Ardupilot2/AntennaTracker/control_auto.cpp
2016-07-28 16:43:05 +09:00

135 lines
5.5 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include "Tracker.h"
/*
* Auto control mode
*/
/*
* update_auto - runs the auto controller
* called at 50hz while control_mode is 'AUTO'
*/
void Tracker::update_auto(void)
{
// exit immediately if we do not have a valid vehicle position
if (!vehicle.location_valid) {
return;
}
float yaw = wrap_180_cd((nav_status.bearing+g.yaw_trim)*100); // target yaw in centidegrees
float pitch = constrain_float(nav_status.pitch+g.pitch_trim, -90, 90) * 100; // target pitch in centidegrees
bool direction_reversed = get_ef_yaw_direction();
calc_angle_error(pitch, yaw, direction_reversed);
float bf_pitch;
float bf_yaw;
convert_ef_to_bf(pitch, yaw, bf_pitch, bf_yaw);
// only move servos if target is at least distance_min away
if ((g.distance_min <= 0) || (nav_status.distance >= g.distance_min)) {
update_pitch_servo(bf_pitch);
update_yaw_servo(bf_yaw);
}
}
void Tracker::calc_angle_error(float pitch, float yaw, bool direction_reversed)
{
// Pitch angle error in centidegrees
// Positive error means the target is above current pitch
// Negative error means the target is below current pitch
float ahrs_pitch = ahrs.pitch_sensor;
int32_t ef_pitch_angle_error = pitch - ahrs_pitch;
// Yaw angle error in centidegrees
// Positive error means the target is right of current yaw
// Negative error means the target is left of current yaw
int32_t ahrs_yaw_cd = wrap_180_cd(ahrs.yaw_sensor);
int32_t ef_yaw_angle_error = wrap_180_cd(yaw - ahrs_yaw_cd);
if (direction_reversed) {
if (ef_yaw_angle_error > 0) {
ef_yaw_angle_error = (yaw - ahrs_yaw_cd) - 36000;
} else {
ef_yaw_angle_error = 36000 + (yaw - ahrs_yaw_cd);
}
}
// earth frame to body frame angle error conversion
float bf_pitch_err;
float bf_yaw_err;
convert_ef_to_bf(ef_pitch_angle_error, ef_yaw_angle_error, bf_pitch_err, bf_yaw_err);
nav_status.angle_error_pitch = bf_pitch_err;
nav_status.angle_error_yaw = bf_yaw_err;
}
void Tracker::convert_ef_to_bf(float pitch, float yaw, float& bf_pitch, float& bf_yaw)
{
// earth frame to body frame pitch and yaw conversion
bf_pitch = ahrs.cos_roll() * pitch + ahrs.sin_roll() * ahrs.cos_pitch() * yaw;
bf_yaw = -ahrs.sin_roll() * pitch + ahrs.cos_pitch() * ahrs.cos_roll() * yaw;
}
bool Tracker::convert_bf_to_ef(float pitch, float yaw, float& ef_pitch, float& ef_yaw)
{
// avoid divide by zero
if (is_zero(ahrs.cos_pitch())) {
return false;
}
// convert earth frame angle or rates to body frame
ef_pitch = ahrs.cos_roll() * pitch - ahrs.sin_roll() * yaw;
ef_yaw = (ahrs.sin_roll() / ahrs.cos_pitch()) * pitch + (ahrs.cos_roll() / ahrs.cos_pitch()) * yaw;
return true;
}
// return value is true if taking the long road to the target, false if normal, shortest direction should be used
bool Tracker::get_ef_yaw_direction()
{
// calculating distances from current pitch/yaw to lower and upper limits in centi-degrees
float yaw_angle_limit_lower = (-g.yaw_range * 100.0f / 2.0f) - yaw_servo_out_filt.get();
float yaw_angle_limit_upper = (g.yaw_range * 100.0f / 2.0f) - yaw_servo_out_filt.get();
float pitch_angle_limit_lower = (g.pitch_min * 100.0f) - pitch_servo_out_filt.get();
float pitch_angle_limit_upper = (g.pitch_max * 100.0f) - pitch_servo_out_filt.get();
// distances to earthframe angle limits in centi-degrees
float ef_yaw_limit_lower = yaw_angle_limit_lower;
float ef_yaw_limit_upper = yaw_angle_limit_upper;
float ef_pitch_limit_lower = pitch_angle_limit_lower;
float ef_pitch_limit_upper = pitch_angle_limit_upper;
convert_bf_to_ef(pitch_angle_limit_lower, yaw_angle_limit_lower, ef_pitch_limit_lower, ef_yaw_limit_lower);
convert_bf_to_ef(pitch_angle_limit_upper, yaw_angle_limit_upper, ef_pitch_limit_upper, ef_yaw_limit_upper);
float ef_yaw_current = wrap_180_cd(ahrs.yaw_sensor);
float ef_yaw_target = wrap_180_cd((nav_status.bearing+g.yaw_trim)*100);
float ef_yaw_angle_error = wrap_180_cd(ef_yaw_target - ef_yaw_current);
// calculate angle error to target in both directions (i.e. moving up/right or lower/left)
float yaw_angle_error_upper;
float yaw_angle_error_lower;
if (ef_yaw_angle_error >= 0) {
yaw_angle_error_upper = ef_yaw_angle_error;
yaw_angle_error_lower = ef_yaw_angle_error - 36000;
} else {
yaw_angle_error_upper = 36000 + ef_yaw_angle_error;
yaw_angle_error_lower = ef_yaw_angle_error;
}
// checks that the vehicle is outside the tracker's range
if ((yaw_angle_error_lower < ef_yaw_limit_lower) && (yaw_angle_error_upper > ef_yaw_limit_upper)) {
// if the tracker is trying to move clockwise to reach the vehicle,
// but the tracker coudl get closer to the vehicle by moving counter-clockwise then set direction_reversed to true
if (ef_yaw_angle_error>0 && ((ef_yaw_limit_lower - yaw_angle_error_lower) < (yaw_angle_error_upper - ef_yaw_limit_upper))) {
return true;
}
// if the tracker is trying to move counter-clockwise to reach the vehicle,
// but the tracker coudl get closer to the vehicle by moving then set direction_reversed to true
if (ef_yaw_angle_error<0 && ((ef_yaw_limit_lower - yaw_angle_error_lower) > (yaw_angle_error_upper - ef_yaw_limit_upper))) {
return true;
}
}
// if we get this far we can use the regular, shortest path to the target
return false;
}