Ardupilot2/ArduCopter/GCS_Mavlink.pde
2014-03-19 12:14:20 +09:00

1501 lines
44 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
// default sensors are present and healthy: gyro, accelerometer, barometer, rate_control, attitude_stabilization, yaw_position, altitude control, x/y position control, motor_control
#define MAVLINK_SENSOR_PRESENT_DEFAULT (MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL | MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE | MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL | MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION | MAV_SYS_STATUS_SENSOR_YAW_POSITION | MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL | MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL | MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS)
// forward declarations to make compiler happy
static bool do_guided(const AP_Mission::Mission_Command& cmd);
// use this to prevent recursion during sensor init
static bool in_mavlink_delay;
// true when we have received at least 1 MAVLink packet
static bool mavlink_active;
// true if we are out of time in our event timeslice
static bool gcs_out_of_time;
// check if a message will fit in the payload space available
#define CHECK_PAYLOAD_SIZE(id) if (payload_space < MAVLINK_MSG_ID_ ## id ## _LEN) return false
// prototype this for use inside the GCS class
static void gcs_send_text_fmt(const prog_char_t *fmt, ...);
static void gcs_send_heartbeat(void)
{
gcs_send_message(MSG_HEARTBEAT);
}
static void gcs_send_deferred(void)
{
gcs_send_message(MSG_RETRY_DEFERRED);
}
/*
* !!NOTE!!
*
* the use of NOINLINE separate functions for each message type avoids
* a compiler bug in gcc that would cause it to use far more stack
* space than is needed. Without the NOINLINE we use the sum of the
* stack needed for each message type. Please be careful to follow the
* pattern below when adding any new messages
*/
static NOINLINE void send_heartbeat(mavlink_channel_t chan)
{
uint8_t base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
uint8_t system_status = ap.land_complete ? MAV_STATE_STANDBY : MAV_STATE_ACTIVE;
uint32_t custom_mode = control_mode;
// set system as critical if any failsafe have triggered
if (failsafe.radio || failsafe.battery || failsafe.gps || failsafe.gcs) {
system_status = MAV_STATE_CRITICAL;
}
// work out the base_mode. This value is not very useful
// for APM, but we calculate it as best we can so a generic
// MAVLink enabled ground station can work out something about
// what the MAV is up to. The actual bit values are highly
// ambiguous for most of the APM flight modes. In practice, you
// only get useful information from the custom_mode, which maps to
// the APM flight mode and has a well defined meaning in the
// ArduPlane documentation
base_mode = MAV_MODE_FLAG_STABILIZE_ENABLED;
switch (control_mode) {
case AUTO:
case RTL:
case LOITER:
case GUIDED:
case CIRCLE:
base_mode |= MAV_MODE_FLAG_GUIDED_ENABLED;
// note that MAV_MODE_FLAG_AUTO_ENABLED does not match what
// APM does in any mode, as that is defined as "system finds its own goal
// positions", which APM does not currently do
break;
}
// all modes except INITIALISING have some form of manual
// override if stick mixing is enabled
base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
#if HIL_MODE != HIL_MODE_DISABLED
base_mode |= MAV_MODE_FLAG_HIL_ENABLED;
#endif
// we are armed if we are not initialising
if (motors.armed()) {
base_mode |= MAV_MODE_FLAG_SAFETY_ARMED;
}
// indicate we have set a custom mode
base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
mavlink_msg_heartbeat_send(
chan,
#if (FRAME_CONFIG == QUAD_FRAME)
MAV_TYPE_QUADROTOR,
#elif (FRAME_CONFIG == TRI_FRAME)
MAV_TYPE_TRICOPTER,
#elif (FRAME_CONFIG == HEXA_FRAME || FRAME_CONFIG == Y6_FRAME)
MAV_TYPE_HEXAROTOR,
#elif (FRAME_CONFIG == OCTA_FRAME || FRAME_CONFIG == OCTA_QUAD_FRAME)
MAV_TYPE_OCTOROTOR,
#elif (FRAME_CONFIG == HELI_FRAME)
MAV_TYPE_HELICOPTER,
#elif (FRAME_CONFIG == SINGLE_FRAME) //because mavlink did not define a singlecopter, we use a rocket
MAV_TYPE_ROCKET,
#elif (FRAME_CONFIG == COAX_FRAME) //because mavlink did not define a singlecopter, we use a rocket
MAV_TYPE_ROCKET,
#else
#error Unrecognised frame type
#endif
MAV_AUTOPILOT_ARDUPILOTMEGA,
base_mode,
custom_mode,
system_status);
}
static NOINLINE void send_attitude(mavlink_channel_t chan)
{
const Vector3f &gyro = ins.get_gyro();
mavlink_msg_attitude_send(
chan,
millis(),
ahrs.roll,
ahrs.pitch,
ahrs.yaw,
gyro.x,
gyro.y,
gyro.z);
}
#if AC_FENCE == ENABLED
static NOINLINE void send_limits_status(mavlink_channel_t chan)
{
fence_send_mavlink_status(chan);
}
#endif
static NOINLINE void send_extended_status1(mavlink_channel_t chan)
{
uint32_t control_sensors_present;
uint32_t control_sensors_enabled;
uint32_t control_sensors_health;
// default sensors present
control_sensors_present = MAVLINK_SENSOR_PRESENT_DEFAULT;
// first what sensors/controllers we have
if (g.compass_enabled) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_MAG; // compass present
}
if (g_gps != NULL && g_gps->status() > GPS::NO_GPS) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_GPS;
}
#if OPTFLOW == ENABLED
if (g.optflow_enabled) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW;
}
#endif
if (ap.rc_receiver_present) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_RC_RECEIVER;
}
// all present sensors enabled by default except altitude and position control which we will set individually
control_sensors_enabled = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL & ~MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL);
switch (control_mode) {
case ALT_HOLD:
case AUTO:
case GUIDED:
case LOITER:
case RTL:
case CIRCLE:
case LAND:
case OF_LOITER:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL;
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL;
break;
case SPORT:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL;
break;
}
// default to all healthy except compass, gps and receiver which we set individually
control_sensors_health = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_3D_MAG & ~MAV_SYS_STATUS_SENSOR_GPS & ~MAV_SYS_STATUS_SENSOR_RC_RECEIVER);
if (g.compass_enabled && compass.healthy() && ahrs.use_compass()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_3D_MAG;
}
if (g_gps != NULL && g_gps->status() > GPS::NO_GPS && (!gps_glitch.glitching()||ap.usb_connected)) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_GPS;
}
if (ap.rc_receiver_present && !failsafe.radio) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_RC_RECEIVER;
}
if (!ins.healthy()) {
control_sensors_health &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL);
}
int16_t battery_current = -1;
int8_t battery_remaining = -1;
if (battery.monitoring() == AP_BATT_MONITOR_VOLTAGE_AND_CURRENT) {
battery_remaining = battery.capacity_remaining_pct();
battery_current = battery.current_amps() * 100;
}
mavlink_msg_sys_status_send(
chan,
control_sensors_present,
control_sensors_enabled,
control_sensors_health,
(uint16_t)(scheduler.load_average(10000) * 1000),
battery.voltage() * 1000, // mV
battery_current, // in 10mA units
battery_remaining, // in %
0, // comm drops %,
0, // comm drops in pkts,
0, 0, 0, 0);
}
static void NOINLINE send_location(mavlink_channel_t chan)
{
uint32_t fix_time;
// if we have a GPS fix, take the time as the last fix time. That
// allows us to correctly calculate velocities and extrapolate
// positions.
// If we don't have a GPS fix then we are dead reckoning, and will
// use the current boot time as the fix time.
if (g_gps->status() >= GPS::GPS_OK_FIX_2D) {
fix_time = g_gps->last_fix_time;
} else {
fix_time = millis();
}
mavlink_msg_global_position_int_send(
chan,
fix_time,
current_loc.lat, // in 1E7 degrees
current_loc.lng, // in 1E7 degrees
g_gps->altitude_cm * 10, // millimeters above sea level
(current_loc.alt - home.alt) * 10, // millimeters above ground
g_gps->velocity_north() * 100, // X speed cm/s (+ve North)
g_gps->velocity_east() * 100, // Y speed cm/s (+ve East)
g_gps->velocity_down() * -100, // Z speed cm/s (+ve up)
ahrs.yaw_sensor); // compass heading in 1/100 degree
}
static void NOINLINE send_nav_controller_output(mavlink_channel_t chan)
{
Vector3f targets;
get_angle_targets_for_reporting(targets);
mavlink_msg_nav_controller_output_send(
chan,
targets.x / 1.0e2f,
targets.y / 1.0e2f,
targets.z / 1.0e2f,
wp_bearing / 1.0e2f,
wp_distance / 1.0e2f,
pos_control.get_alt_error() / 1.0e2f,
0,
0);
}
static void NOINLINE send_ahrs(mavlink_channel_t chan)
{
const Vector3f &omega_I = ahrs.get_gyro_drift();
mavlink_msg_ahrs_send(
chan,
omega_I.x,
omega_I.y,
omega_I.z,
1,
0,
ahrs.get_error_rp(),
ahrs.get_error_yaw());
}
// report simulator state
static void NOINLINE send_simstate(mavlink_channel_t chan)
{
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
sitl.simstate_send(chan);
#endif
}
static void NOINLINE send_hwstatus(mavlink_channel_t chan)
{
mavlink_msg_hwstatus_send(
chan,
hal.analogin->board_voltage()*1000,
hal.i2c->lockup_count());
}
static void NOINLINE send_gps_raw(mavlink_channel_t chan)
{
mavlink_msg_gps_raw_int_send(
chan,
g_gps->last_fix_time*(uint64_t)1000,
g_gps->status(),
g_gps->latitude, // in 1E7 degrees
g_gps->longitude, // in 1E7 degrees
g_gps->altitude_cm * 10, // in mm
g_gps->hdop,
65535,
g_gps->ground_speed_cm, // cm/s
g_gps->ground_course_cd, // 1/100 degrees,
g_gps->num_sats);
#if GPS2_ENABLE
if (g_gps2 != NULL && g_gps2->status() != GPS::NO_GPS) {
int16_t payload_space = comm_get_txspace(chan) - MAVLINK_NUM_NON_PAYLOAD_BYTES;
if (payload_space >= MAVLINK_MSG_ID_GPS2_RAW_LEN) {
mavlink_msg_gps2_raw_send(
chan,
g_gps2->last_fix_time*(uint64_t)1000,
g_gps2->status(),
g_gps2->latitude, // in 1E7 degrees
g_gps2->longitude, // in 1E7 degrees
g_gps2->altitude_cm * 10, // in mm
g_gps2->hdop,
65535,
g_gps2->ground_speed_cm, // cm/s
g_gps2->ground_course_cd, // 1/100 degrees,
g_gps2->num_sats,
0,
0);
}
}
#endif
}
static void NOINLINE send_system_time(mavlink_channel_t chan)
{
mavlink_msg_system_time_send(
chan,
g_gps->time_epoch_usec(),
hal.scheduler->millis());
}
#if HIL_MODE != HIL_MODE_DISABLED
static void NOINLINE send_servo_out(mavlink_channel_t chan)
{
// normalized values scaled to -10000 to 10000
// This is used for HIL. Do not change without discussing with HIL maintainers
#if FRAME_CONFIG == HELI_FRAME
mavlink_msg_rc_channels_scaled_send(
chan,
millis(),
0, // port 0
g.rc_1.servo_out,
g.rc_2.servo_out,
g.rc_3.radio_out,
g.rc_4.servo_out,
0,
0,
0,
0,
receiver_rssi);
#else
#if X_PLANE == ENABLED
/* update by JLN for X-Plane HIL */
if(motors.armed() && ap.auto_armed) {
mavlink_msg_rc_channels_scaled_send(
chan,
millis(),
0, // port 0
g.rc_1.servo_out,
g.rc_2.servo_out,
10000 * g.rc_3.norm_output(),
g.rc_4.servo_out,
10000 * g.rc_1.norm_output(),
10000 * g.rc_2.norm_output(),
10000 * g.rc_3.norm_output(),
10000 * g.rc_4.norm_output(),
receiver_rssi);
}else{
mavlink_msg_rc_channels_scaled_send(
chan,
millis(),
0, // port 0
0,
0,
-10000,
0,
10000 * g.rc_1.norm_output(),
10000 * g.rc_2.norm_output(),
10000 * g.rc_3.norm_output(),
10000 * g.rc_4.norm_output(),
receiver_rssi);
}
#else
mavlink_msg_rc_channels_scaled_send(
chan,
millis(),
0, // port 0
g.rc_1.servo_out,
g.rc_2.servo_out,
g.rc_3.radio_out,
g.rc_4.servo_out,
10000 * g.rc_1.norm_output(),
10000 * g.rc_2.norm_output(),
10000 * g.rc_3.norm_output(),
10000 * g.rc_4.norm_output(),
receiver_rssi);
#endif
#endif
}
#endif // HIL_MODE
static void NOINLINE send_radio_in(mavlink_channel_t chan)
{
mavlink_msg_rc_channels_raw_send(
chan,
millis(),
0, // port
g.rc_1.radio_in,
g.rc_2.radio_in,
g.rc_3.radio_in,
g.rc_4.radio_in,
g.rc_5.radio_in,
g.rc_6.radio_in,
g.rc_7.radio_in,
g.rc_8.radio_in,
receiver_rssi);
}
static void NOINLINE send_radio_out(mavlink_channel_t chan)
{
uint8_t i;
uint16_t rcout[8];
hal.rcout->read(rcout,8);
// clear out unreasonable values
for (i=0; i<8; i++) {
if (rcout[i] > 10000) {
rcout[i] = 0;
}
}
mavlink_msg_servo_output_raw_send(
chan,
micros(),
0, // port
rcout[0],
rcout[1],
rcout[2],
rcout[3],
rcout[4],
rcout[5],
rcout[6],
rcout[7]);
}
static void NOINLINE send_vfr_hud(mavlink_channel_t chan)
{
mavlink_msg_vfr_hud_send(
chan,
(float)g_gps->ground_speed_cm / 100.0f,
(float)g_gps->ground_speed_cm / 100.0f,
(ahrs.yaw_sensor / 100) % 360,
g.rc_3.servo_out/10,
current_loc.alt / 100.0f,
climb_rate / 100.0f);
}
static void NOINLINE send_raw_imu1(mavlink_channel_t chan)
{
const Vector3f &accel = ins.get_accel();
const Vector3f &gyro = ins.get_gyro();
const Vector3f &mag = compass.get_field();
mavlink_msg_raw_imu_send(
chan,
micros(),
accel.x * 1000.0f / GRAVITY_MSS,
accel.y * 1000.0f / GRAVITY_MSS,
accel.z * 1000.0f / GRAVITY_MSS,
gyro.x * 1000.0f,
gyro.y * 1000.0f,
gyro.z * 1000.0f,
mag.x,
mag.y,
mag.z);
if (ins.get_gyro_count() <= 1 &&
ins.get_accel_count() <= 1 &&
compass.get_count() <= 1) {
return;
}
const Vector3f &accel2 = ins.get_accel(1);
const Vector3f &gyro2 = ins.get_gyro(1);
const Vector3f &mag2 = compass.get_field(1);
mavlink_msg_scaled_imu2_send(
chan,
millis(),
accel2.x * 1000.0f / GRAVITY_MSS,
accel2.y * 1000.0f / GRAVITY_MSS,
accel2.z * 1000.0f / GRAVITY_MSS,
gyro2.x * 1000.0f,
gyro2.y * 1000.0f,
gyro2.z * 1000.0f,
mag2.x,
mag2.y,
mag2.z);
}
static void NOINLINE send_raw_imu2(mavlink_channel_t chan)
{
mavlink_msg_scaled_pressure_send(
chan,
millis(),
barometer.get_pressure()*0.01f, // hectopascal
(barometer.get_pressure() - barometer.get_ground_pressure())*0.01f, // hectopascal
(int16_t)(barometer.get_temperature()*100)); // 0.01 degrees C
}
static void NOINLINE send_raw_imu3(mavlink_channel_t chan)
{
const Vector3f &mag_offsets = compass.get_offsets();
const Vector3f &accel_offsets = ins.get_accel_offsets();
const Vector3f &gyro_offsets = ins.get_gyro_offsets();
mavlink_msg_sensor_offsets_send(chan,
mag_offsets.x,
mag_offsets.y,
mag_offsets.z,
compass.get_declination(),
barometer.get_pressure(),
barometer.get_temperature()*100,
gyro_offsets.x,
gyro_offsets.y,
gyro_offsets.z,
accel_offsets.x,
accel_offsets.y,
accel_offsets.z);
}
static void NOINLINE send_current_waypoint(mavlink_channel_t chan)
{
uint16_t current_cmd_index;
if (mission.state() == AP_Mission::MISSION_RUNNING) {
current_cmd_index = mission.get_current_nav_cmd().index;
}else{
current_cmd_index = AP_MISSION_CMD_INDEX_NONE;
}
mavlink_msg_mission_current_send(chan, current_cmd_index);
}
static void NOINLINE send_statustext(mavlink_channel_t chan)
{
mavlink_statustext_t *s = &gcs[chan-MAVLINK_COMM_0].pending_status;
mavlink_msg_statustext_send(
chan,
s->severity,
s->text);
}
// are we still delaying telemetry to try to avoid Xbee bricking?
static bool telemetry_delayed(mavlink_channel_t chan)
{
uint32_t tnow = millis() >> 10;
if (tnow > (uint32_t)g.telem_delay) {
return false;
}
if (chan == MAVLINK_COMM_0 && hal.gpio->usb_connected()) {
// this is USB telemetry, so won't be an Xbee
return false;
}
// we're either on the 2nd UART, or no USB cable is connected
// we need to delay telemetry by the TELEM_DELAY time
return true;
}
// try to send a message, return false if it won't fit in the serial tx buffer
bool GCS_MAVLINK::try_send_message(enum ap_message id)
{
int16_t payload_space = comm_get_txspace(chan) - MAVLINK_NUM_NON_PAYLOAD_BYTES;
if (telemetry_delayed(chan)) {
return false;
}
#if HIL_MODE != HIL_MODE_SENSORS
// if we don't have at least 250 micros remaining before the main loop
// wants to fire then don't send a mavlink message. We want to
// prioritise the main flight control loop over communications
if (scheduler.time_available_usec() < 250 && motors.armed()) {
gcs_out_of_time = true;
return false;
}
#endif
switch(id) {
case MSG_HEARTBEAT:
CHECK_PAYLOAD_SIZE(HEARTBEAT);
gcs[chan-MAVLINK_COMM_0].last_heartbeat_time = hal.scheduler->millis();
send_heartbeat(chan);
break;
case MSG_EXTENDED_STATUS1:
CHECK_PAYLOAD_SIZE(SYS_STATUS);
send_extended_status1(chan);
CHECK_PAYLOAD_SIZE(POWER_STATUS);
gcs[chan-MAVLINK_COMM_0].send_power_status();
break;
case MSG_EXTENDED_STATUS2:
CHECK_PAYLOAD_SIZE(MEMINFO);
gcs[chan-MAVLINK_COMM_0].send_meminfo();
break;
case MSG_ATTITUDE:
CHECK_PAYLOAD_SIZE(ATTITUDE);
send_attitude(chan);
break;
case MSG_LOCATION:
CHECK_PAYLOAD_SIZE(GLOBAL_POSITION_INT);
send_location(chan);
break;
case MSG_NAV_CONTROLLER_OUTPUT:
CHECK_PAYLOAD_SIZE(NAV_CONTROLLER_OUTPUT);
send_nav_controller_output(chan);
break;
case MSG_GPS_RAW:
CHECK_PAYLOAD_SIZE(GPS_RAW_INT);
send_gps_raw(chan);
break;
case MSG_SYSTEM_TIME:
CHECK_PAYLOAD_SIZE(SYSTEM_TIME);
send_system_time(chan);
break;
case MSG_SERVO_OUT:
#if HIL_MODE != HIL_MODE_DISABLED
CHECK_PAYLOAD_SIZE(RC_CHANNELS_SCALED);
send_servo_out(chan);
#endif
break;
case MSG_RADIO_IN:
CHECK_PAYLOAD_SIZE(RC_CHANNELS_RAW);
send_radio_in(chan);
break;
case MSG_RADIO_OUT:
CHECK_PAYLOAD_SIZE(SERVO_OUTPUT_RAW);
send_radio_out(chan);
break;
case MSG_VFR_HUD:
CHECK_PAYLOAD_SIZE(VFR_HUD);
send_vfr_hud(chan);
break;
case MSG_RAW_IMU1:
CHECK_PAYLOAD_SIZE(RAW_IMU);
send_raw_imu1(chan);
break;
case MSG_RAW_IMU2:
CHECK_PAYLOAD_SIZE(SCALED_PRESSURE);
send_raw_imu2(chan);
break;
case MSG_RAW_IMU3:
CHECK_PAYLOAD_SIZE(SENSOR_OFFSETS);
send_raw_imu3(chan);
break;
case MSG_CURRENT_WAYPOINT:
CHECK_PAYLOAD_SIZE(MISSION_CURRENT);
send_current_waypoint(chan);
break;
case MSG_NEXT_PARAM:
CHECK_PAYLOAD_SIZE(PARAM_VALUE);
gcs[chan-MAVLINK_COMM_0].queued_param_send();
break;
case MSG_NEXT_WAYPOINT:
CHECK_PAYLOAD_SIZE(MISSION_REQUEST);
gcs[chan-MAVLINK_COMM_0].queued_waypoint_send();
break;
case MSG_STATUSTEXT:
CHECK_PAYLOAD_SIZE(STATUSTEXT);
send_statustext(chan);
break;
#if AC_FENCE == ENABLED
case MSG_LIMITS_STATUS:
CHECK_PAYLOAD_SIZE(LIMITS_STATUS);
send_limits_status(chan);
break;
#endif
case MSG_AHRS:
CHECK_PAYLOAD_SIZE(AHRS);
send_ahrs(chan);
break;
case MSG_SIMSTATE:
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
CHECK_PAYLOAD_SIZE(SIMSTATE);
send_simstate(chan);
#endif
#if AP_AHRS_NAVEKF_AVAILABLE
CHECK_PAYLOAD_SIZE(AHRS2);
gcs[chan-MAVLINK_COMM_0].send_ahrs2(ahrs);
#endif
break;
case MSG_HWSTATUS:
CHECK_PAYLOAD_SIZE(HWSTATUS);
send_hwstatus(chan);
break;
case MSG_FENCE_STATUS:
case MSG_WIND:
case MSG_RANGEFINDER:
// unused
break;
case MSG_RETRY_DEFERRED:
break; // just here to prevent a warning
}
return true;
}
const AP_Param::GroupInfo GCS_MAVLINK::var_info[] PROGMEM = {
// @Param: RAW_SENS
// @DisplayName: Raw sensor stream rate
// @Description: Raw sensor stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK, streamRates[0], 0),
// @Param: EXT_STAT
// @DisplayName: Extended status stream rate to ground station
// @Description: Extended status stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK, streamRates[1], 0),
// @Param: RC_CHAN
// @DisplayName: RC Channel stream rate to ground station
// @Description: RC Channel stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK, streamRates[2], 0),
// @Param: RAW_CTRL
// @DisplayName: Raw Control stream rate to ground station
// @Description: Raw Control stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK, streamRates[3], 0),
// @Param: POSITION
// @DisplayName: Position stream rate to ground station
// @Description: Position stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("POSITION", 4, GCS_MAVLINK, streamRates[4], 0),
// @Param: EXTRA1
// @DisplayName: Extra data type 1 stream rate to ground station
// @Description: Extra data type 1 stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK, streamRates[5], 0),
// @Param: EXTRA2
// @DisplayName: Extra data type 2 stream rate to ground station
// @Description: Extra data type 2 stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK, streamRates[6], 0),
// @Param: EXTRA3
// @DisplayName: Extra data type 3 stream rate to ground station
// @Description: Extra data type 3 stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK, streamRates[7], 0),
// @Param: PARAMS
// @DisplayName: Parameter stream rate to ground station
// @Description: Parameter stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK, streamRates[8], 0),
AP_GROUPEND
};
void
GCS_MAVLINK::update(void)
{
// receive new packets
mavlink_message_t msg;
mavlink_status_t status;
status.packet_rx_drop_count = 0;
// process received bytes
uint16_t nbytes = comm_get_available(chan);
for (uint16_t i=0; i<nbytes; i++)
{
uint8_t c = comm_receive_ch(chan);
#if CLI_ENABLED == ENABLED
/* allow CLI to be started by hitting enter 3 times, if no
* heartbeat packets have been received */
if (mavlink_active == 0 && (millis() - _cli_timeout) < 20000 &&
!motors.armed() && comm_is_idle(chan)) {
if (c == '\n' || c == '\r') {
crlf_count++;
} else {
crlf_count = 0;
}
if (crlf_count == 3) {
run_cli(_port);
}
}
#endif
// Try to get a new message
if (mavlink_parse_char(chan, c, &msg, &status)) {
// we exclude radio packets to make it possible to use the
// CLI over the radio
if (msg.msgid != MAVLINK_MSG_ID_RADIO && msg.msgid != MAVLINK_MSG_ID_RADIO_STATUS) {
mavlink_active = true;
}
handleMessage(&msg);
}
}
// handle receiving commands from GCS
if (waypoint_receiving) {
uint32_t tnow = millis();
// request another command from the GCS if at least 500ms has passed
if (waypoint_request_i <= waypoint_request_last &&
tnow > waypoint_timelast_request + 500 + (stream_slowdown*20)) {
waypoint_timelast_request = tnow;
send_message(MSG_NEXT_WAYPOINT);
}
// stop waypoint receiving if timeout
if ((tnow - waypoint_timelast_receive) > waypoint_receive_timeout) {
waypoint_receiving = false;
}
}
}
// see if we should send a stream now. Called at 50Hz
bool GCS_MAVLINK::stream_trigger(enum streams stream_num)
{
if (stream_num >= NUM_STREAMS) {
return false;
}
float rate = (uint8_t)streamRates[stream_num].get();
// send at a much lower rate while handling waypoints and
// parameter sends
if ((stream_num != STREAM_PARAMS) &&
(waypoint_receiving || _queued_parameter != NULL)) {
rate *= 0.25;
}
if (rate <= 0) {
return false;
}
if (stream_ticks[stream_num] == 0) {
// we're triggering now, setup the next trigger point
if (rate > 50) {
rate = 50;
}
stream_ticks[stream_num] = (50 / rate) + stream_slowdown;
return true;
}
// count down at 50Hz
stream_ticks[stream_num]--;
return false;
}
void
GCS_MAVLINK::data_stream_send(void)
{
if (waypoint_receiving) {
// don't interfere with mission transfer
return;
}
if (!in_mavlink_delay && !motors.armed()) {
handle_log_send(DataFlash);
}
gcs_out_of_time = false;
if (_queued_parameter != NULL) {
if (streamRates[STREAM_PARAMS].get() <= 0) {
streamRates[STREAM_PARAMS].set(10);
}
if (stream_trigger(STREAM_PARAMS)) {
send_message(MSG_NEXT_PARAM);
}
// don't send anything else at the same time as parameters
return;
}
if (gcs_out_of_time) return;
if (in_mavlink_delay) {
// don't send any other stream types while in the delay callback
return;
}
if (stream_trigger(STREAM_RAW_SENSORS)) {
send_message(MSG_RAW_IMU1);
send_message(MSG_RAW_IMU2);
send_message(MSG_RAW_IMU3);
}
if (gcs_out_of_time) return;
if (stream_trigger(STREAM_EXTENDED_STATUS)) {
send_message(MSG_EXTENDED_STATUS1);
send_message(MSG_EXTENDED_STATUS2);
send_message(MSG_CURRENT_WAYPOINT);
send_message(MSG_GPS_RAW);
send_message(MSG_NAV_CONTROLLER_OUTPUT);
send_message(MSG_LIMITS_STATUS);
}
if (gcs_out_of_time) return;
if (stream_trigger(STREAM_POSITION)) {
send_message(MSG_LOCATION);
}
if (gcs_out_of_time) return;
if (stream_trigger(STREAM_RAW_CONTROLLER)) {
send_message(MSG_SERVO_OUT);
}
if (gcs_out_of_time) return;
if (stream_trigger(STREAM_RC_CHANNELS)) {
send_message(MSG_RADIO_OUT);
send_message(MSG_RADIO_IN);
}
if (gcs_out_of_time) return;
if (stream_trigger(STREAM_EXTRA1)) {
send_message(MSG_ATTITUDE);
send_message(MSG_SIMSTATE);
}
if (gcs_out_of_time) return;
if (stream_trigger(STREAM_EXTRA2)) {
send_message(MSG_VFR_HUD);
}
if (gcs_out_of_time) return;
if (stream_trigger(STREAM_EXTRA3)) {
send_message(MSG_AHRS);
send_message(MSG_HWSTATUS);
send_message(MSG_SYSTEM_TIME);
}
}
void GCS_MAVLINK::handle_guided_request(AP_Mission::Mission_Command &cmd)
{
do_guided(cmd);
}
void GCS_MAVLINK::handle_change_alt_request(AP_Mission::Mission_Command &cmd)
{
// add home alt if needed
if (cmd.content.location.options & LOCATION_MASK_OPTIONS_RELATIVE_ALT) {
cmd.content.location.alt += home.alt;
}
// To-Do: update target altitude for loiter or waypoint controller depending upon nav mode
// similar to how do_change_alt works
wp_nav.set_desired_alt(cmd.content.location.alt);
}
void GCS_MAVLINK::handleMessage(mavlink_message_t* msg)
{
uint8_t result = MAV_RESULT_FAILED; // assume failure. Each messages id is responsible for return ACK or NAK if required
switch (msg->msgid) {
case MAVLINK_MSG_ID_HEARTBEAT: // MAV ID: 0
{
// We keep track of the last time we received a heartbeat from our GCS for failsafe purposes
if(msg->sysid != g.sysid_my_gcs) break;
failsafe.last_heartbeat_ms = millis();
pmTest1++;
break;
}
case MAVLINK_MSG_ID_SET_MODE: // MAV ID: 11
{
// decode
mavlink_set_mode_t packet;
mavlink_msg_set_mode_decode(msg, &packet);
// only accept custom modes because there is no easy mapping from Mavlink flight modes to AC flight modes
if (packet.base_mode & MAV_MODE_FLAG_CUSTOM_MODE_ENABLED) {
if (set_mode(packet.custom_mode)) {
result = MAV_RESULT_ACCEPTED;
}
}
// send ACK or NAK
mavlink_msg_command_ack_send_buf(msg, chan, MAVLINK_MSG_ID_SET_MODE, result);
break;
}
case MAVLINK_MSG_ID_PARAM_REQUEST_READ: // MAV ID: 20
{
handle_param_request_read(msg);
break;
}
case MAVLINK_MSG_ID_PARAM_REQUEST_LIST: // MAV ID: 21
{
handle_param_request_list(msg);
break;
}
case MAVLINK_MSG_ID_PARAM_SET: // 23
{
handle_param_set(msg, &DataFlash);
break;
}
case MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST: // MAV ID: 38
{
handle_mission_write_partial_list(mission, msg);
break;
}
#ifdef MAVLINK_MSG_ID_SET_MAG_OFFSETS
case MAVLINK_MSG_ID_SET_MAG_OFFSETS:
{
mavlink_set_mag_offsets_t packet;
mavlink_msg_set_mag_offsets_decode(msg, &packet);
// exit immediately if this command is not meant for this vehicle
if (mavlink_check_target(packet.target_system,packet.target_component)) {
break;
}
compass.set_offsets(Vector3f(packet.mag_ofs_x, packet.mag_ofs_y, packet.mag_ofs_z));
break;
}
#endif
// GCS has sent us a command from GCS, store to EEPROM
case MAVLINK_MSG_ID_MISSION_ITEM: // MAV ID: 39
{
handle_mission_item(msg, mission);
break;
}
// read an individual command from EEPROM and send it to the GCS
case MAVLINK_MSG_ID_MISSION_REQUEST: // MAV ID: 40
{
handle_mission_request(mission, msg);
break;
}
case MAVLINK_MSG_ID_MISSION_SET_CURRENT: // MAV ID: 41
{
handle_mission_set_current(mission, msg);
break;
}
// GCS request the full list of commands, we return just the number and leave the GCS to then request each command individually
case MAVLINK_MSG_ID_MISSION_REQUEST_LIST: // MAV ID: 43
{
handle_mission_request_list(mission, msg);
break;
}
// GCS provides the full number of commands it wishes to upload
// individual commands will then be sent from the GCS using the MAVLINK_MSG_ID_MISSION_ITEM message
case MAVLINK_MSG_ID_MISSION_COUNT: // MAV ID: 44
{
handle_mission_count(mission, msg);
break;
}
case MAVLINK_MSG_ID_MISSION_CLEAR_ALL: // MAV ID: 45
{
handle_mission_clear_all(mission, msg);
break;
}
case MAVLINK_MSG_ID_REQUEST_DATA_STREAM: // MAV ID: 66
{
handle_request_data_stream(msg, false);
break;
}
case MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE: // MAV ID: 70
{
// allow override of RC channel values for HIL
// or for complete GCS control of switch position
// and RC PWM values.
if(msg->sysid != g.sysid_my_gcs) break; // Only accept control from our gcs
mavlink_rc_channels_override_t packet;
int16_t v[8];
mavlink_msg_rc_channels_override_decode(msg, &packet);
// exit immediately if this command is not meant for this vehicle
if (mavlink_check_target(packet.target_system,packet.target_component)) {
break;
}
v[0] = packet.chan1_raw;
v[1] = packet.chan2_raw;
v[2] = packet.chan3_raw;
v[3] = packet.chan4_raw;
v[4] = packet.chan5_raw;
v[5] = packet.chan6_raw;
v[6] = packet.chan7_raw;
v[7] = packet.chan8_raw;
hal.rcin->set_overrides(v, 8);
// record that rc are overwritten so we can trigger a failsafe if we lose contact with groundstation
failsafe.rc_override_active = true;
// a RC override message is consiered to be a 'heartbeat' from the ground station for failsafe purposes
failsafe.last_heartbeat_ms = millis();
break;
}
// Pre-Flight calibration requests
case MAVLINK_MSG_ID_COMMAND_LONG: // MAV ID: 76
{
// decode packet
mavlink_command_long_t packet;
mavlink_msg_command_long_decode(msg, &packet);
// exit immediately if this command is not meant for this vehicle
if (mavlink_check_target(packet.target_system, packet.target_component)) {
break;
}
switch(packet.command) {
case MAV_CMD_NAV_LOITER_UNLIM:
if (set_mode(LOITER)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
if (set_mode(RTL)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_NAV_LAND:
if (set_mode(LAND)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_MISSION_START:
if (set_mode(AUTO)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_PREFLIGHT_CALIBRATION:
if (packet.param1 == 1 ||
packet.param2 == 1) {
ins.init_accel();
ahrs.set_trim(Vector3f(0,0,0)); // clear out saved trim
result = MAV_RESULT_ACCEPTED;
}
if (packet.param3 == 1) {
init_barometer(false); // fast barometer calibration
result = MAV_RESULT_ACCEPTED;
}
if (packet.param4 == 1) {
trim_radio();
result = MAV_RESULT_ACCEPTED;
}
if (packet.param5 == 1) {
float trim_roll, trim_pitch;
// this blocks
AP_InertialSensor_UserInteract_MAVLink interact(chan);
if(ins.calibrate_accel(&interact, trim_roll, trim_pitch)) {
// reset ahrs's trim to suggested values from calibration routine
ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0));
}
result = MAV_RESULT_ACCEPTED;
}
if (packet.param6 == 1) {
// compassmot calibration
result = mavlink_compassmot(chan);
}
break;
case MAV_CMD_COMPONENT_ARM_DISARM:
if (packet.target_component == MAV_COMP_ID_SYSTEM_CONTROL) {
if (packet.param1 == 1.0f) {
// run pre_arm_checks and arm_checks and display failures
pre_arm_checks(true);
if(ap.pre_arm_check && arm_checks(true)) {
init_arm_motors();
result = MAV_RESULT_ACCEPTED;
}else{
result = MAV_RESULT_UNSUPPORTED;
}
} else if (packet.param1 == 0.0f) {
init_disarm_motors();
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_UNSUPPORTED;
}
} else {
result = MAV_RESULT_UNSUPPORTED;
}
break;
case MAV_CMD_DO_SET_SERVO:
if (ServoRelayEvents.do_set_servo(packet.param1, packet.param2)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_REPEAT_SERVO:
if (ServoRelayEvents.do_repeat_servo(packet.param1, packet.param2, packet.param3, packet.param4*1000)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_SET_RELAY:
if (ServoRelayEvents.do_set_relay(packet.param1, packet.param2)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_REPEAT_RELAY:
if (ServoRelayEvents.do_repeat_relay(packet.param1, packet.param2, packet.param3*1000)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN:
if (packet.param1 == 1 || packet.param1 == 3) {
// when packet.param1 == 3 we reboot to hold in bootloader
hal.scheduler->reboot(packet.param1 == 3);
result = MAV_RESULT_ACCEPTED;
}
break;
default:
result = MAV_RESULT_UNSUPPORTED;
break;
}
// send ACK or NAK
mavlink_msg_command_ack_send_buf(msg, chan, packet.command, result);
break;
}
case MAVLINK_MSG_ID_COMMAND_ACK: // MAV ID: 77
{
command_ack_counter++;
break;
}
#if HIL_MODE != HIL_MODE_DISABLED
case MAVLINK_MSG_ID_HIL_STATE: // MAV ID: 90
{
mavlink_hil_state_t packet;
mavlink_msg_hil_state_decode(msg, &packet);
float vel = pythagorous2(packet.vx, packet.vy);
float cog = wrap_360_cd(ToDeg(atan2f(packet.vx, packet.vy)) * 100);
// if we are erasing the dataflash this object doesnt exist yet. as its called from delay_cb
if (g_gps == NULL)
break;
// set gps hil sensor
g_gps->setHIL(GPS::FIX_3D,
packet.time_usec/1000,
packet.lat*1.0e-7, packet.lon*1.0e-7, packet.alt*1.0e-3,
vel*1.0e-2, cog*1.0e-2, 0, 10);
if (!ap.home_is_set) {
init_home();
}
// rad/sec
Vector3f gyros;
gyros.x = packet.rollspeed;
gyros.y = packet.pitchspeed;
gyros.z = packet.yawspeed;
// m/s/s
Vector3f accels;
accels.x = packet.xacc * (GRAVITY_MSS/1000.0);
accels.y = packet.yacc * (GRAVITY_MSS/1000.0);
accels.z = packet.zacc * (GRAVITY_MSS/1000.0);
ins.set_gyro(0, gyros);
ins.set_accel(0, accels);
barometer.setHIL(packet.alt*0.001f);
compass.setHIL(packet.roll, packet.pitch, packet.yaw);
break;
}
#endif // HIL_MODE != HIL_MODE_DISABLED
case MAVLINK_MSG_ID_RADIO:
case MAVLINK_MSG_ID_RADIO_STATUS: // MAV ID: 109
{
handle_radio_status(msg);
break;
}
case MAVLINK_MSG_ID_LOG_REQUEST_LIST ... MAVLINK_MSG_ID_LOG_REQUEST_END: // MAV ID: 117 ... 122
if (!in_mavlink_delay && !motors.armed()) {
handle_log_message(msg, DataFlash);
}
break;
#if CAMERA == ENABLED
case MAVLINK_MSG_ID_DIGICAM_CONFIGURE: // MAV ID: 202
camera.configure_msg(msg);
break;
case MAVLINK_MSG_ID_DIGICAM_CONTROL:
camera.control_msg(msg);
break;
#endif // CAMERA == ENABLED
#if MOUNT == ENABLED
case MAVLINK_MSG_ID_MOUNT_CONFIGURE: // MAV ID: 204
camera_mount.configure_msg(msg);
break;
case MAVLINK_MSG_ID_MOUNT_CONTROL:
camera_mount.control_msg(msg);
break;
case MAVLINK_MSG_ID_MOUNT_STATUS:
camera_mount.status_msg(msg);
break;
#endif // MOUNT == ENABLED
} // end switch
} // end handle mavlink
/*
* a delay() callback that processes MAVLink packets. We set this as the
* callback in long running library initialisation routines to allow
* MAVLink to process packets while waiting for the initialisation to
* complete
*/
static void mavlink_delay_cb()
{
static uint32_t last_1hz, last_50hz, last_5s;
if (!gcs[0].initialised || in_mavlink_delay) return;
in_mavlink_delay = true;
uint32_t tnow = millis();
if (tnow - last_1hz > 1000) {
last_1hz = tnow;
gcs_send_heartbeat();
gcs_send_message(MSG_EXTENDED_STATUS1);
}
if (tnow - last_50hz > 20) {
last_50hz = tnow;
gcs_check_input();
gcs_data_stream_send();
gcs_send_deferred();
notify.update();
}
if (tnow - last_5s > 5000) {
last_5s = tnow;
gcs_send_text_P(SEVERITY_LOW, PSTR("Initialising APM..."));
}
check_usb_mux();
in_mavlink_delay = false;
}
/*
* send a message on both GCS links
*/
static void gcs_send_message(enum ap_message id)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].send_message(id);
}
}
}
/*
* send data streams in the given rate range on both links
*/
static void gcs_data_stream_send(void)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].data_stream_send();
}
}
}
/*
* look for incoming commands on the GCS links
*/
static void gcs_check_input(void)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].update();
}
}
}
static void gcs_send_text_P(gcs_severity severity, const prog_char_t *str)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].send_text_P(severity, str);
}
}
}
/*
* send a low priority formatted message to the GCS
* only one fits in the queue, so if you send more than one before the
* last one gets into the serial buffer then the old one will be lost
*/
void gcs_send_text_fmt(const prog_char_t *fmt, ...)
{
va_list arg_list;
gcs[0].pending_status.severity = (uint8_t)SEVERITY_LOW;
va_start(arg_list, fmt);
hal.util->vsnprintf_P((char *)gcs[0].pending_status.text,
sizeof(gcs[0].pending_status.text), fmt, arg_list);
va_end(arg_list);
gcs[0].send_message(MSG_STATUSTEXT);
for (uint8_t i=1; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].pending_status = gcs[0].pending_status;
gcs[i].send_message(MSG_STATUSTEXT);
}
}
}