Ardupilot2/libraries/AP_HAL_ChibiOS/I2CDevice.cpp
Andrew Tridgell bc32276966 HAL_ChibiOS: support DShot output
use DMAR burst DMA to minimise number of DMA channels needed

thanks to betaflight for the great reference implementation!
2018-04-07 09:10:29 +10:00

290 lines
8.9 KiB
C++

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "I2CDevice.h"
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include "Util.h"
#include "Scheduler.h"
#include "ch.h"
#include "hal.h"
#if HAL_USE_I2C == TRUE
static const struct I2CInfo {
struct I2CDriver *i2c;
uint8_t dma_channel_rx;
uint8_t dma_channel_tx;
} I2CD[] = { HAL_I2C_DEVICE_LIST };
using namespace ChibiOS;
extern const AP_HAL::HAL& hal;
I2CBus I2CDeviceManager::businfo[ARRAY_SIZE_SIMPLE(I2CD)];
#ifndef HAL_I2C_BUS_BASE
#define HAL_I2C_BUS_BASE 0
#endif
// default to 100kHz clock for maximum reliability. This can be
// changed in hwdef.dat
#ifndef HAL_I2C_MAX_CLOCK
#define HAL_I2C_MAX_CLOCK 100000
#endif
// get a handle for DMA sharing DMA channels with other subsystems
void I2CBus::dma_init(void)
{
dma_handle = new Shared_DMA(I2CD[busnum].dma_channel_tx, I2CD[busnum].dma_channel_rx,
FUNCTOR_BIND_MEMBER(&I2CBus::dma_allocate, void, Shared_DMA *),
FUNCTOR_BIND_MEMBER(&I2CBus::dma_deallocate, void, Shared_DMA *));
}
// Clear Bus to avoid bus lockup
void I2CBus::clear_all()
{
#if defined(HAL_GPIO_PIN_I2C1_SCL) && defined(HAL_I2C1_SCL_AF)
clear_bus(HAL_GPIO_PIN_I2C1_SCL, HAL_I2C1_SCL_AF);
#endif
#if defined(HAL_GPIO_PIN_I2C2_SCL) && defined(HAL_I2C2_SCL_AF)
clear_bus(HAL_GPIO_PIN_I2C2_SCL, HAL_I2C2_SCL_AF);
#endif
#if defined(HAL_GPIO_PIN_I2C3_SCL) && defined(HAL_I2C3_SCL_AF)
clear_bus(HAL_GPIO_PIN_I2C3_SCL, HAL_I2C3_SCL_AF);
#endif
#if defined(HAL_GPIO_PIN_I2C4_SCL) && defined(HAL_I2C4_SCL_AF)
clear_bus(HAL_GPIO_PIN_I2C4_SCL, HAL_I2C4_SCL_AF);
#endif
}
//This code blocks!
void I2CBus::clear_bus(ioline_t scl_line, uint8_t scl_af)
{
//send dummy clock
palSetLineMode(scl_line, PAL_MODE_OUTPUT_PUSHPULL);
for(int i = 0; i < 20; i++) {
palToggleLine(scl_line);
hal.scheduler->delay_microseconds(200);
}
palSetLineMode(scl_line, PAL_MODE_ALTERNATE(scl_af) | PAL_STM32_OSPEED_MID2 | PAL_STM32_OTYPE_OPENDRAIN);
}
// setup I2C buses
I2CDeviceManager::I2CDeviceManager(void)
{
for (uint8_t i=0; i<ARRAY_SIZE_SIMPLE(I2CD); i++) {
businfo[i].busnum = i;
businfo[i].dma_init();
/*
setup default I2C config. As each device is opened we will
drop the speed to be the minimum speed requested
*/
businfo[i].i2ccfg.op_mode = OPMODE_I2C;
businfo[i].i2ccfg.clock_speed = HAL_I2C_MAX_CLOCK;
if (businfo[i].i2ccfg.clock_speed <= 100000) {
businfo[i].i2ccfg.duty_cycle = STD_DUTY_CYCLE;
} else {
businfo[i].i2ccfg.duty_cycle = FAST_DUTY_CYCLE_2;
}
}
}
I2CDevice::I2CDevice(uint8_t busnum, uint8_t address, uint32_t bus_clock, bool use_smbus, uint32_t timeout_ms) :
_retries(2),
_address(address),
_use_smbus(use_smbus),
_timeout_ms(timeout_ms),
bus(I2CDeviceManager::businfo[busnum])
{
set_device_bus(busnum+HAL_I2C_BUS_BASE);
set_device_address(address);
asprintf(&pname, "I2C:%u:%02x",
(unsigned)busnum, (unsigned)address);
if (bus_clock < bus.i2ccfg.clock_speed) {
bus.i2ccfg.clock_speed = bus_clock;
hal.console->printf("I2C%u clock %ukHz\n", busnum, unsigned(bus_clock/1000));
if (bus_clock <= 100000) {
bus.i2ccfg.duty_cycle = STD_DUTY_CYCLE;
}
}
}
I2CDevice::~I2CDevice()
{
printf("I2C device bus %u address 0x%02x closed\n",
(unsigned)bus.busnum, (unsigned)_address);
free(pname);
}
/*
allocate DMA channel
*/
void I2CBus::dma_allocate(Shared_DMA *ctx)
{
if (!i2c_started) {
osalDbgAssert(I2CD[busnum].i2c->state == I2C_STOP, "i2cStart state");
i2cStart(I2CD[busnum].i2c, &i2ccfg);
osalDbgAssert(I2CD[busnum].i2c->state == I2C_READY, "i2cStart state");
i2c_started = true;
}
}
/*
deallocate DMA channel
*/
void I2CBus::dma_deallocate(Shared_DMA *)
{
if (i2c_started) {
osalDbgAssert(I2CD[busnum].i2c->state == I2C_READY, "i2cStart state");
i2cStop(I2CD[busnum].i2c);
osalDbgAssert(I2CD[busnum].i2c->state == I2C_STOP, "i2cStart state");
i2c_started = false;
}
}
bool I2CDevice::transfer(const uint8_t *send, uint32_t send_len,
uint8_t *recv, uint32_t recv_len)
{
if (!bus.semaphore.check_owner()) {
hal.console->printf("I2C: not owner of 0x%x\n", (unsigned)get_bus_id());
return false;
}
bus.dma_handle->lock();
if (_use_smbus) {
bus.i2ccfg.op_mode = OPMODE_SMBUS_HOST;
} else {
bus.i2ccfg.op_mode = OPMODE_I2C;
}
if (_split_transfers) {
/*
splitting the transfer() into two pieces avoids a stop condition
with SCL low which is not supported on some devices (such as
LidarLite blue label)
*/
if (send && send_len) {
if (!_transfer(send, send_len, nullptr, 0)) {
bus.dma_handle->unlock();
return false;
}
}
if (recv && recv_len) {
if (!_transfer(nullptr, 0, recv, recv_len)) {
bus.dma_handle->unlock();
return false;
}
}
} else {
// combined transfer
if (!_transfer(send, send_len, recv, recv_len)) {
bus.dma_handle->unlock();
return false;
}
}
bus.dma_handle->unlock();
return true;
}
bool I2CDevice::_transfer(const uint8_t *send, uint32_t send_len,
uint8_t *recv, uint32_t recv_len)
{
uint8_t *recv_buf = recv;
const uint8_t *send_buf = send;
bus.bouncebuffer_setup(send_buf, send_len, recv_buf, recv_len);
i2cAcquireBus(I2CD[bus.busnum].i2c);
for(uint8_t i=0 ; i <= _retries; i++) {
int ret;
// calculate a timeout as twice the expected transfer time, and set as min of 4ms
uint32_t timeout_ms = 1+2*(((8*1000000UL/bus.i2ccfg.clock_speed)*MAX(send_len, recv_len))/1000);
timeout_ms = MAX(timeout_ms, _timeout_ms);
bus.i2c_active = true;
osalDbgAssert(I2CD[bus.busnum].i2c->state == I2C_READY, "i2cStart state");
if(send_len == 0) {
ret = i2cMasterReceiveTimeout(I2CD[bus.busnum].i2c, _address, recv_buf, recv_len, MS2ST(timeout_ms));
} else {
ret = i2cMasterTransmitTimeout(I2CD[bus.busnum].i2c, _address, send_buf, send_len,
recv_buf, recv_len, MS2ST(timeout_ms));
}
bus.i2c_active = false;
if (ret != MSG_OK) {
//restart the bus
osalDbgAssert(I2CD[bus.busnum].i2c->state == I2C_READY || I2CD[bus.busnum].i2c->state == I2C_LOCKED, "i2cStart state");
i2cStop(I2CD[bus.busnum].i2c);
osalDbgAssert(I2CD[bus.busnum].i2c->state == I2C_STOP, "i2cStart state");
i2cStart(I2CD[bus.busnum].i2c, &bus.i2ccfg);
osalDbgAssert(I2CD[bus.busnum].i2c->state == I2C_READY, "i2cStart state");
} else {
osalDbgAssert(I2CD[bus.busnum].i2c->state == I2C_READY, "i2cStart state");
if (recv_buf != recv) {
memcpy(recv, recv_buf, recv_len);
}
i2cReleaseBus(I2CD[bus.busnum].i2c);
return true;
}
}
i2cReleaseBus(I2CD[bus.busnum].i2c);
return false;
}
bool I2CDevice::read_registers_multiple(uint8_t first_reg, uint8_t *recv,
uint32_t recv_len, uint8_t times)
{
return false;
}
/*
register a periodic callback
*/
AP_HAL::Device::PeriodicHandle I2CDevice::register_periodic_callback(uint32_t period_usec, AP_HAL::Device::PeriodicCb cb)
{
return bus.register_periodic_callback(period_usec, cb, this);
}
/*
adjust a periodic callback
*/
bool I2CDevice::adjust_periodic_callback(AP_HAL::Device::PeriodicHandle h, uint32_t period_usec)
{
return bus.adjust_timer(h, period_usec);
}
AP_HAL::OwnPtr<AP_HAL::I2CDevice>
I2CDeviceManager::get_device(uint8_t bus, uint8_t address,
uint32_t bus_clock,
bool use_smbus,
uint32_t timeout_ms)
{
bus -= HAL_I2C_BUS_BASE;
if (bus >= ARRAY_SIZE_SIMPLE(I2CD)) {
return AP_HAL::OwnPtr<AP_HAL::I2CDevice>(nullptr);
}
auto dev = AP_HAL::OwnPtr<AP_HAL::I2CDevice>(new I2CDevice(bus, address, bus_clock, use_smbus, timeout_ms));
return dev;
}
#endif // HAL_USE_I2C