Ardupilot2/libraries/AP_Compass/Compass.cpp
2013-03-03 23:02:12 +09:00

349 lines
10 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_Progmem.h>
#include "Compass.h"
const AP_Param::GroupInfo Compass::var_info[] PROGMEM = {
// index 0 was used for the old orientation matrix
// @Param: OFS_X
// @DisplayName: Compass offsets on the X axis
// @Description: Offset to be added to the compass x-axis values to compensate for metal in the frame
// @Range: -400 400
// @Increment: 1
// @Param: OFS_Y
// @DisplayName: Compass offsets on the Y axis
// @Description: Offset to be added to the compass y-axis values to compensate for metal in the frame
// @Range: -400 400
// @Increment: 1
// @Param: OFS_Z
// @DisplayName: Compass offsets on the Z axis
// @Description: Offset to be added to the compass z-axis values to compensate for metal in the frame
// @Range: -400 400
// @Increment: 1
AP_GROUPINFO("OFS", 1, Compass, _offset, 0),
// @Param: DEC
// @DisplayName: Compass declination
// @Description: An angle to compensate between the true north and magnetic north
// @Range: -3.142 3.142
// @Units: Radians
// @Increment: 0.01
// @User: Standard
AP_GROUPINFO("DEC", 2, Compass, _declination, 0),
// @Param: LEARN
// @DisplayName: Learn compass offsets automatically
// @Description: Enable or disable the automatic learning of compass offsets
// @Values: 0:Disabled,1:Enabled
// @User: Advanced
AP_GROUPINFO("LEARN", 3, Compass, _learn, 1), // true if learning calibration
// @Param: USE
// @DisplayName: Use compass for yaw
// @Description: Enable or disable the use of the compass (instead of the GPS) for determining heading
// @Values: 0:Disabled,1:Enabled
// @User: Advanced
AP_GROUPINFO("USE", 4, Compass, _use_for_yaw, 1), // true if used for DCM yaw
#if !defined( __AVR_ATmega1280__ )
// @Param: AUTODEC
// @DisplayName: Auto Declination
// @Description: Enable or disable the automatic calculation of the declination based on gps location
// @Values: 0:Disabled,1:Enabled
// @User: Advanced
AP_GROUPINFO("AUTODEC",5, Compass, _auto_declination, 1),
#endif
// @Param: MOTCT
// @DisplayName: Motor interference compensation type
// @Description: Set motor interference compensation type to disabled, throttle or current
// @Values: 0:Disabled,1:Use Throttle,2:Use Current
// @Increment: 1
AP_GROUPINFO("MOTCT", 6, Compass, _motor_comp_type, AP_COMPASS_MOT_COMP_DISABLED),
// @Param: MOT_X
// @DisplayName: Motor interference compensation for body frame X axis
// @Description: Multiplied by the current throttle and added to the compass's x-axis values to compensate for motor interference
// @Range: -1000 1000
// @Increment: 1
// @Param: MOT_Y
// @DisplayName: Motor interference compensation for body frame Y axis
// @Description: Multiplied by the current throttle and added to the compass's y-axis values to compensate for motor interference
// @Range: -1000 1000
// @Increment: 1
// @Param: MOT_Z
// @DisplayName: Motor interference compensation for body frame Z axis
// @Description: Multiplied by the current throttle and added to the compass's z-axis values to compensate for motor interference
// @Range: -1000 1000
// @Increment: 1
AP_GROUPINFO("MOT", 7, Compass, _motor_compensation, 0),
AP_GROUPEND
};
// Default constructor.
// Note that the Vector/Matrix constructors already implicitly zero
// their values.
//
Compass::Compass(void) :
product_id(AP_COMPASS_TYPE_UNKNOWN),
_orientation(ROTATION_NONE),
_null_init_done(false)
{
AP_Param::setup_object_defaults(this, var_info);
}
// Default init method, just returns success.
//
bool
Compass::init()
{
return true;
}
void
Compass::set_orientation(enum Rotation rotation)
{
_orientation = rotation;
}
void
Compass::set_offsets(const Vector3f &offsets)
{
_offset.set(offsets);
}
void
Compass::save_offsets()
{
_offset.save();
}
Vector3f &
Compass::get_offsets()
{
return _offset;
}
void
Compass::set_motor_compensation(const Vector3f &motor_comp_factor)
{
_motor_compensation.set(motor_comp_factor);
}
void
Compass::save_motor_compensation()
{
_motor_comp_type.save();
_motor_compensation.save();
}
void
Compass::set_initial_location(int32_t latitude, int32_t longitude)
{
// if automatic declination is configured, then compute
// the declination based on the initial GPS fix
#if !defined( __AVR_ATmega1280__ )
if (_auto_declination) {
// Set the declination based on the lat/lng from GPS
_declination.set(radians(
AP_Declination::get_declination(
(float)latitude / 10000000,
(float)longitude / 10000000)));
}
#endif
}
void
Compass::set_declination(float radians)
{
_declination.set_and_save(radians);
}
float
Compass::get_declination()
{
return _declination.get();
}
float
Compass::calculate_heading(float roll, float pitch)
{
// Note - This function implementation is deprecated
// The alternate implementation of this function using the dcm matrix is preferred
float headX;
float headY;
float cos_roll;
float sin_roll;
float cos_pitch;
float sin_pitch;
float heading;
cos_roll = cosf(roll);
sin_roll = sinf(roll);
cos_pitch = cosf(pitch);
sin_pitch = sinf(pitch);
// Tilt compensated magnetic field X component:
headX = mag_x*cos_pitch + mag_y*sin_roll*sin_pitch + mag_z*cos_roll*sin_pitch;
// Tilt compensated magnetic field Y component:
headY = mag_y*cos_roll - mag_z*sin_roll;
// magnetic heading
heading = atan2f(-headY,headX);
// Declination correction (if supplied)
if( fabsf(_declination) > 0.0f )
{
heading = heading + _declination;
if (heading > PI) // Angle normalization (-180 deg, 180 deg)
heading -= (2.0f * PI);
else if (heading < -PI)
heading += (2.0f * PI);
}
return heading;
}
float
Compass::calculate_heading(const Matrix3f &dcm_matrix)
{
float headX;
float headY;
float cos_pitch = safe_sqrt(1-(dcm_matrix.c.x*dcm_matrix.c.x));
float heading;
// sinf(pitch) = - dcm_matrix(3,1)
// cosf(pitch)*sinf(roll) = - dcm_matrix(3,2)
// cosf(pitch)*cosf(roll) = - dcm_matrix(3,3)
if (cos_pitch == 0.0f) {
// we are pointing straight up or down so don't update our
// heading using the compass. Wait for the next iteration when
// we hopefully will have valid values again.
return 0;
}
// Tilt compensated magnetic field X component:
headX = mag_x*cos_pitch - mag_y*dcm_matrix.c.y*dcm_matrix.c.x/cos_pitch - mag_z*dcm_matrix.c.z*dcm_matrix.c.x/cos_pitch;
// Tilt compensated magnetic field Y component:
headY = mag_y*dcm_matrix.c.z/cos_pitch - mag_z*dcm_matrix.c.y/cos_pitch;
// magnetic heading
// 6/4/11 - added constrain to keep bad values from ruining DCM Yaw - Jason S.
heading = constrain(atan2f(-headY,headX), -3.15f, 3.15f);
// Declination correction (if supplied)
if( fabsf(_declination) > 0.0f )
{
heading = heading + _declination;
if (heading > PI) // Angle normalization (-180 deg, 180 deg)
heading -= (2.0f * PI);
else if (heading < -PI)
heading += (2.0f * PI);
}
return heading;
}
/*
* this offset nulling algorithm is inspired by this paper from Bill Premerlani
*
* http://gentlenav.googlecode.com/files/MagnetometerOffsetNullingRevisited.pdf
*
* The base algorithm works well, but is quite sensitive to
* noise. After long discussions with Bill, the following changes were
* made:
*
* 1) we keep a history buffer that effectively divides the mag
* vectors into a set of N streams. The algorithm is run on the
* streams separately
*
* 2) within each stream we only calculate a change when the mag
* vector has changed by a significant amount.
*
* This gives us the property that we learn quickly if there is no
* noise, but still learn correctly (and slowly) in the face of lots of
* noise.
*/
void
Compass::null_offsets(void)
{
if (_learn == 0) {
// auto-calibration is disabled
return;
}
// this gain is set so we converge on the offsets in about 5
// minutes with a 10Hz compass
const float gain = 0.01;
const float max_change = 10.0;
const float min_diff = 50.0;
Vector3f ofs;
ofs = _offset.get();
if (!_null_init_done) {
// first time through
_null_init_done = true;
for (uint8_t i=0; i<_mag_history_size; i++) {
// fill the history buffer with the current mag vector,
// with the offset removed
_mag_history[i] = Vector3i((mag_x+0.5f) - ofs.x, (mag_y+0.5f) - ofs.y, (mag_z+0.5f) - ofs.z);
}
_mag_history_index = 0;
return;
}
Vector3f b1, b2, diff;
float length;
// get a past element
b1 = Vector3f(_mag_history[_mag_history_index].x,
_mag_history[_mag_history_index].y,
_mag_history[_mag_history_index].z);
// the history buffer doesn't have the offsets
b1 += ofs;
// get the current vector
b2 = Vector3f(mag_x, mag_y, mag_z);
// calculate the delta for this sample
diff = b2 - b1;
length = diff.length();
if (length < min_diff) {
// the mag vector hasn't changed enough - we don't get
// enough information from this vector to use it.
// Note that we don't put the current vector into the mag
// history here. We want to wait for a larger rotation to
// build up before calculating an offset change, as accuracy
// of the offset change is highly dependent on the size of the
// rotation.
_mag_history_index = (_mag_history_index + 1) % _mag_history_size;
return;
}
// put the vector in the history
_mag_history[_mag_history_index] = Vector3i((mag_x+0.5f) - ofs.x, (mag_y+0.5f) - ofs.y, (mag_z+0.5f) - ofs.z);
_mag_history_index = (_mag_history_index + 1) % _mag_history_size;
// equation 6 of Bills paper
diff = diff * (gain * (b2.length() - b1.length()) / length);
// limit the change from any one reading. This is to prevent
// single crazy readings from throwing off the offsets for a long
// time
length = diff.length();
if (length > max_change) {
diff *= max_change / length;
}
// set the new offsets
_offset.set(_offset.get() - diff);
}