Ardupilot2/libraries/AP_BattMonitor/AP_BattMonitor_Backend.cpp

94 lines
3.9 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <AP_Common/AP_Common.h>
#include <AP_HAL/AP_HAL.h>
#include "AP_BattMonitor.h"
#include "AP_BattMonitor_Backend.h"
/*
base class constructor.
This incorporates initialisation as well.
*/
AP_BattMonitor_Backend::AP_BattMonitor_Backend(AP_BattMonitor &mon, AP_BattMonitor::BattMonitor_State &mon_state,
AP_BattMonitor_Params &params) :
_mon(mon),
_state(mon_state),
_params(params)
{
}
/// capacity_remaining_pct - returns the % battery capacity remaining (0 ~ 100)
uint8_t AP_BattMonitor_Backend::capacity_remaining_pct() const
{
float mah_remaining = _params._pack_capacity - _state.current_total_mah;
if ( _params._pack_capacity > 10 ) { // a very very small battery
return (100 * (mah_remaining) / _params._pack_capacity);
} else {
return 0;
}
}
// update battery resistance estimate
// faster rates of change of the current and voltage readings cause faster updates to the resistance estimate
// the battery resistance is calculated by comparing the latest current and voltage readings to a low-pass filtered current and voltage
// high current steps are integrated into the resistance estimate by varying the time constant of the resistance filter
void AP_BattMonitor_Backend::update_resistance_estimate()
{
// return immediately if no current
if (!has_current() || !is_positive(_state.current_amps)) {
return;
}
// update maximum current seen since startup and protect against divide by zero
_current_max_amps = MAX(_current_max_amps, _state.current_amps);
float current_delta = _state.current_amps - _current_filt_amps;
if (is_zero(current_delta)) {
return;
}
// update reference voltage and current
if (_state.voltage > _resistance_voltage_ref) {
_resistance_voltage_ref = _state.voltage;
_resistance_current_ref = _state.current_amps;
}
// calculate time since last update
uint32_t now = AP_HAL::millis();
float loop_interval = (now - _resistance_timer_ms) / 1000.0f;
_resistance_timer_ms = now;
// estimate short-term resistance
float filt_alpha = constrain_float(loop_interval/(loop_interval + AP_BATT_MONITOR_RES_EST_TC_1), 0.0f, 0.5f);
float resistance_alpha = MIN(1, AP_BATT_MONITOR_RES_EST_TC_2*fabsf((_state.current_amps-_current_filt_amps)/_current_max_amps));
float resistance_estimate = -(_state.voltage-_voltage_filt)/current_delta;
if (is_positive(resistance_estimate)) {
_state.resistance = _state.resistance*(1-resistance_alpha) + resistance_estimate*resistance_alpha;
}
// calculate maximum resistance
if ((_resistance_voltage_ref > _state.voltage) && (_state.current_amps > _resistance_current_ref)) {
float resistance_max = (_resistance_voltage_ref - _state.voltage) / (_state.current_amps - _resistance_current_ref);
_state.resistance = MIN(_state.resistance, resistance_max);
}
// update the filtered voltage and currents
_voltage_filt = _voltage_filt*(1-filt_alpha) + _state.voltage*filt_alpha;
_current_filt_amps = _current_filt_amps*(1-filt_alpha) + _state.current_amps*filt_alpha;
// update estimated voltage without sag
_state.voltage_resting_estimate = _state.voltage + _state.current_amps * _state.resistance;
}