Ardupilot2/ArduCopter/control_stabilize.pde
2014-02-15 05:27:33 +11:00

273 lines
7.4 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
// acro_init - initialise acro controller
static bool acro_init()
{
return true;
}
// acro_run - runs the acro controller
// should be called at 100hz or more
static void acro_run()
{
Vector3f rate_target; // for roll, pitch, yaw body-frame rate targets
// convert the input to the desired body frame rate
rate_target.x = g.rc_1.control_in * g.acro_rp_p;
rate_target.y = g.rc_2.control_in * g.acro_rp_p;
rate_target.z = g.rc_4.control_in * g.acro_yaw_p;
// To-Do: handle acro trainer here?
// To-Do: handle helicopter
acro_level_mix = constrain_float(1-max(max(abs(g.rc_1.control_in), abs(g.rc_2.control_in)), abs(g.rc_4.control_in))/4500.0, 0, 1)*cos_pitch_x;
// set targets for body frame rate controller
attitude_control.rate_stab_bf_targets(rate_target);
// convert stabilize rates to regular rates
attitude_control.rate_stab_bf_to_rate_bf_roll();
attitude_control.rate_stab_bf_to_rate_bf_pitch();
attitude_control.rate_stab_bf_to_rate_bf_yaw();
// call get_acro_level_rates() here?
// To-Do: convert body-frame stabilized angles to earth frame angles and update controll_roll, pitch and yaw?
// body-frame rate controller is run directly from 100hz loop
}
// stabilize_init - initialise stabilize controller
static bool stabilize_init()
{
return true;
}
// stabilize_run - runs the main stabilize controller
// should be called at 100hz or more
static void stabilize_run()
{
Vector3f angle_target = attitude_control.angle_ef_targets(); // for roll, pitch and yaw angular targets
Vector3f rate_stab_ef_target; // for yaw rate target. Note Vector3f initialises all values to zero in constructor
int16_t target_roll, target_pitch;
// apply SIMPLE mode transform to pilot inputs
update_simple_mode();
// convert pilot input to lean angles
// To-Do: convert get_pilot_desired_lean_angles to return angles as floats
get_pilot_desired_lean_angles(g.rc_1.control_in, g.rc_2.control_in, target_roll, target_pitch);
angle_target.x = target_roll;
angle_target.y = target_pitch;
// set target heading to current heading while landed
if (ap.land_complete) {
angle_target.z = ahrs.yaw_sensor;
}
// set earth-frame angular targets
attitude_control.angle_ef_targets(angle_target);
// convert earth-frame angle targets to earth-frame rate targets
attitude_control.angle_to_rate_ef_roll();
attitude_control.angle_to_rate_ef_pitch();
// get pilot's desired yaw rate
if (!failsafe.radio && !ap.land_complete) {
rate_stab_ef_target.z = get_pilot_desired_yaw_rate(g.rc_4.control_in);
}
// set earth-frame rate stabilize target for yaw with pilot's desired yaw
// To-Do: this is quite wasteful to update the entire target vector when only yaw is used
attitude_control.rate_stab_ef_targets(rate_stab_ef_target);
// convert earth-frame stabilize rate to regular rate target
// To-Do: replace G_Dt below
attitude_control.rate_stab_ef_to_rate_ef_yaw();
// convert earth-frame rates to body-frame rates
attitude_control.rate_ef_targets_to_bf();
// refetch angle targets for reporting
angle_target = attitude_control.angle_ef_targets();
control_roll = angle_target.x;
control_pitch = angle_target.y;
control_yaw = angle_target.z;
// body-frame rate controller is run directly from 100hz loop
// do not run throttle controllers if motors disarmed
if( !motors.armed() || g.rc_3.control_in <= 0) {
attitude_control.set_throttle_out(0, false);
throttle_accel_deactivate(); // do not allow the accel based throttle to override our command
set_target_alt_for_reporting(0);
}else{
// manual throttle but with angle boost
int16_t pilot_throttle_scaled = get_pilot_desired_throttle(g.rc_3.control_in);
attitude_control.set_throttle_out(pilot_throttle_scaled, false);
// update estimate of throttle cruise
#if FRAME_CONFIG == HELI_FRAME
update_throttle_cruise(motors.get_collective_out());
#else
update_throttle_cruise(pilot_throttle_scaled);
#endif //HELI_FRAME
if (!ap.takeoff_complete && motors.armed()) {
if (pilot_throttle_scaled > g.throttle_cruise) {
// we must be in the air by now
set_takeoff_complete(true);
}
}
}
}
// althold_init - initialise althold controller
static bool althold_init()
{
return true;
}
// althold_run - runs the althold controller
// should be called at 100hz or more
static void althold_run()
{
}
// auto_init - initialise auto controller
static bool auto_init()
{
return true;
}
// auto_run - runs the auto controller
// should be called at 100hz or more
static void auto_run()
{
Vector3f angle_target;
// copy latest output from nav controller to stabilize controller
control_roll = wp_nav.get_desired_roll();
control_pitch = wp_nav.get_desired_pitch();
// copy angle targets for reporting purposes
angle_target.x = control_roll;
angle_target.y = control_pitch;
// To-Do: handle pilot input for yaw and different methods to update yaw (ROI, face next wp)
angle_target.z = control_yaw;
// To-Do: shorten below by moving these often used steps into a single function in the AC_AttitudeControl lib
// set earth-frame angular targets
attitude_control.angle_ef_targets(angle_target);
// convert earth-frame angle targets to earth-frame rate targets
attitude_control.angle_to_rate_ef_roll();
attitude_control.angle_to_rate_ef_pitch();
attitude_control.angle_to_rate_ef_yaw();
// convert earth-frame rates to body-frame rates
attitude_control.rate_ef_targets_to_bf();
// body-frame rate controller is run directly from 100hz loop
}
// circle_init - initialise circle controller
static bool circle_init()
{
return true;
}
// circle_run - runs the circle controller
// should be called at 100hz or more
static void circle_run()
{
}
// loiter_init - initialise loiter controller
static bool loiter_init()
{
return true;
}
// loiter_run - runs the loiter controller
// should be called at 100hz or more
static void loiter_run()
{
}
// guided_init - initialise guided controller
static bool guided_init()
{
return true;
}
// guided_run - runs the guided controller
// should be called at 100hz or more
static void guided_run()
{
}
// land_init - initialise land controller
static bool land_init()
{
return true;
}
// land_run - runs the land controller
// should be called at 100hz or more
static void land_run()
{
verify_land();
}
// rtl_init - initialise rtl controller
static bool rtl_init()
{
return true;
}
// rtl_run - runs the return-to-launch controller
// should be called at 100hz or more
static void rtl_run()
{
verify_RTL();
}
// ofloiter_init - initialise ofloiter controller
static bool ofloiter_init()
{
return true;
}
// ofloiter_run - runs the optical flow loiter controller
// should be called at 100hz or more
static void ofloiter_run()
{
}
// drift_init - initialise drift controller
static bool drift_init()
{
return true;
}
// drift_run - runs the drift controller
// should be called at 100hz or more
static void drift_run()
{
}
// sport_init - initialise sport controller
static bool sport_init()
{
return true;
}
// sport_run - runs the sport controller
// should be called at 100hz or more
static void sport_run()
{
}