Ardupilot2/libraries/AP_Networking/AP_Networking_port.cpp
Andrew Tridgell 89506846a3 AP_Networking: improve startup wait
this ensures we wait till DHCP has completed
2023-12-01 18:33:29 +11:00

462 lines
12 KiB
C++

/*
class for networking mapped ports
*/
#include "AP_Networking_Config.h"
#if AP_NETWORKING_ENABLED
#include "AP_Networking.h"
#include <AP_HAL/utility/Socket.h>
#include <GCS_MAVLink/GCS.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
#include <AP_Math/AP_Math.h>
#include <AP_SerialManager/AP_SerialManager.h>
#include <AP_HAL/utility/packetise.h>
extern const AP_HAL::HAL& hal;
#ifndef AP_NETWORKING_PORT_MIN_TXSIZE
#define AP_NETWORKING_PORT_MIN_TXSIZE 2048
#endif
#ifndef AP_NETWORKING_PORT_MIN_RXSIZE
#define AP_NETWORKING_PORT_MIN_RXSIZE 2048
#endif
#ifndef AP_NETWORKING_PORT_STACK_SIZE
#define AP_NETWORKING_PORT_STACK_SIZE 1024
#endif
const AP_Param::GroupInfo AP_Networking::Port::var_info[] = {
// @Param: TYPE
// @DisplayName: Port type
// @Description: Port type for network serial port. For the two client types a valid destination IP address must be set. For the two server types either 0.0.0.0 or a local address can be used.
// @Values: 0:Disabled, 1:UDP client, 2:TCP client, 3:TCP server
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO_FLAGS("TYPE", 1, AP_Networking::Port, type, 0, AP_PARAM_FLAG_ENABLE),
// @Param: PROTOCOL
// @DisplayName: protocol
// @Description: protocol
// @User: Advanced
// @CopyFieldsFrom: SERIAL0_PROTOCOL
AP_GROUPINFO("PROTOCOL", 2, AP_Networking::Port, state.protocol, 0),
// @Group: IP
// @Path: AP_Networking_address.cpp
AP_SUBGROUPINFO(ip, "IP", 3, AP_Networking::Port, AP_Networking_IPV4),
// @Param: PORT
// @DisplayName: Port number
// @Description: Port number
// @Range: 0 65535
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("PORT", 4, AP_Networking::Port, port, 0),
AP_GROUPEND
};
/*
initialise mapped network ports
*/
void AP_Networking::ports_init(void)
{
for (uint8_t i=0; i<ARRAY_SIZE(ports); i++) {
auto &p = ports[i];
NetworkPortType ptype = (NetworkPortType)p.type;
p.state.idx = AP_SERIALMANAGER_NET_PORT_1 + i;
switch (ptype) {
case NetworkPortType::NONE:
break;
case NetworkPortType::UDP_CLIENT:
p.udp_client_init();
break;
case NetworkPortType::UDP_SERVER:
p.udp_server_init();
break;
case NetworkPortType::TCP_SERVER:
p.tcp_server_init();
break;
case NetworkPortType::TCP_CLIENT:
p.tcp_client_init();
break;
}
if (p.sock != nullptr || p.listen_sock != nullptr) {
AP::serialmanager().register_port(&p);
}
}
}
/*
wrapper for thread_create for port functions
*/
void AP_Networking::Port::thread_create(AP_HAL::MemberProc proc)
{
const uint8_t idx = state.idx - AP_SERIALMANAGER_NET_PORT_1;
hal.util->snprintf(thread_name, sizeof(thread_name), "NET_P%u", unsigned(idx));
if (!init_buffers(AP_NETWORKING_PORT_MIN_RXSIZE, AP_NETWORKING_PORT_MIN_TXSIZE)) {
AP_BoardConfig::allocation_error("Failed to allocate %s buffers", thread_name);
return;
}
if (!hal.scheduler->thread_create(proc, thread_name, AP_NETWORKING_PORT_STACK_SIZE, AP_HAL::Scheduler::PRIORITY_UART, 0)) {
AP_BoardConfig::allocation_error("Failed to allocate %s client thread", thread_name);
}
}
/*
initialise a UDP client
*/
void AP_Networking::Port::udp_client_init(void)
{
sock = new SocketAPM(true);
if (sock == nullptr) {
return;
}
sock->set_blocking(false);
// setup for packet boundaries if this is mavlink
packetise = (state.protocol == AP_SerialManager::SerialProtocol_MAVLink ||
state.protocol == AP_SerialManager::SerialProtocol_MAVLink2);
thread_create(FUNCTOR_BIND_MEMBER(&AP_Networking::Port::udp_client_loop, void));
}
/*
initialise a UDP server
*/
void AP_Networking::Port::udp_server_init(void)
{
sock = new SocketAPM(true);
if (sock == nullptr) {
return;
}
sock->set_blocking(false);
// setup for packet boundaries if this is mavlink
packetise = (state.protocol == AP_SerialManager::SerialProtocol_MAVLink ||
state.protocol == AP_SerialManager::SerialProtocol_MAVLink2);
thread_create(FUNCTOR_BIND_MEMBER(&AP_Networking::Port::udp_server_loop, void));
}
/*
initialise a TCP server
*/
void AP_Networking::Port::tcp_server_init(void)
{
listen_sock = new SocketAPM(false);
if (listen_sock == nullptr) {
return;
}
listen_sock->reuseaddress();
thread_create(FUNCTOR_BIND_MEMBER(&AP_Networking::Port::tcp_server_loop, void));
}
/*
initialise a TCP client
*/
void AP_Networking::Port::tcp_client_init(void)
{
sock = new SocketAPM(false);
if (sock != nullptr) {
sock->set_blocking(true);
thread_create(FUNCTOR_BIND_MEMBER(&AP_Networking::Port::tcp_client_loop, void));
}
}
/*
update a UDP client
*/
void AP_Networking::Port::udp_client_loop(void)
{
AP::network().startup_wait();
const char *dest = ip.get_str();
if (!sock->connect(dest, port.get())) {
GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "UDP[%u]: Failed to connect to %s", (unsigned)state.idx, dest);
delete sock;
sock = nullptr;
return;
}
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "UDP[%u]: connected to %s:%u", (unsigned)state.idx, dest, unsigned(port.get()));
connected = true;
bool active = false;
while (true) {
if (!active) {
hal.scheduler->delay_microseconds(100);
}
active = send_receive();
}
}
/*
update a UDP server
*/
void AP_Networking::Port::udp_server_loop(void)
{
AP::network().startup_wait();
const char *addr = ip.get_str();
if (!sock->bind(addr, port.get())) {
GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "UDP[%u]: Failed to bind to %s:%u", (unsigned)state.idx, addr, unsigned(port.get()));
delete sock;
sock = nullptr;
return;
}
sock->reuseaddress();
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "UDP[%u]: bound to %s:%u", (unsigned)state.idx, addr, unsigned(port.get()));
bool active = false;
while (true) {
if (!active) {
hal.scheduler->delay_microseconds(100);
}
active = send_receive();
}
}
/*
update a TCP server
*/
void AP_Networking::Port::tcp_server_loop(void)
{
AP::network().startup_wait();
const char *addr = ip.get_str();
if (!listen_sock->bind(addr, port.get()) || !listen_sock->listen(1)) {
GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "TCP[%u]: Failed to bind to %s:%u", (unsigned)state.idx, addr, unsigned(port.get()));
delete listen_sock;
listen_sock = nullptr;
return;
}
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "TCP[%u]: bound to %s:%u", (unsigned)state.idx, addr, unsigned(port.get()));
close_on_recv_error = true;
bool active = false;
while (true) {
if (!active) {
hal.scheduler->delay_microseconds(100);
}
if (sock == nullptr) {
sock = listen_sock->accept(100);
if (sock != nullptr) {
sock->set_blocking(false);
char buf[16];
uint16_t last_port;
const char *last_addr = listen_sock->last_recv_address(buf, sizeof(buf), last_port);
if (last_addr != nullptr) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "TCP[%u]: connection from %s:%u", (unsigned)state.idx, last_addr, unsigned(last_port));
}
connected = true;
sock->reuseaddress();
}
}
if (sock != nullptr) {
active = send_receive();
}
}
}
/*
update a TCP client
*/
void AP_Networking::Port::tcp_client_loop(void)
{
AP::network().startup_wait();
close_on_recv_error = true;
bool active = false;
while (true) {
if (!active) {
hal.scheduler->delay_microseconds(100);
}
if (sock == nullptr) {
sock = new SocketAPM(false);
if (sock == nullptr) {
continue;
}
sock->set_blocking(true);
connected = false;
}
if (!connected) {
const char *dest = ip.get_str();
connected = sock->connect(dest, port.get());
if (connected) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "TCP[%u]: connected to %s:%u", unsigned(state.idx), dest, unsigned(port.get()));
sock->set_blocking(false);
} else {
delete sock;
sock = nullptr;
// don't try and connect too fast
hal.scheduler->delay(100);
}
}
if (sock != nullptr && connected) {
active = send_receive();
}
}
}
/*
run one send/receive loop
*/
bool AP_Networking::Port::send_receive(void)
{
bool active = false;
WITH_SEMAPHORE(sem);
// handle incoming packets
const auto space = readbuffer->space();
if (space > 0) {
const uint32_t n = MIN(300U, space);
uint8_t buf[n];
const auto ret = sock->recv(buf, n, 0);
if (close_on_recv_error && ret == 0) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "TCP[%u]: closed connection", unsigned(state.idx));
delete sock;
sock = nullptr;
return false;
}
if (ret > 0) {
readbuffer->write(buf, ret);
active = true;
have_received = true;
}
}
if (connected) {
// handle outgoing packets
uint32_t available = writebuffer->available();
available = MIN(300U, available);
#if HAL_GCS_ENABLED
if (packetise) {
available = mavlink_packetise(*writebuffer, available);
}
#endif
if (available > 0) {
uint8_t buf[available];
auto n = writebuffer->peekbytes(buf, available);
if (n > 0) {
const auto ret = sock->send(buf, n);
if (ret > 0) {
writebuffer->advance(ret);
active = true;
}
}
}
} else {
if (type == NetworkPortType::UDP_SERVER && have_received) {
// connect the socket to the last receive address if we have one
char buf[16];
uint16_t last_port;
const char *last_addr = sock->last_recv_address(buf, sizeof(buf), last_port);
if (last_addr != nullptr && port != 0) {
connected = sock->connect(last_addr, last_port);
}
}
}
return active;
}
/*
available space in outgoing buffer
*/
uint32_t AP_Networking::Port::txspace(void)
{
WITH_SEMAPHORE(sem);
return writebuffer->space();
}
void AP_Networking::Port::_begin(uint32_t b, uint16_t rxS, uint16_t txS)
{
rxS = MAX(rxS, AP_NETWORKING_PORT_MIN_RXSIZE);
txS = MAX(txS, AP_NETWORKING_PORT_MIN_TXSIZE);
init_buffers(rxS, txS);
}
size_t AP_Networking::Port::_write(const uint8_t *buffer, size_t size)
{
WITH_SEMAPHORE(sem);
return writebuffer->write(buffer, size);
}
ssize_t AP_Networking::Port::_read(uint8_t *buffer, uint16_t count)
{
WITH_SEMAPHORE(sem);
return readbuffer->read(buffer, count);
}
uint32_t AP_Networking::Port::_available()
{
WITH_SEMAPHORE(sem);
return readbuffer->available();
}
bool AP_Networking::Port::_discard_input()
{
WITH_SEMAPHORE(sem);
readbuffer->clear();
return true;
}
/*
initialise read/write buffers
*/
bool AP_Networking::Port::init_buffers(const uint32_t size_rx, const uint32_t size_tx)
{
if (size_tx == last_size_tx &&
size_rx == last_size_rx) {
return true;
}
WITH_SEMAPHORE(sem);
if (readbuffer == nullptr) {
readbuffer = new ByteBuffer(size_rx);
} else {
readbuffer->set_size_best(size_rx);
}
if (writebuffer == nullptr) {
writebuffer = new ByteBuffer(size_tx);
} else {
writebuffer->set_size_best(size_tx);
}
last_size_rx = size_rx;
last_size_tx = size_tx;
return readbuffer != nullptr && writebuffer != nullptr;
}
/*
return flow control state
*/
enum AP_HAL::UARTDriver::flow_control AP_Networking::Port::get_flow_control(void)
{
const NetworkPortType ptype = (NetworkPortType)type;
switch (ptype) {
case NetworkPortType::TCP_CLIENT:
case NetworkPortType::TCP_SERVER:
return AP_HAL::UARTDriver::FLOW_CONTROL_ENABLE;
case NetworkPortType::UDP_CLIENT:
case NetworkPortType::UDP_SERVER:
case NetworkPortType::NONE:
break;
}
return AP_HAL::UARTDriver::FLOW_CONTROL_DISABLE;
}
#endif // AP_NETWORKING_ENABLED