
|
||
AP_PeriodicProcessStub timer_scheduler;
|
||
#ifdef OPTFLOW_ENABLED
|
||
AP_OpticalFlow_ADNS3080 optflow(OPTFLOW_CS_PIN);
|
||
#endif
|
||
static int32_t gps_base_alt;
|
||
#else
|
||
#error Unrecognised HIL_MODE setting.
|
||
#endif // HIL MODE
|
||
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// GCS selection
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
GCS_MAVLINK gcs0;
|
||
GCS_MAVLINK gcs3;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// SONAR selection
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
//
|
||
ModeFilterInt16_Size5 sonar_mode_filter(2);
|
||
#if CONFIG_SONAR == ENABLED
|
||
#if CONFIG_SONAR_SOURCE == SONAR_SOURCE_ADC
|
||
AP_AnalogSource_ADC sonar_analog_source( &adc, CONFIG_SONAR_SOURCE_ADC_CHANNEL, 0.25);
|
||
#elif CONFIG_SONAR_SOURCE == SONAR_SOURCE_ANALOG_PIN
|
||
AP_AnalogSource_Arduino sonar_analog_source(CONFIG_SONAR_SOURCE_ANALOG_PIN);
|
||
#endif
|
||
AP_RangeFinder_MaxsonarXL sonar(&sonar_analog_source, &sonar_mode_filter);
|
||
#endif
|
||
|
||
// agmatthews USERHOOKS
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// User variables
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
#ifdef USERHOOK_VARIABLES
|
||
#include USERHOOK_VARIABLES
|
||
#endif
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Global variables
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
|
||
static const char* flight_mode_strings[] = {
|
||
"STABILIZE",
|
||
"ACRO",
|
||
"ALT_HOLD",
|
||
"AUTO",
|
||
"GUIDED",
|
||
"LOITER",
|
||
"RTL",
|
||
"CIRCLE",
|
||
"POSITION",
|
||
"LAND",
|
||
"OF_LOITER"};
|
||
|
||
/* Radio values
|
||
Channel assignments
|
||
1 Ailerons (rudder if no ailerons)
|
||
2 Elevator
|
||
3 Throttle
|
||
4 Rudder (if we have ailerons)
|
||
5 Mode - 3 position switch
|
||
6 User assignable
|
||
7 trainer switch - sets throttle nominal (toggle switch), sets accels to Level (hold > 1 second)
|
||
8 TBD
|
||
*/
|
||
|
||
//Documentation of GLobals:
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// The GPS based velocity calculated by offsetting the Latitude and Longitude
|
||
// updated after GPS read - 5-10hz
|
||
static int16_t x_actual_speed;
|
||
static int16_t y_actual_speed;
|
||
|
||
static int16_t x_rate_d;
|
||
static int16_t y_rate_d;
|
||
|
||
// The difference between the desired rate of travel and the actual rate of travel
|
||
// updated after GPS read - 5-10hz
|
||
static int16_t x_rate_error;
|
||
static int16_t y_rate_error;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Radio
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// This is the state of the flight control system
|
||
// There are multiple states defined such as STABILIZE, ACRO,
|
||
static int8_t control_mode = STABILIZE;
|
||
// This is the state of simple mode.
|
||
// Set in the control_mode.pde file when the control switch is read
|
||
static bool do_simple = false;
|
||
// Used to maintain the state of the previous control switch position
|
||
// This is set to -1 when we need to re-read the switch
|
||
static byte oldSwitchPosition;
|
||
// This is used to look for change in the control switch
|
||
static byte old_control_mode = STABILIZE;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Motor Output
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// This is the array of PWM values being sent to the motors
|
||
static int16_t motor_out[11];
|
||
// This is the array of PWM values being sent to the motors that has been lightly filtered with a simple LPF
|
||
// This was added to try and deal with biger motors
|
||
static int16_t motor_filtered[11];
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Mavlink/HIL control
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Used to track the GCS based control input
|
||
// Allow override of RC channel values for HIL
|
||
static int16_t rc_override[8] = {0,0,0,0,0,0,0,0};
|
||
// Status flag that tracks whether we are under GCS control
|
||
static bool rc_override_active = false;
|
||
// Status flag that tracks whether we are under GCS control
|
||
static uint32_t rc_override_fs_timer = 0;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Heli
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
#if FRAME_CONFIG == HELI_FRAME
|
||
static float heli_rollFactor[3], heli_pitchFactor[3], heli_collectiveFactor[3]; // only required for 3 swashplate servos
|
||
static int16_t heli_servo_min[3], heli_servo_max[3]; // same here. for yaw servo we use heli_servo4_min/max parameter directly
|
||
static int32_t heli_servo_out[4]; // used for servo averaging for analog servos
|
||
static int16_t heli_servo_out_count; // use for servo averaging
|
||
#endif
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Failsafe
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// A status flag for the failsafe state
|
||
// did our throttle dip below the failsafe value?
|
||
static boolean failsafe;
|
||
// A status flag for arming the motors. This is the arming that is performed when the
|
||
// Yaw control is held right or left while throttle is low.
|
||
static boolean motor_armed;
|
||
// A status flag for whether or not we should allow AP to take over copter
|
||
// This is tied to the throttle. If the throttle = 0 or low/nuetral, then we do not allow
|
||
// the APM to take control of the copter.
|
||
static boolean motor_auto_armed;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// PIDs
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// This is a convienience accessor for the IMU roll rates. It's currently the raw IMU rates
|
||
// and not the adjusted omega rates, but the name is stuck
|
||
static Vector3f omega;
|
||
// This is used to hold radio tuning values for in-flight CH6 tuning
|
||
float tuning_value;
|
||
// This will keep track of the percent of roll or pitch the user is applying
|
||
float roll_scale_d, pitch_scale_d;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// LED output
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// status of LED based on the motor_armed variable
|
||
// Flashing indicates we are not armed
|
||
// Solid indicates Armed state
|
||
static boolean motor_light;
|
||
// Flashing indicates we are reading the GPS Strings
|
||
// Solid indicates we have full 3D lock and can navigate
|
||
static boolean GPS_light;
|
||
// This is current status for the LED lights state machine
|
||
// setting this value changes the output of the LEDs
|
||
static byte led_mode = NORMAL_LEDS;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// GPS variables
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// This is used to scale GPS values for EEPROM storage
|
||
// 10^7 times Decimal GPS means 1 == 1cm
|
||
// This approximation makes calculations integer and it's easy to read
|
||
static const float t7 = 10000000.0;
|
||
// We use atan2 and other trig techniques to calaculate angles
|
||
// We need to scale the longitude up to make these calcs work
|
||
// to account for decreasing distance between lines of longitude away from the equator
|
||
static float scaleLongUp = 1;
|
||
// Sometimes we need to remove the scaling for distance calcs
|
||
static float scaleLongDown = 1;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Mavlink specific
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Used by Mavlink for unknow reasons
|
||
static const float radius_of_earth = 6378100; // meters
|
||
// Used by Mavlink for unknow reasons
|
||
static const float gravity = 9.81; // meters/ sec^2
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Location & Navigation
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Status flag indicating we have data that can be used to navigate
|
||
// Set by a GPS read with 3D fix, or an optical flow read
|
||
static bool nav_ok;
|
||
// This is the angle from the copter to the "next_WP" location in degrees * 100
|
||
static int32_t target_bearing;
|
||
// This is the angle from the copter to the "next_WP" location
|
||
// with the addition of Crosstrack error in degrees * 100
|
||
static int32_t nav_bearing;
|
||
// Status of the Waypoint tracking mode. Options include:
|
||
// NO_NAV_MODE, WP_MODE, LOITER_MODE, CIRCLE_MODE
|
||
static byte wp_control;
|
||
// Register containing the index of the current navigation command in the mission script
|
||
static uint8_t command_nav_index;
|
||
// Register containing the index of the previous navigation command in the mission script
|
||
// Used to manage the execution of conditional commands
|
||
static uint8_t prev_nav_index;
|
||
// Register containing the index of the current conditional command in the mission script
|
||
static uint8_t command_cond_index;
|
||
// Used to track the required WP navigation information
|
||
// options include
|
||
// NAV_ALTITUDE - have we reached the desired altitude?
|
||
// NAV_LOCATION - have we reached the desired location?
|
||
// NAV_DELAY - have we waited at the waypoint the desired time?
|
||
static uint8_t wp_verify_byte; // used for tracking state of navigating waypoints
|
||
// used to limit the speed ramp up of WP navigation
|
||
// Acceleration is limited to .5m/s/s
|
||
static int16_t waypoint_speed_gov;
|
||
// Used to track how many cm we are from the "next_WP" location
|
||
static int32_t long_error, lat_error;
|
||
// Are we navigating while holding a positon? This is set to false once the speed drops below 1m/s
|
||
static boolean loiter_override;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Orientation
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Convienience accessors for commonly used trig functions. These values are generated
|
||
// by the DCM through a few simple equations. They are used throughout the code where cos and sin
|
||
// would normally be used.
|
||
// The cos values are defaulted to 1 to get a decent initial value for a level state
|
||
static float cos_roll_x = 1;
|
||
static float cos_pitch_x = 1;
|
||
static float cos_yaw_x = 1;
|
||
static float sin_yaw_y;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// SIMPLE Mode
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Used to track the orientation of the copter for Simple mode. This value is reset at each arming
|
||
// or in SuperSimple mode when the copter leaves a 20m radius from home.
|
||
static int32_t initial_simple_bearing;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// ACRO Mode
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Used to control Axis lock
|
||
int32_t roll_axis;
|
||
int32_t pitch_axis;
|
||
|
||
// Filters
|
||
AverageFilterInt32_Size3 roll_rate_d_filter; // filtered acceleration
|
||
AverageFilterInt32_Size3 pitch_rate_d_filter; // filtered pitch acceleration
|
||
|
||
AverageFilterInt16_Size2 lat_rate_d_filter; // for filtering D term
|
||
AverageFilterInt16_Size2 lon_rate_d_filter; // for filtering D term
|
||
|
||
// Barometer filter
|
||
AverageFilterInt32_Size5 baro_filter; // filtered pitch acceleration
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Circle Mode / Loiter control
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// used to determin the desired location in Circle mode
|
||
// increments at circle_rate / second
|
||
static float circle_angle;
|
||
// used to control the speed of Circle mode
|
||
// units are in radians, default is 5° per second
|
||
static const float circle_rate = 0.0872664625;
|
||
// used to track the delat in Circle Mode
|
||
static int32_t old_target_bearing;
|
||
// deg : how many times to circle * 360 for Loiter/Circle Mission command
|
||
static int16_t loiter_total;
|
||
// deg : how far we have turned around a waypoint
|
||
static int16_t loiter_sum;
|
||
// How long we should stay in Loiter Mode for mission scripting
|
||
static uint16_t loiter_time_max;
|
||
// How long have we been loitering - The start time in millis
|
||
static uint32_t loiter_time;
|
||
// The synthetic location created to make the copter do circles around a WP
|
||
static struct Location circle_WP;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// CH7 control
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Used to enable Jose's flip code
|
||
// when true the Roll/Pitch/Throttle control is sent to the flip state machine
|
||
#if CH7_OPTION == CH7_FLIP
|
||
static bool do_flip = false;
|
||
#endif
|
||
// Used to track the CH7 toggle state.
|
||
// When CH7 goes LOW PWM from HIGH PWM, this value will have been set true
|
||
// This allows advanced functionality to know when to execute
|
||
static boolean trim_flag;
|
||
// This register tracks the current Mission Command index when writing
|
||
// a mission using CH7 in flight
|
||
static int8_t CH7_wp_index;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Battery Sensors
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Battery Voltage of battery, initialized above threshold for filter
|
||
static float battery_voltage1 = LOW_VOLTAGE * 1.05;
|
||
// refers to the instant amp draw – based on an Attopilot Current sensor
|
||
static float current_amps1;
|
||
// refers to the total amps drawn – based on an Attopilot Current sensor
|
||
static float current_total1;
|
||
// Used to track if the battery is low - LED output flashes when the batt is low
|
||
static bool low_batt = false;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Altitude
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// The pressure at home location - calibrated at arming
|
||
static int32_t ground_pressure;
|
||
// The ground temperature at home location - calibrated at arming
|
||
static int16_t ground_temperature;
|
||
// The cm we are off in altitude from next_WP.alt – Positive value means we are below the WP
|
||
static int32_t altitude_error;
|
||
// The cm/s we are moving up or down based on sensor data - Positive = UP
|
||
static int16_t climb_rate_actual;
|
||
// Used to dither our climb_rate over 50hz
|
||
static int16_t climb_rate_error;
|
||
// The cm/s we are moving up or down based on filtered data - Positive = UP
|
||
static int16_t climb_rate;
|
||
// The altitude as reported by Sonar in cm – Values are 20 to 700 generally.
|
||
static int16_t sonar_alt;
|
||
// The climb_rate as reported by sonar in cm/s
|
||
static int16_t sonar_rate;
|
||
// The altitude as reported by Baro in cm – Values can be quite high
|
||
static int32_t baro_alt;
|
||
// The climb_rate as reported by Baro in cm/s
|
||
static int16_t baro_rate;
|
||
// used to switch out of Manual Boost
|
||
static boolean reset_throttle_flag;
|
||
// used to track when to read sensors vs estimate alt
|
||
static boolean alt_sensor_flag;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// flight modes
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Flight modes are combinations of Roll/Pitch, Yaw and Throttle control modes
|
||
// Each Flight mode is a unique combination of these modes
|
||
//
|
||
// The current desired control scheme for Yaw
|
||
static byte yaw_mode;
|
||
// The current desired control scheme for roll and pitch / navigation
|
||
static byte roll_pitch_mode;
|
||
// The current desired control scheme for altitude hold
|
||
static byte throttle_mode;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// flight specific
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Flag for monitoring the status of flight
|
||
// We must be in the air with throttle for 5 seconds before this flag is true
|
||
// This flag is reset when we are in a manual throttle mode with 0 throttle or disarmed
|
||
static boolean takeoff_complete;
|
||
// Used to record the most recent time since we enaged the throttle to take off
|
||
static uint32_t takeoff_timer;
|
||
// Used to see if we have landed and if we should shut our engines - not fully implemented
|
||
static boolean land_complete = true;
|
||
// used to manually override throttle in interactive Alt hold modes
|
||
static int16_t manual_boost;
|
||
// An additional throttle added to keep the copter at the same altitude when banking
|
||
static int16_t angle_boost;
|
||
// Push copter down for clean landing
|
||
static int16_t landing_boost;
|
||
// for controlling the landing throttle curve
|
||
//verifies landings
|
||
static int16_t ground_detector;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Navigation general
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// The location of the copter in relation to home, updated every GPS read
|
||
static int32_t home_to_copter_bearing;
|
||
// distance between plane and home in cm
|
||
static int32_t home_distance;
|
||
// distance between plane and next_WP in cm
|
||
static int32_t wp_distance;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// 3D Location vectors
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// home location is stored when we have a good GPS lock and arm the copter
|
||
// Can be reset each the copter is re-armed
|
||
static struct Location home;
|
||
// Flag for if we have g_gps lock and have set the home location
|
||
static boolean home_is_set;
|
||
// Current location of the copter
|
||
static struct Location current_loc;
|
||
// Next WP is the desired location of the copter - the next waypoint or loiter location
|
||
static struct Location next_WP;
|
||
// Prev WP is used to get the optimum path from one WP to the next
|
||
static struct Location prev_WP;
|
||
// Holds the current loaded command from the EEPROM for navigation
|
||
static struct Location command_nav_queue;
|
||
// Holds the current loaded command from the EEPROM for conditional scripts
|
||
static struct Location command_cond_queue;
|
||
// Holds the current loaded command from the EEPROM for guided mode
|
||
static struct Location guided_WP;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Crosstrack
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// deg * 100, The original angle to the next_WP when the next_WP was set
|
||
// Also used to check when we pass a WP
|
||
static int32_t original_target_bearing;
|
||
// The amount of angle correction applied to target_bearing to bring the copter back on its optimum path
|
||
static int16_t crosstrack_error;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Navigation Roll/Pitch functions
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// all angles are deg * 100 : target yaw angle
|
||
// The Commanded ROll from the autopilot.
|
||
static int32_t nav_roll;
|
||
// The Commanded pitch from the autopilot. negative Pitch means go forward.
|
||
static int32_t nav_pitch;
|
||
// The desired bank towards North (Positive) or South (Negative)
|
||
static int32_t auto_roll;
|
||
static int32_t auto_pitch;
|
||
|
||
// Don't be fooled by the fact that Pitch is reversed from Roll in its sign!
|
||
static int16_t nav_lat;
|
||
// The desired bank towards East (Positive) or West (Negative)
|
||
static int16_t nav_lon;
|
||
// The Commanded ROll from the autopilot based on optical flow sensor.
|
||
static int32_t of_roll;
|
||
// The Commanded pitch from the autopilot based on optical flow sensor. negative Pitch means go forward.
|
||
static int32_t of_pitch;
|
||
static bool slow_wp = false;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Navigation Throttle control
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// The Commanded Throttle from the autopilot.
|
||
static int16_t nav_throttle; // 0-1000 for throttle control
|
||
// This is a simple counter to track the amount of throttle used during flight
|
||
// This could be useful later in determining and debuging current usage and predicting battery life
|
||
static uint32_t throttle_integrator;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Climb rate control
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Time when we intiated command in millis - used for controlling decent rate
|
||
// The orginal altitude used to base our new altitude during decent
|
||
static int32_t original_altitude;
|
||
// Used to track the altitude offset for climbrate control
|
||
static int32_t target_altitude;
|
||
static uint32_t alt_change_timer;
|
||
static int8_t alt_change_flag;
|
||
static uint32_t alt_change;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Navigation Yaw control
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// The Commanded Yaw from the autopilot.
|
||
static int32_t nav_yaw;
|
||
// A speed governer for Yaw control - limits the rate the quad can be turned by the autopilot
|
||
static int32_t auto_yaw;
|
||
// Used to manage the Yaw hold capabilities -
|
||
// Options include: no tracking, point at next wp, or at a target
|
||
static byte yaw_tracking = MAV_ROI_WPNEXT;
|
||
// In AP Mission scripting we have a fine level of control for Yaw
|
||
// This is our initial angle for relative Yaw movements
|
||
static int32_t command_yaw_start;
|
||
// Timer values used to control the speed of Yaw movements
|
||
static uint32_t command_yaw_start_time;
|
||
static uint16_t command_yaw_time; // how long we are turning
|
||
static int32_t command_yaw_end; // what angle are we trying to be
|
||
// how many degrees will we turn
|
||
static int32_t command_yaw_delta;
|
||
// Deg/s we should turn
|
||
static int16_t command_yaw_speed;
|
||
// Direction we will turn – 1 = CW, 0 or -1 = CCW
|
||
static byte command_yaw_dir;
|
||
// Direction we will turn – 1 = relative, 0 = Absolute
|
||
static byte command_yaw_relative;
|
||
// Yaw will point at this location if yaw_tracking is set to MAV_ROI_LOCATION
|
||
static struct Location target_WP;
|
||
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Repeat Mission Scripting Command
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// The type of repeating event - Toggle a servo channel, Toggle the APM1 relay, etc
|
||
static byte event_id;
|
||
// Used to manage the timimng of repeating events
|
||
static uint32_t event_timer;
|
||
// How long to delay the next firing of event in millis
|
||
static uint16_t event_delay;
|
||
// how many times to fire : 0 = forever, 1 = do once, 2 = do twice
|
||
static int16_t event_repeat;
|
||
// per command value, such as PWM for servos
|
||
static int16_t event_value;
|
||
// the stored value used to undo commands - such as original PWM command
|
||
static int16_t event_undo_value;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Delay Mission Scripting Command
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
static int32_t condition_value; // used in condition commands (eg delay, change alt, etc.)
|
||
static uint32_t condition_start;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// IMU variables
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Integration time for the gyros (DCM algorithm)
|
||
// Updated with th efast loop
|
||
static float G_Dt = 0.02;
|
||
// The rotated accelerometer values
|
||
// Used by Z accel control, updated at 10hz
|
||
Vector3f accels_rot;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Performance monitoring
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Used to manage the rate of performance logging messages
|
||
static int16_t perf_mon_counter;
|
||
// The number of GPS fixes we have had
|
||
static int16_t gps_fix_count;
|
||
// gps_watchdog check for bad reads and if we miss 12 in a row, we stop navigating
|
||
// by lowering nav_lat and navlon to 0 gradually
|
||
static byte gps_watchdog;
|
||
|
||
// System Timers
|
||
// --------------
|
||
// Time in microseconds of main control loop
|
||
static uint32_t fast_loopTimer;
|
||
// Time in microseconds of 50hz control loop
|
||
static uint32_t fiftyhz_loopTimer;
|
||
// Counters for branching from 10 hz control loop
|
||
static byte medium_loopCounter;
|
||
// Counters for branching from 3 1/3hz control loop
|
||
static byte slow_loopCounter;
|
||
// Counters for branching at 1 hz
|
||
static byte counter_one_herz;
|
||
// Stat machine counter for Simple Mode
|
||
static byte simple_counter;
|
||
// used to track the elapsed time between GPS reads
|
||
static uint32_t nav_loopTimer;
|
||
// Delta Time in milliseconds for navigation computations, updated with every good GPS read
|
||
static float dTnav;
|
||
// Counters for branching from 4 minute control loop used to save Compass offsets
|
||
static int16_t superslow_loopCounter;
|
||
// RTL Autoland Timer
|
||
static uint32_t auto_land_timer;
|
||
// disarms the copter while in Acro or Stabilize mode after 30 seconds of no flight
|
||
static uint8_t auto_disarming_counter;
|
||
|
||
|
||
// Tracks if GPS is enabled based on statup routine
|
||
// If we do not detect GPS at startup, we stop trying and assume GPS is not connected
|
||
static bool GPS_enabled = false;
|
||
// Set true if we have new PWM data to act on from the Radio
|
||
static bool new_radio_frame;
|
||
// Used to auto exit the in-flight leveler
|
||
static int16_t auto_level_counter;
|
||
|
||
// Reference to the AP relay object - APM1 only
|
||
AP_Relay relay;
|
||
|
||
// APM2 only
|
||
#if USB_MUX_PIN > 0
|
||
static bool usb_connected;
|
||
#endif
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Top-level logic
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void setup() {
|
||
memcheck_init();
|
||
init_ardupilot();
|
||
}
|
||
|
||
void loop()
|
||
{
|
||
uint32_t timer = micros();
|
||
|
||
// We want this to execute fast
|
||
// ----------------------------
|
||
if ((timer - fast_loopTimer) >= 10000 && imu.new_data_available()) {
|
||
//Log_Write_Data(13, (int32_t)(timer - fast_loopTimer));
|
||
|
||
//PORTK |= B00010000;
|
||
G_Dt = (float)(timer - fast_loopTimer) / 1000000.f; // used by PI Loops
|
||
fast_loopTimer = timer;
|
||
|
||
// Execute the fast loop
|
||
// ---------------------
|
||
fast_loop();
|
||
}
|
||
|
||
// port manipulation for external timing of main loops
|
||
//PORTK &= B11101111;
|
||
|
||
if ((timer - fiftyhz_loopTimer) >= 20000) {
|
||
// store the micros for the 50 hz timer
|
||
fiftyhz_loopTimer = timer;
|
||
|
||
// port manipulation for external timing of main loops
|
||
//PORTK |= B01000000;
|
||
|
||
// reads all of the necessary trig functions for cameras, throttle, etc.
|
||
// --------------------------------------------------------------------
|
||
update_trig();
|
||
|
||
// update our velocity estimate based on IMU at 50hz
|
||
// -------------------------------------------------
|
||
//estimate_velocity();
|
||
|
||
// check for new GPS messages
|
||
// --------------------------
|
||
if(GPS_enabled){
|
||
update_GPS();
|
||
}
|
||
|
||
// perform 10hz tasks
|
||
// ------------------
|
||
medium_loop();
|
||
|
||
// Stuff to run at full 50hz, but after the med loops
|
||
// --------------------------------------------------
|
||
fifty_hz_loop();
|
||
|
||
counter_one_herz++;
|
||
|
||
// trgger our 1 hz loop
|
||
if(counter_one_herz >= 50){
|
||
super_slow_loop();
|
||
counter_one_herz = 0;
|
||
}
|
||
perf_mon_counter++;
|
||
if (perf_mon_counter > 600 ) {
|
||
if (g.log_bitmask & MASK_LOG_PM)
|
||
Log_Write_Performance();
|
||
|
||
gps_fix_count = 0;
|
||
perf_mon_counter = 0;
|
||
}
|
||
//PORTK &= B10111111;
|
||
}
|
||
}
|
||
// PORTK |= B01000000;
|
||
// PORTK &= B10111111;
|
||
|
||
// Main loop
|
||
static void fast_loop()
|
||
{
|
||
// try to send any deferred messages if the serial port now has
|
||
// some space available
|
||
gcs_send_message(MSG_RETRY_DEFERRED);
|
||
|
||
// Read radio
|
||
// ----------
|
||
read_radio();
|
||
|
||
// IMU DCM Algorithm
|
||
read_AHRS();
|
||
|
||
// custom code/exceptions for flight modes
|
||
// ---------------------------------------
|
||
update_yaw_mode();
|
||
update_roll_pitch_mode();
|
||
|
||
// write out the servo PWM values
|
||
// ------------------------------
|
||
set_servos_4();
|
||
|
||
//if(motor_armed)
|
||
//Log_Write_Attitude();
|
||
|
||
// agmatthews - USERHOOKS
|
||
#ifdef USERHOOK_FASTLOOP
|
||
USERHOOK_FASTLOOP
|
||
#endif
|
||
|
||
}
|
||
|
||
static void medium_loop()
|
||
{
|
||
// This is the start of the medium (10 Hz) loop pieces
|
||
// -----------------------------------------
|
||
switch(medium_loopCounter) {
|
||
|
||
// This case deals with the GPS and Compass
|
||
//-----------------------------------------
|
||
case 0:
|
||
medium_loopCounter++;
|
||
|
||
//if(GPS_enabled){
|
||
// update_GPS();
|
||
//}
|
||
|
||
#if HIL_MODE != HIL_MODE_ATTITUDE // don't execute in HIL mode
|
||
if(g.compass_enabled){
|
||
if (compass.read()) {
|
||
// Calculate heading
|
||
Matrix3f m = dcm.get_dcm_matrix();
|
||
compass.calculate(m);
|
||
compass.null_offsets(m);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
// auto_trim, uses an auto_level algorithm
|
||
auto_trim();
|
||
|
||
// record throttle output
|
||
// ------------------------------
|
||
throttle_integrator += g.rc_3.servo_out;
|
||
break;
|
||
|
||
// This case performs some navigation computations
|
||
//------------------------------------------------
|
||
case 1:
|
||
medium_loopCounter++;
|
||
|
||
// Auto control modes:
|
||
if(nav_ok){
|
||
// clear nav flag
|
||
nav_ok = false;
|
||
|
||
// calculate the copter's desired bearing and WP distance
|
||
// ------------------------------------------------------
|
||
if(navigate()){
|
||
|
||
// this calculates the velocity for Loiter
|
||
// only called when there is new data
|
||
// ----------------------------------
|
||
calc_XY_velocity();
|
||
|
||
// If we have optFlow enabled we can grab a more accurate speed
|
||
// here and override the speed from the GPS
|
||
// ----------------------------------------
|
||
//#ifdef OPTFLOW_ENABLED
|
||
//if(g.optflow_enabled && current_loc.alt < 500){
|
||
// // optflow wont be enabled on 1280's
|
||
// x_GPS_speed = optflow.x_cm;
|
||
// y_GPS_speed = optflow.y_cm;
|
||
//}
|
||
//#endif
|
||
|
||
// control mode specific updates
|
||
// -----------------------------
|
||
update_navigation();
|
||
|
||
if (g.log_bitmask & MASK_LOG_NTUN && motor_armed){
|
||
Log_Write_Nav_Tuning();
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
|
||
// command processing
|
||
//-------------------
|
||
case 2:
|
||
medium_loopCounter++;
|
||
|
||
// Read altitude from sensors
|
||
// --------------------------
|
||
//#if HIL_MODE != HIL_MODE_ATTITUDE // don't execute in HIL mode
|
||
//update_altitude();
|
||
//#endif
|
||
alt_sensor_flag = true;
|
||
|
||
break;
|
||
|
||
// This case deals with sending high rate telemetry
|
||
//-------------------------------------------------
|
||
case 3:
|
||
medium_loopCounter++;
|
||
|
||
// perform next command
|
||
// --------------------
|
||
if(control_mode == AUTO){
|
||
if(home_is_set == true && g.command_total > 1){
|
||
update_commands();
|
||
}
|
||
}
|
||
|
||
if(motor_armed){
|
||
if (g.log_bitmask & MASK_LOG_ATTITUDE_MED)
|
||
Log_Write_Attitude();
|
||
|
||
if (g.log_bitmask & MASK_LOG_MOTORS)
|
||
Log_Write_Motors();
|
||
}
|
||
|
||
// send all requested output streams with rates requested
|
||
// between 5 and 45 Hz
|
||
gcs_data_stream_send(5,45);
|
||
|
||
break;
|
||
|
||
// This case controls the slow loop
|
||
//---------------------------------
|
||
case 4:
|
||
medium_loopCounter = 0;
|
||
|
||
if (g.battery_monitoring != 0){
|
||
read_battery();
|
||
}
|
||
|
||
// Accel trims = hold > 2 seconds
|
||
// Throttle cruise = switch less than 1 second
|
||
// --------------------------------------------
|
||
read_trim_switch();
|
||
|
||
// Check for engine arming
|
||
// -----------------------
|
||
arm_motors();
|
||
|
||
// Do an extra baro read for Temp sensing
|
||
// ---------------------------------------
|
||
#if HIL_MODE != HIL_MODE_ATTITUDE
|
||
barometer.read();
|
||
#endif
|
||
|
||
// agmatthews - USERHOOKS
|
||
#ifdef USERHOOK_MEDIUMLOOP
|
||
USERHOOK_MEDIUMLOOP
|
||
#endif
|
||
|
||
slow_loop();
|
||
break;
|
||
|
||
default:
|
||
// this is just a catch all
|
||
// ------------------------
|
||
medium_loopCounter = 0;
|
||
break;
|
||
}
|
||
}
|
||
|
||
// stuff that happens at 50 hz
|
||
// ---------------------------
|
||
static void fifty_hz_loop()
|
||
{
|
||
// read altitude sensors or estimate altitude
|
||
// ------------------------------------------
|
||
update_altitude_est();
|
||
|
||
// moved to slower loop
|
||
// --------------------
|
||
update_throttle_mode();
|
||
|
||
// Read Sonar
|
||
// ----------
|
||
# if CONFIG_SONAR == ENABLED
|
||
if(g.sonar_enabled){
|
||
sonar_alt = sonar.read();
|
||
}
|
||
#endif
|
||
|
||
// syncronise optical flow reads with altitude reads
|
||
#ifdef OPTFLOW_ENABLED
|
||
if(g.optflow_enabled){
|
||
update_optical_flow();
|
||
}
|
||
#endif
|
||
|
||
// agmatthews - USERHOOKS
|
||
#ifdef USERHOOK_50HZLOOP
|
||
USERHOOK_50HZLOOP
|
||
#endif
|
||
|
||
#if HIL_MODE != HIL_MODE_DISABLED && FRAME_CONFIG != HELI_FRAME
|
||
// HIL for a copter needs very fast update of the servo values
|
||
gcs_send_message(MSG_RADIO_OUT);
|
||
#endif
|
||
|
||
camera_stabilization();
|
||
|
||
# if HIL_MODE == HIL_MODE_DISABLED
|
||
if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST && motor_armed)
|
||
Log_Write_Attitude();
|
||
|
||
if (g.log_bitmask & MASK_LOG_RAW && motor_armed)
|
||
Log_Write_Raw();
|
||
#endif
|
||
|
||
// kick the GCS to process uplink data
|
||
gcs_update();
|
||
gcs_data_stream_send(45,1000);
|
||
|
||
#if FRAME_CONFIG == TRI_FRAME
|
||
// servo Yaw
|
||
g.rc_4.calc_pwm();
|
||
APM_RC.OutputCh(CH_TRI_YAW, g.rc_4.radio_out);
|
||
#endif
|
||
}
|
||
|
||
|
||
static void slow_loop()
|
||
{
|
||
// This is the slow (3 1/3 Hz) loop pieces
|
||
//----------------------------------------
|
||
switch (slow_loopCounter){
|
||
case 0:
|
||
slow_loopCounter++;
|
||
superslow_loopCounter++;
|
||
|
||
// update throttle hold every 20 seconds
|
||
if(superslow_loopCounter > 60){
|
||
update_throttle_cruise();
|
||
}
|
||
|
||
if(superslow_loopCounter > 1200){
|
||
#if HIL_MODE != HIL_MODE_ATTITUDE
|
||
if(g.rc_3.control_in == 0 && control_mode == STABILIZE && g.compass_enabled){
|
||
compass.save_offsets();
|
||
superslow_loopCounter = 0;
|
||
}
|
||
#endif
|
||
}
|
||
break;
|
||
|
||
case 1:
|
||
slow_loopCounter++;
|
||
|
||
// Read 3-position switch on radio
|
||
// -------------------------------
|
||
read_control_switch();
|
||
|
||
// agmatthews - USERHOOKS
|
||
#ifdef USERHOOK_SLOWLOOP
|
||
USERHOOK_SLOWLOOP
|
||
#endif
|
||
|
||
break;
|
||
|
||
case 2:
|
||
slow_loopCounter = 0;
|
||
update_events();
|
||
|
||
// blink if we are armed
|
||
update_lights();
|
||
|
||
// send all requested output streams with rates requested
|
||
// between 3 and 5 Hz
|
||
gcs_data_stream_send(3,5);
|
||
|
||
if(g.radio_tuning > 0)
|
||
tuning();
|
||
|
||
#if MOTOR_LEDS == 1
|
||
update_motor_leds();
|
||
#endif
|
||
|
||
#if USB_MUX_PIN > 0
|
||
check_usb_mux();
|
||
#endif
|
||
break;
|
||
|
||
default:
|
||
slow_loopCounter = 0;
|
||
break;
|
||
}
|
||
}
|
||
|
||
#define AUTO_ARMING_DELAY 60
|
||
// 1Hz loop
|
||
static void super_slow_loop()
|
||
{
|
||
if (g.log_bitmask & MASK_LOG_CUR && motor_armed)
|
||
Log_Write_Current();
|
||
|
||
// this function disarms the copter if it has been sitting on the ground for any moment of time greater than 30s
|
||
// but only of the control mode is manual
|
||
if((control_mode <= ACRO) && (g.rc_3.control_in == 0)){
|
||
auto_disarming_counter++;
|
||
|
||
if(auto_disarming_counter == AUTO_ARMING_DELAY){
|
||
init_disarm_motors();
|
||
}else if (auto_disarming_counter > AUTO_ARMING_DELAY){
|
||
auto_disarming_counter = AUTO_ARMING_DELAY + 1;
|
||
}
|
||
}else{
|
||
auto_disarming_counter = 0;
|
||
}
|
||
|
||
gcs_send_message(MSG_HEARTBEAT);
|
||
gcs_data_stream_send(1,3);
|
||
|
||
// agmatthews - USERHOOKS
|
||
#ifdef USERHOOK_SUPERSLOWLOOP
|
||
USERHOOK_SUPERSLOWLOOP
|
||
#endif
|
||
|
||
/*
|
||
Serial.printf("alt %d, next.alt %d, alt_err: %d, cruise: %d, Alt_I:%1.2f, wp_dist %d, tar_bear %d, home_d %d, homebear %d\n",
|
||
current_loc.alt,
|
||
next_WP.alt,
|
||
altitude_error,
|
||
g.throttle_cruise.get(),
|
||
g.pi_alt_hold.get_integrator(),
|
||
wp_distance,
|
||
target_bearing,
|
||
home_distance,
|
||
home_to_copter_bearing);
|
||
*/
|
||
}
|
||
|
||
// updated at 10 Hz
|
||
#ifdef OPTFLOW_ENABLED
|
||
static void update_optical_flow(void)
|
||
{
|
||
static int log_counter = 0;
|
||
|
||
optflow.update();
|
||
optflow.update_position(dcm.roll, dcm.pitch, cos_yaw_x, sin_yaw_y, current_loc.alt); // updates internal lon and lat with estimation based on optical flow
|
||
|
||
// write to log
|
||
log_counter++;
|
||
if( log_counter >= 5 ) {
|
||
log_counter = 0;
|
||
if (g.log_bitmask & MASK_LOG_OPTFLOW){
|
||
Log_Write_Optflow();
|
||
}
|
||
}
|
||
|
||
/*if(g.optflow_enabled && current_loc.alt < 500){
|
||
if(GPS_enabled){
|
||
// if we have a GPS, we add some detail to the GPS
|
||
// XXX this may not ne right
|
||
current_loc.lng += optflow.vlon;
|
||
current_loc.lat += optflow.vlat;
|
||
|
||
// some sort of error correction routine
|
||
//current_loc.lng -= ERR_GAIN * (float)(current_loc.lng - x_GPS_speed); // error correction
|
||
//current_loc.lng -= ERR_GAIN * (float)(current_loc.lng - x_GPS_speed); // error correction
|
||
}else{
|
||
// if we do not have a GPS, use relative from 0 for lat and lon
|
||
current_loc.lng = optflow.vlon;
|
||
current_loc.lat = optflow.vlat;
|
||
}
|
||
// OK to run the nav routines
|
||
nav_ok = true;
|
||
}*/
|
||
}
|
||
#endif
|
||
|
||
static void update_GPS(void)
|
||
{
|
||
// A counter that is used to grab at least 10 reads before commiting the Home location
|
||
static byte ground_start_count = 10;
|
||
|
||
g_gps->update();
|
||
update_GPS_light();
|
||
|
||
//current_loc.lng = 377697000; // Lon * 10 * *7
|
||
//current_loc.lat = -1224318000; // Lat * 10 * *7
|
||
//current_loc.alt = 100; // alt * 10 * *7
|
||
//return;
|
||
if(gps_watchdog < 30){
|
||
gps_watchdog++;
|
||
}else{
|
||
// after 12 reads we guess we may have lost GPS signal, stop navigating
|
||
// we have lost GPS signal for a moment. Reduce our error to avoid flyaways
|
||
auto_roll >>= 1;
|
||
auto_pitch >>= 1;
|
||
}
|
||
|
||
if (g_gps->new_data && g_gps->fix) {
|
||
|
||
// clear new data flag
|
||
g_gps->new_data = false;
|
||
|
||
gps_watchdog = 0;
|
||
|
||
// OK to run the nav routines
|
||
nav_ok = true;
|
||
|
||
// for performance
|
||
// ---------------
|
||
gps_fix_count++;
|
||
|
||
// used to calculate speed in X and Y, iterms
|
||
// ------------------------------------------
|
||
dTnav = (float)(millis() - nav_loopTimer)/ 1000.0;
|
||
nav_loopTimer = millis();
|
||
|
||
// prevent runup from bad GPS
|
||
// --------------------------
|
||
dTnav = min(dTnav, 1.0);
|
||
|
||
if(ground_start_count > 1){
|
||
ground_start_count--;
|
||
|
||
} else if (ground_start_count == 1) {
|
||
|
||
// We countdown N number of good GPS fixes
|
||
// so that the altitude is more accurate
|
||
// -------------------------------------
|
||
if (current_loc.lat == 0) {
|
||
ground_start_count = 5;
|
||
|
||
}else{
|
||
#if AUTOMATIC_DECLINATION == ENABLED
|
||
if(g.compass_enabled) {
|
||
// Set compass declination automatically
|
||
compass.set_initial_location(g_gps->latitude, g_gps->longitude, false);
|
||
}
|
||
#endif
|
||
// save home to eeprom (we must have a good fix to have reached this point)
|
||
init_home();
|
||
ground_start_count = 0;
|
||
}
|
||
}
|
||
|
||
current_loc.lng = g_gps->longitude; // Lon * 10 * *7
|
||
current_loc.lat = g_gps->latitude; // Lat * 10 * *7
|
||
|
||
if (g.log_bitmask & MASK_LOG_GPS && motor_armed){
|
||
Log_Write_GPS();
|
||
}
|
||
|
||
#if HIL_MODE == HIL_MODE_ATTITUDE // only execute in HIL mode
|
||
//update_altitude();
|
||
alt_sensor_flag = true;
|
||
#endif
|
||
}
|
||
}
|
||
|
||
void update_yaw_mode(void)
|
||
{
|
||
switch(yaw_mode){
|
||
case YAW_ACRO:
|
||
g.rc_4.servo_out = get_acro_yaw(g.rc_4.control_in);
|
||
return;
|
||
break;
|
||
|
||
case YAW_HOLD:
|
||
// calcualte new nav_yaw offset
|
||
if (control_mode <= STABILIZE){
|
||
nav_yaw = get_nav_yaw_offset(g.rc_4.control_in, g.rc_3.control_in);
|
||
}else{
|
||
nav_yaw = get_nav_yaw_offset(g.rc_4.control_in, 1);
|
||
}
|
||
break;
|
||
|
||
case YAW_LOOK_AT_HOME:
|
||
//nav_yaw updated in update_navigation()
|
||
break;
|
||
|
||
case YAW_AUTO:
|
||
nav_yaw += constrain(wrap_180(auto_yaw - nav_yaw), -20, 20); // 40 deg a second
|
||
//Serial.printf("nav_yaw %d ", nav_yaw);
|
||
nav_yaw = wrap_360(nav_yaw);
|
||
break;
|
||
}
|
||
|
||
// Yaw control
|
||
g.rc_4.servo_out = get_stabilize_yaw(nav_yaw);
|
||
|
||
//Serial.printf("4: %d\n",g.rc_4.servo_out);
|
||
}
|
||
|
||
void update_roll_pitch_mode(void)
|
||
{
|
||
int control_roll, control_pitch;
|
||
|
||
// hack to do auto_flip - need to remove, no one is using.
|
||
#if CH7_OPTION == CH7_FLIP
|
||
if (do_flip){
|
||
roll_flip();
|
||
return;
|
||
}
|
||
#endif
|
||
|
||
switch(roll_pitch_mode){
|
||
case ROLL_PITCH_ACRO:
|
||
if(g.axis_enabled){
|
||
roll_axis += (float)g.rc_1.control_in * g.axis_lock_p;
|
||
pitch_axis += (float)g.rc_2.control_in * g.axis_lock_p;
|
||
|
||
roll_axis = wrap_360(roll_axis);
|
||
pitch_axis = wrap_360(pitch_axis);
|
||
|
||
// in this mode, nav_roll and nav_pitch = the iterm
|
||
g.rc_1.servo_out = get_stabilize_roll(roll_axis);
|
||
g.rc_2.servo_out = get_stabilize_pitch(pitch_axis);
|
||
|
||
if (g.rc_3.control_in == 0){
|
||
roll_axis = 0;
|
||
pitch_axis = 0;
|
||
}
|
||
|
||
}else{
|
||
// ACRO does not get SIMPLE mode ability
|
||
g.rc_1.servo_out = get_acro_roll(g.rc_1.control_in);
|
||
g.rc_2.servo_out = get_acro_pitch(g.rc_2.control_in);
|
||
}
|
||
break;
|
||
|
||
case ROLL_PITCH_STABLE:
|
||
// apply SIMPLE mode transform
|
||
if(do_simple && new_radio_frame){
|
||
update_simple_mode();
|
||
}
|
||
|
||
// in this mode, nav_roll and nav_pitch = the iterm
|
||
g.rc_1.servo_out = get_stabilize_roll(g.rc_1.control_in);
|
||
g.rc_2.servo_out = get_stabilize_pitch(g.rc_2.control_in);
|
||
break;
|
||
|
||
case ROLL_PITCH_AUTO:
|
||
// apply SIMPLE mode transform
|
||
if(do_simple && new_radio_frame){
|
||
update_simple_mode();
|
||
}
|
||
// mix in user control with Nav control
|
||
nav_roll += constrain(wrap_180(auto_roll - nav_roll), -g.auto_slew_rate.get(), g.auto_slew_rate.get()); // 40 deg a second
|
||
nav_pitch += constrain(wrap_180(auto_pitch - nav_pitch), -g.auto_slew_rate.get(), g.auto_slew_rate.get()); // 40 deg a second
|
||
|
||
control_roll = g.rc_1.control_mix(nav_roll);
|
||
control_pitch = g.rc_2.control_mix(nav_pitch);
|
||
g.rc_1.servo_out = get_stabilize_roll(control_roll);
|
||
g.rc_2.servo_out = get_stabilize_pitch(control_pitch);
|
||
break;
|
||
|
||
case ROLL_PITCH_STABLE_OF:
|
||
// apply SIMPLE mode transform
|
||
if(do_simple && new_radio_frame){
|
||
update_simple_mode();
|
||
}
|
||
// mix in user control with optical flow
|
||
g.rc_1.servo_out = get_stabilize_roll(get_of_roll(g.rc_1.control_in));
|
||
g.rc_2.servo_out = get_stabilize_pitch(get_of_pitch(g.rc_2.control_in));
|
||
break;
|
||
}
|
||
|
||
if(g.rc_3.control_in == 0 && roll_pitch_mode <= ROLL_PITCH_ACRO){
|
||
reset_rate_I();
|
||
reset_stability_I();
|
||
}
|
||
|
||
if(takeoff_complete == false){
|
||
// reset these I terms to prevent awkward tipping on takeoff
|
||
//reset_rate_I();
|
||
//reset_stability_I();
|
||
}
|
||
|
||
if(new_radio_frame){
|
||
// clear new radio frame info
|
||
new_radio_frame = false;
|
||
|
||
// These values can be used to scale the PID gains
|
||
// This allows for a simple gain scheduling implementation
|
||
roll_scale_d = g.stabilize_d_schedule * (float)abs(g.rc_1.control_in);
|
||
roll_scale_d = (1 - (roll_scale_d / 4500.0));
|
||
roll_scale_d = constrain(roll_scale_d, 0, 1) * g.stabilize_d;
|
||
|
||
pitch_scale_d = g.stabilize_d_schedule * (float)abs(g.rc_2.control_in);
|
||
pitch_scale_d = (1 - (pitch_scale_d / 4500.0));
|
||
pitch_scale_d = constrain(pitch_scale_d, 0, 1) * g.stabilize_d;
|
||
}
|
||
}
|
||
|
||
// new radio frame is used to make sure we only call this at 50hz
|
||
void update_simple_mode(void)
|
||
{
|
||
static float simple_sin_y=0, simple_cos_x=0;
|
||
|
||
// used to manage state machine
|
||
// which improves speed of function
|
||
simple_counter++;
|
||
|
||
int delta = wrap_360(dcm.yaw_sensor - initial_simple_bearing)/100;
|
||
|
||
if (simple_counter == 1){
|
||
// roll
|
||
simple_cos_x = sin(radians(90 - delta));
|
||
|
||
}else if (simple_counter > 2){
|
||
// pitch
|
||
simple_sin_y = cos(radians(90 - delta));
|
||
simple_counter = 0;
|
||
}
|
||
|
||
// Rotate input by the initial bearing
|
||
int control_roll = g.rc_1.control_in * simple_cos_x + g.rc_2.control_in * simple_sin_y;
|
||
int control_pitch = -(g.rc_1.control_in * simple_sin_y - g.rc_2.control_in * simple_cos_x);
|
||
|
||
g.rc_1.control_in = control_roll;
|
||
g.rc_2.control_in = control_pitch;
|
||
}
|
||
|
||
#define THROTTLE_FILTER_SIZE 2
|
||
|
||
// 50 hz update rate, not 250
|
||
// controls all throttle behavior
|
||
void update_throttle_mode(void)
|
||
{
|
||
int16_t throttle_out;
|
||
|
||
#if AUTO_THROTTLE_HOLD != 0
|
||
static float throttle_avg = THROTTLE_CRUISE;
|
||
#endif
|
||
|
||
switch(throttle_mode){
|
||
case THROTTLE_MANUAL:
|
||
if (g.rc_3.control_in > 0){
|
||
#if FRAME_CONFIG == HELI_FRAME
|
||
g.rc_3.servo_out = heli_get_angle_boost(g.rc_3.control_in);
|
||
#else
|
||
if (control_mode == ACRO){
|
||
g.rc_3.servo_out = g.rc_3.control_in;
|
||
}else{
|
||
angle_boost = get_angle_boost(g.rc_3.control_in);
|
||
g.rc_3.servo_out = g.rc_3.control_in + angle_boost;
|
||
}
|
||
#endif
|
||
|
||
#if AUTO_THROTTLE_HOLD != 0
|
||
// calc average throttle
|
||
if ((g.rc_3.control_in > MINIMUM_THROTTLE) && abs(climb_rate) < 60){
|
||
throttle_avg = throttle_avg * .98 + (float)g.rc_3.control_in * .02;
|
||
g.throttle_cruise = throttle_avg;
|
||
}
|
||
#endif
|
||
|
||
// Code to manage the Copter state
|
||
if ((millis() - takeoff_timer) > 5000){
|
||
// we must be in the air by now
|
||
takeoff_complete = true;
|
||
}
|
||
}else{
|
||
// we are on the ground
|
||
takeoff_complete = false;
|
||
|
||
// reset baro data if we are near home
|
||
if(home_distance < 400 || GPS_enabled == false){ // 4m from home
|
||
// causes Baro to do a quick recalibration
|
||
// XXX commented until further testing
|
||
// reset_baro();
|
||
}
|
||
|
||
// remember our time since takeoff
|
||
// -------------------------------
|
||
takeoff_timer = millis();
|
||
|
||
// make sure we also request 0 throttle out
|
||
// so the props stop ... properly
|
||
// ----------------------------------------
|
||
g.rc_3.servo_out = 0;
|
||
}
|
||
break;
|
||
|
||
case THROTTLE_HOLD:
|
||
// allow interactive changing of atitude
|
||
adjust_altitude();
|
||
|
||
// fall through
|
||
|
||
case THROTTLE_AUTO:
|
||
// calculate angle boost
|
||
angle_boost = get_angle_boost(g.throttle_cruise);
|
||
|
||
// manual command up or down?
|
||
if(manual_boost != 0){
|
||
#if FRAME_CONFIG == HELI_FRAME
|
||
throttle_out = heli_get_angle_boost(g.throttle_cruise + manual_boost);
|
||
#else
|
||
throttle_out = g.throttle_cruise + angle_boost + manual_boost;
|
||
#endif
|
||
|
||
//force a reset of the altitude change
|
||
clear_new_altitude();
|
||
|
||
/*
|
||
int16_t iterm = g.pi_alt_hold.get_integrator();
|
||
|
||
Serial.printf("tar_alt: %d, actual_alt: %d \talt_err: %d, \t manb: %d, iterm %d\n",
|
||
next_WP.alt,
|
||
current_loc.alt,
|
||
altitude_error,
|
||
manual_boost,
|
||
iterm);
|
||
//*/
|
||
// this lets us know we need to update the altitude after manual throttle control
|
||
reset_throttle_flag = true;
|
||
|
||
}else{
|
||
// we are under automatic throttle control
|
||
// ---------------------------------------
|
||
if(reset_throttle_flag) {
|
||
force_new_altitude(max(current_loc.alt, 100));
|
||
reset_throttle_flag = false;
|
||
update_throttle_cruise();
|
||
}
|
||
|
||
if(motor_auto_armed == true){
|
||
|
||
// how far off are we
|
||
altitude_error = get_altitude_error();
|
||
|
||
// get the AP throttle
|
||
nav_throttle = get_nav_throttle(altitude_error);
|
||
|
||
/*
|
||
Serial.printf("tar_alt: %d, actual_alt: %d \talt_err: %d, \tnav_thr: %d, \talt Int: %d\n",
|
||
next_WP.alt,
|
||
current_loc.alt,
|
||
altitude_error,
|
||
nav_throttle,
|
||
(int16_t)g.pi_alt_hold.get_integrator());
|
||
//*/
|
||
|
||
}
|
||
|
||
// hack to remove the influence of the ground effect
|
||
if(g.sonar_enabled && current_loc.alt < 100 && landing_boost != 0) {
|
||
nav_throttle = min(nav_throttle, 0);
|
||
}
|
||
|
||
#if FRAME_CONFIG == HELI_FRAME
|
||
throttle_out = heli_get_angle_boost(g.throttle_cruise + nav_throttle + get_z_damping() - landing_boost);
|
||
#else
|
||
throttle_out = g.throttle_cruise + nav_throttle + angle_boost + get_z_damping() - landing_boost;
|
||
#endif
|
||
}
|
||
|
||
// light filter of output
|
||
//g.rc_3.servo_out = (g.rc_3.servo_out * (THROTTLE_FILTER_SIZE - 1) + throttle_out) / THROTTLE_FILTER_SIZE;
|
||
|
||
// no filter
|
||
g.rc_3.servo_out = throttle_out;
|
||
break;
|
||
}
|
||
}
|
||
|
||
// called after a GPS read
|
||
static void update_navigation()
|
||
{
|
||
// wp_distance is in CM
|
||
// --------------------
|
||
switch(control_mode){
|
||
case AUTO:
|
||
// note: wp_control is handled by commands_logic
|
||
verify_commands();
|
||
|
||
// calculates desired Yaw
|
||
update_auto_yaw();
|
||
|
||
// calculates the desired Roll and Pitch
|
||
update_nav_wp();
|
||
break;
|
||
|
||
case GUIDED:
|
||
wp_control = WP_MODE;
|
||
// check if we are close to point > loiter
|
||
wp_verify_byte = 0;
|
||
verify_nav_wp();
|
||
|
||
if (wp_control == WP_MODE) {
|
||
update_auto_yaw();
|
||
} else {
|
||
set_mode(LOITER);
|
||
}
|
||
update_nav_wp();
|
||
break;
|
||
|
||
case RTL:
|
||
// We have reached Home
|
||
if((wp_distance <= g.waypoint_radius) || check_missed_wp()){
|
||
// if auto_land_timer value > 0, we are set to trigger auto_land after 20 seconds
|
||
set_mode(LOITER);
|
||
if(g.rtl_land_enabled || failsafe)
|
||
auto_land_timer = millis();
|
||
else
|
||
auto_land_timer = 0;
|
||
break;
|
||
}
|
||
|
||
wp_control = WP_MODE;
|
||
slow_wp = true;
|
||
|
||
// calculates desired Yaw
|
||
#if FRAME_CONFIG == HELI_FRAME
|
||
update_auto_yaw();
|
||
#endif
|
||
|
||
// calculates the desired Roll and Pitch
|
||
update_nav_wp();
|
||
break;
|
||
|
||
// switch passthrough to LOITER
|
||
case LOITER:
|
||
case POSITION:
|
||
// This feature allows us to reposition the quad when the user lets
|
||
// go of the sticks
|
||
|
||
if((abs(g.rc_2.control_in) + abs(g.rc_1.control_in)) > 500){
|
||
loiter_override = true;
|
||
}
|
||
|
||
// Allow the user to take control temporarily,
|
||
if(loiter_override){
|
||
// this sets the copter to not try and nav while we control it
|
||
wp_control = NO_NAV_MODE;
|
||
|
||
// reset LOITER to current position
|
||
next_WP.lat = current_loc.lat;
|
||
next_WP.lng = current_loc.lng;
|
||
|
||
if( g.rc_2.control_in == 0 && g.rc_1.control_in == 0 ){
|
||
loiter_override = false;
|
||
wp_control = LOITER_MODE;
|
||
}
|
||
}else{
|
||
wp_control = LOITER_MODE;
|
||
}
|
||
|
||
// Kick us out of loiter and begin landing if the auto_land_timer is set
|
||
if(auto_land_timer != 0 && (millis() - auto_land_timer) > (uint32_t)g.auto_land_timeout.get()){
|
||
// just to make sure we clear the timer
|
||
auto_land_timer = 0;
|
||
set_mode(LAND);
|
||
}
|
||
|
||
// calculates the desired Roll and Pitch
|
||
update_nav_wp();
|
||
break;
|
||
|
||
case LAND:
|
||
if(g.sonar_enabled)
|
||
verify_land_sonar();
|
||
else
|
||
verify_land_baro();
|
||
|
||
// calculates the desired Roll and Pitch
|
||
update_nav_wp();
|
||
break;
|
||
|
||
case CIRCLE:
|
||
yaw_tracking = MAV_ROI_WPNEXT;
|
||
wp_control = CIRCLE_MODE;
|
||
|
||
// calculates desired Yaw
|
||
update_auto_yaw();
|
||
update_nav_wp();
|
||
break;
|
||
|
||
case STABILIZE:
|
||
wp_control = NO_NAV_MODE;
|
||
update_nav_wp();
|
||
break;
|
||
|
||
}
|
||
|
||
// are we in SIMPLE mode?
|
||
if(do_simple && g.super_simple){
|
||
// get distance to home
|
||
if(home_distance > 1000){ // 10m from home
|
||
// we reset the angular offset to be a vector from home to the quad
|
||
initial_simple_bearing = home_to_copter_bearing;
|
||
//Serial.printf("ISB: %d\n", initial_simple_bearing);
|
||
}
|
||
}
|
||
|
||
if(yaw_mode == YAW_LOOK_AT_HOME){
|
||
if(home_is_set){
|
||
//nav_yaw = point_at_home_yaw();
|
||
nav_yaw = get_bearing(¤t_loc, &home);
|
||
} else {
|
||
nav_yaw = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
static void read_AHRS(void)
|
||
{
|
||
// Perform IMU calculations and get attitude info
|
||
//-----------------------------------------------
|
||
#if HIL_MODE != HIL_MODE_DISABLED
|
||
// update hil before dcm update
|
||
gcs_update();
|
||
#endif
|
||
|
||
dcm.update_DCM();
|
||
omega = imu.get_gyro();
|
||
}
|
||
|
||
static void update_trig(void){
|
||
Vector2f yawvector;
|
||
Matrix3f temp = dcm.get_dcm_matrix();
|
||
|
||
yawvector.x = temp.a.x; // sin
|
||
yawvector.y = temp.b.x; // cos
|
||
yawvector.normalize();
|
||
|
||
cos_pitch_x = safe_sqrt(1 - (temp.c.x * temp.c.x)); // level = 1
|
||
cos_roll_x = temp.c.z / cos_pitch_x; // level = 1
|
||
|
||
cos_pitch_x = constrain(cos_pitch_x, 0, 1.0);
|
||
// this relies on constrain() of infinity doing the right thing,
|
||
// which it does do in avr-libc
|
||
cos_roll_x = constrain(cos_roll_x, -1.0, 1.0);
|
||
|
||
sin_yaw_y = yawvector.x; // 1y = north
|
||
cos_yaw_x = yawvector.y; // 0x = north
|
||
|
||
//flat:
|
||
// 0 ° = cos_yaw: 0.00, sin_yaw: 1.00,
|
||
// 90° = cos_yaw: 1.00, sin_yaw: 0.00,
|
||
// 180 = cos_yaw: 0.00, sin_yaw: -1.00,
|
||
// 270 = cos_yaw: -1.00, sin_yaw: 0.00,
|
||
}
|
||
|
||
// updated at 10hz
|
||
static void update_altitude()
|
||
{
|
||
static int16_t old_sonar_alt = 0;
|
||
static int32_t old_baro_alt = 0;
|
||
|
||
#if HIL_MODE == HIL_MODE_ATTITUDE
|
||
// we are in the SIM, fake out the baro and Sonar
|
||
int fake_relative_alt = g_gps->altitude - gps_base_alt;
|
||
baro_alt = fake_relative_alt;
|
||
sonar_alt = fake_relative_alt;
|
||
|
||
baro_rate = (baro_alt - old_baro_alt) * 5; // 5hz
|
||
old_baro_alt = baro_alt;
|
||
|
||
#else
|
||
// This is real life
|
||
|
||
// read in Actual Baro Altitude
|
||
baro_alt = read_barometer();
|
||
//Serial.printf("baro_alt: %d \n", baro_alt);
|
||
|
||
// calc the vertical accel rate
|
||
int temp = (baro_alt - old_baro_alt) * 10;
|
||
baro_rate = (temp + baro_rate) >> 1;
|
||
baro_rate = constrain(baro_rate, -300, 300);
|
||
old_baro_alt = baro_alt;
|
||
|
||
// Note: sonar_alt is calculated in a faster loop and filtered with a mode filter
|
||
#endif
|
||
|
||
if(g.sonar_enabled){
|
||
// filter out offset
|
||
float scale;
|
||
|
||
// calc rate of change for Sonar
|
||
#if HIL_MODE == HIL_MODE_ATTITUDE
|
||
// we are in the SIM, fake outthe Sonar rate
|
||
sonar_rate = baro_rate;
|
||
#else
|
||
// This is real life
|
||
// calc the vertical accel rate
|
||
// positive = going up.
|
||
sonar_rate = (sonar_alt - old_sonar_alt) * 10;
|
||
sonar_rate = constrain(sonar_rate, -150, 150);
|
||
old_sonar_alt = sonar_alt;
|
||
#endif
|
||
|
||
if(baro_alt < 800){
|
||
#if SONAR_TILT_CORRECTION == 1
|
||
// correct alt for angle of the sonar
|
||
float temp = cos_pitch_x * cos_roll_x;
|
||
temp = max(temp, 0.707);
|
||
sonar_alt = (float)sonar_alt * temp;
|
||
#endif
|
||
|
||
scale = (float)(sonar_alt - 400) / 200.0;
|
||
scale = constrain(scale, 0.0, 1.0);
|
||
// solve for a blended altitude
|
||
current_loc.alt = ((float)sonar_alt * (1.0 - scale)) + ((float)baro_alt * scale) + home.alt;
|
||
|
||
// solve for a blended climb_rate
|
||
climb_rate_actual = ((float)sonar_rate * (1.0 - scale)) + (float)baro_rate * scale;
|
||
|
||
}else{
|
||
// we must be higher than sonar (>800), don't get tricked by bad sonar reads
|
||
current_loc.alt = baro_alt + home.alt; // home alt = 0
|
||
// dont blend, go straight baro
|
||
climb_rate_actual = baro_rate;
|
||
}
|
||
|
||
}else{
|
||
// NO Sonar case
|
||
current_loc.alt = baro_alt + home.alt;
|
||
climb_rate_actual = baro_rate;
|
||
}
|
||
|
||
// update the target altitude
|
||
next_WP.alt = get_new_altitude();
|
||
|
||
// calc error
|
||
climb_rate_error = (climb_rate_actual - climb_rate) / 5;
|
||
}
|
||
|
||
static void update_altitude_est()
|
||
{
|
||
if(alt_sensor_flag){
|
||
update_altitude();
|
||
alt_sensor_flag = false;
|
||
|
||
if(g.log_bitmask & MASK_LOG_CTUN && motor_armed){
|
||
Log_Write_Control_Tuning();
|
||
}
|
||
|
||
}else{
|
||
// simple dithering of climb rate
|
||
climb_rate += climb_rate_error;
|
||
current_loc.alt += (climb_rate / 50);
|
||
}
|
||
//Serial.printf(" %d, %d, %d, %d\n", climb_rate_actual, climb_rate_error, climb_rate, current_loc.alt);
|
||
}
|
||
|
||
#define THROTTLE_ADJUST 225
|
||
static void
|
||
adjust_altitude()
|
||
{
|
||
if(g.rc_3.control_in <= (MINIMUM_THROTTLE + THROTTLE_ADJUST)){
|
||
// we remove 0 to 100 PWM from hover
|
||
manual_boost = (g.rc_3.control_in - MINIMUM_THROTTLE) - THROTTLE_ADJUST;
|
||
manual_boost = max(-THROTTLE_ADJUST, manual_boost);
|
||
|
||
}else if (g.rc_3.control_in >= (MAXIMUM_THROTTLE - THROTTLE_ADJUST)){
|
||
// we add 0 to 100 PWM to hover
|
||
manual_boost = g.rc_3.control_in - (MAXIMUM_THROTTLE - THROTTLE_ADJUST);
|
||
manual_boost = min(THROTTLE_ADJUST, manual_boost);
|
||
|
||
}else {
|
||
manual_boost = 0;
|
||
}
|
||
}
|
||
|
||
static void tuning(){
|
||
tuning_value = (float)g.rc_6.control_in / 1000.0;
|
||
g.rc_6.set_range(g.radio_tuning_low,g.radio_tuning_high); // 0 to 1
|
||
|
||
switch(g.radio_tuning){
|
||
|
||
case CH6_DAMP:
|
||
g.stabilize_d.set(tuning_value);
|
||
break;
|
||
|
||
case CH6_RATE_KD:
|
||
tuning_value = (float)g.rc_6.control_in / 100000.0;
|
||
g.pid_rate_roll.kD(tuning_value);
|
||
g.pid_rate_pitch.kD(tuning_value);
|
||
break;
|
||
|
||
case CH6_STABILIZE_KP:
|
||
g.pi_stabilize_roll.kP(tuning_value);
|
||
g.pi_stabilize_pitch.kP(tuning_value);
|
||
break;
|
||
|
||
case CH6_STABILIZE_KI:
|
||
g.pi_stabilize_roll.kI(tuning_value);
|
||
g.pi_stabilize_pitch.kI(tuning_value);
|
||
break;
|
||
|
||
case CH6_RATE_KP:
|
||
g.pid_rate_roll.kP(tuning_value);
|
||
g.pid_rate_pitch.kP(tuning_value);
|
||
break;
|
||
|
||
case CH6_RATE_KI:
|
||
g.pid_rate_roll.kI(tuning_value);
|
||
g.pid_rate_pitch.kI(tuning_value);
|
||
break;
|
||
|
||
case CH6_YAW_KP:
|
||
g.pi_stabilize_yaw.kP(tuning_value);
|
||
break;
|
||
|
||
case CH6_YAW_RATE_KP:
|
||
g.pid_rate_yaw.kP(tuning_value);
|
||
break;
|
||
|
||
case CH6_THROTTLE_KP:
|
||
g.pid_throttle.kP(tuning_value);
|
||
break;
|
||
|
||
case CH6_TOP_BOTTOM_RATIO:
|
||
g.top_bottom_ratio = tuning_value;
|
||
break;
|
||
|
||
case CH6_RELAY:
|
||
if (g.rc_6.control_in > 525) relay.on();
|
||
if (g.rc_6.control_in < 475) relay.off();
|
||
break;
|
||
|
||
case CH6_TRAVERSE_SPEED:
|
||
g.waypoint_speed_max = g.rc_6.control_in;
|
||
break;
|
||
|
||
case CH6_LOITER_P:
|
||
g.pi_loiter_lat.kP(tuning_value);
|
||
g.pi_loiter_lon.kP(tuning_value);
|
||
break;
|
||
|
||
case CH6_NAV_P:
|
||
g.pid_nav_lat.kP(tuning_value);
|
||
g.pid_nav_lon.kP(tuning_value);
|
||
break;
|
||
|
||
case CH6_LOITER_RATE_P:
|
||
g.pid_loiter_rate_lon.kP(tuning_value);
|
||
g.pid_loiter_rate_lat.kP(tuning_value);
|
||
break;
|
||
|
||
case CH6_LOITER_RATE_D:
|
||
g.pid_loiter_rate_lon.kD(tuning_value);
|
||
g.pid_loiter_rate_lat.kD(tuning_value);
|
||
break;
|
||
|
||
case CH6_NAV_I:
|
||
g.pid_nav_lat.kI(tuning_value);
|
||
g.pid_nav_lon.kI(tuning_value);
|
||
break;
|
||
|
||
#if FRAME_CONFIG == HELI_FRAME
|
||
case CH6_HELI_EXTERNAL_GYRO:
|
||
g.heli_ext_gyro_gain = tuning_value * 1000;
|
||
break;
|
||
#endif
|
||
|
||
case CH6_THR_HOLD_KP:
|
||
g.pi_alt_hold.kP(tuning_value);
|
||
break;
|
||
|
||
case CH6_OPTFLOW_KP:
|
||
g.pid_optflow_roll.kP(tuning_value);
|
||
g.pid_optflow_pitch.kP(tuning_value);
|
||
break;
|
||
|
||
case CH6_OPTFLOW_KI:
|
||
g.pid_optflow_roll.kI(tuning_value);
|
||
g.pid_optflow_pitch.kI(tuning_value);
|
||
break;
|
||
|
||
case CH6_OPTFLOW_KD:
|
||
g.pid_optflow_roll.kD(tuning_value);
|
||
g.pid_optflow_pitch.kD(tuning_value);
|
||
break;
|
||
}
|
||
}
|
||
|
||
// Outputs Nav_Pitch and Nav_Roll
|
||
static void update_nav_wp()
|
||
{
|
||
if(wp_control == LOITER_MODE){
|
||
|
||
// calc error to target
|
||
calc_location_error(&next_WP);
|
||
|
||
// use error as the desired rate towards the target
|
||
calc_loiter(long_error, lat_error);
|
||
|
||
// rotate pitch and roll to the copter frame of reference
|
||
calc_loiter_pitch_roll();
|
||
|
||
}else if(wp_control == CIRCLE_MODE){
|
||
|
||
// check if we have missed the WP
|
||
int loiter_delta = (target_bearing - old_target_bearing)/100;
|
||
|
||
// reset the old value
|
||
old_target_bearing = target_bearing;
|
||
|
||
// wrap values
|
||
if (loiter_delta > 180) loiter_delta -= 360;
|
||
if (loiter_delta < -180) loiter_delta += 360;
|
||
|
||
// sum the angle around the WP
|
||
loiter_sum += loiter_delta;
|
||
|
||
// create a virtual waypoint that circles the next_WP
|
||
// Count the degrees we have circulated the WP
|
||
//int circle_angle = wrap_360(target_bearing + 3000 + 18000) / 100;
|
||
|
||
circle_angle += (circle_rate * dTnav);
|
||
//1° = 0.0174532925 radians
|
||
|
||
// wrap
|
||
if (circle_angle > 6.28318531)
|
||
circle_angle -= 6.28318531;
|
||
|
||
circle_WP.lng = next_WP.lng + (g.loiter_radius * 100 * cos(1.57 - circle_angle) * scaleLongUp);
|
||
circle_WP.lat = next_WP.lat + (g.loiter_radius * 100 * sin(1.57 - circle_angle));
|
||
|
||
// calc the lat and long error to the target
|
||
calc_location_error(&circle_WP);
|
||
|
||
// use error as the desired rate towards the target
|
||
// nav_lon, nav_lat is calculated
|
||
calc_loiter(long_error, lat_error);
|
||
|
||
//CIRCLE: angle:29, dist:0, lat:400, lon:242
|
||
|
||
// rotate pitch and roll to the copter frame of reference
|
||
calc_loiter_pitch_roll();
|
||
|
||
// debug
|
||
//int angleTest = degrees(circle_angle);
|
||
//int nroll = nav_roll;
|
||
//int npitch = nav_pitch;
|
||
//Serial.printf("CIRCLE: angle:%d, dist:%d, X:%d, Y:%d, P:%d, R:%d \n", angleTest, (int)wp_distance , (int)long_error, (int)lat_error, npitch, nroll);
|
||
|
||
}else if(wp_control == WP_MODE){
|
||
// calc error to target
|
||
calc_location_error(&next_WP);
|
||
|
||
int16_t speed = calc_desired_speed(g.waypoint_speed_max, slow_wp);
|
||
// use error as the desired rate towards the target
|
||
calc_nav_rate(speed);
|
||
// rotate pitch and roll to the copter frame of reference
|
||
calc_loiter_pitch_roll();
|
||
|
||
}else if(wp_control == NO_NAV_MODE){
|
||
// clear out our nav so we can do things like land straight down
|
||
// or change Loiter position
|
||
|
||
// We bring copy over our Iterms for wind control, but we don't navigate
|
||
nav_lon = g.pid_loiter_rate_lon.get_integrator();
|
||
nav_lat = g.pid_loiter_rate_lon.get_integrator();
|
||
|
||
nav_lon = constrain(nav_lon, -2000, 2000); // 20°
|
||
nav_lat = constrain(nav_lat, -2000, 2000); // 20°
|
||
|
||
// rotate pitch and roll to the copter frame of reference
|
||
calc_loiter_pitch_roll();
|
||
}
|
||
}
|
||
|
||
static void update_auto_yaw()
|
||
{
|
||
// If we Loiter, don't start Yawing, allow Yaw control
|
||
if(wp_control == LOITER_MODE)
|
||
return;
|
||
|
||
// this tracks a location so the copter is always pointing towards it.
|
||
if(yaw_tracking == MAV_ROI_LOCATION){
|
||
auto_yaw = get_bearing(¤t_loc, &target_WP);
|
||
|
||
}else if(yaw_tracking == MAV_ROI_WPNEXT){
|
||
// Point towards next WP
|
||
auto_yaw = target_bearing;
|
||
}
|
||
//Serial.printf("auto_yaw %d ", auto_yaw);
|
||
// MAV_ROI_NONE = basic Yaw hold
|
||
}
|