Ardupilot2/libraries/AP_DroneCAN/examples/DroneCAN_sniffer/DroneCAN_sniffer.cpp
2023-11-28 08:24:25 +11:00

276 lines
8.6 KiB
C++

/*
simple DroneCAN network sniffer as an ArduPilot firmware
*/
#include <AP_Common/AP_Common.h>
#include <AP_HAL/AP_HAL.h>
#if HAL_ENABLE_DRONECAN_DRIVERS
#include <AP_HAL/Semaphores.h>
#include <AP_DroneCAN/AP_DroneCAN.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_LINUX
#include <AP_HAL_Linux/CANSocketIface.h>
#elif CONFIG_HAL_BOARD == HAL_BOARD_SITL
#include <AP_HAL_SITL/CANSocketIface.h>
#elif CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
#include <hal.h>
#include <AP_HAL_ChibiOS/CANIface.h>
#endif
void setup();
void loop();
const AP_HAL::HAL& hal = AP_HAL::get_HAL();
#define DRONECAN_NODE_POOL_SIZE 8192
static uint8_t node_memory_pool[DRONECAN_NODE_POOL_SIZE];
#define debug_dronecan(fmt, args...) do { hal.console->printf(fmt, ##args); } while (0)
class DroneCAN_sniffer {
public:
DroneCAN_sniffer();
~DroneCAN_sniffer();
void init(void);
void loop(void);
void print_stats(void);
private:
uint8_t driver_index = 0;
AP_CANManager can_mgr;
};
static struct {
const char *msg_name;
uint32_t count;
uint64_t last_time_us;
uint32_t avg_period_us;
uint32_t max_period_us;
uint32_t min_period_us;
} counters[100];
static void count_msg(const char *name)
{
for (uint16_t i=0; i<ARRAY_SIZE(counters); i++) {
if (counters[i].msg_name == name) {
counters[i].count++;
uint64_t now = AP_HAL::micros64();
uint32_t period_us = now - counters[i].last_time_us;
counters[i].last_time_us = now;
if (counters[i].avg_period_us == 0) {
counters[i].avg_period_us = period_us;
} else {
counters[i].avg_period_us = (counters[i].avg_period_us * (counters[i].count - 1) + period_us) / counters[i].count;
}
if (counters[i].max_period_us < period_us) {
counters[i].max_period_us = period_us;
}
if (counters[i].min_period_us == 0 || counters[i].min_period_us > period_us) {
counters[i].min_period_us = period_us;
}
break;
}
if (counters[i].msg_name == nullptr) {
counters[i].msg_name = name;
counters[i].count++;
counters[i].last_time_us = AP_HAL::micros64();
break;
}
}
}
#define MSG_CB(mtype, cbname) \
static void cb_ ## cbname(const CanardRxTransfer &transfer, const mtype& msg) { count_msg(#mtype); }
MSG_CB(uavcan_protocol_NodeStatus, NodeStatus)
MSG_CB(uavcan_equipment_gnss_Fix2, Fix2)
MSG_CB(uavcan_equipment_gnss_Auxiliary, Auxiliary)
MSG_CB(uavcan_equipment_ahrs_MagneticFieldStrength, MagneticFieldStrength)
MSG_CB(uavcan_equipment_ahrs_MagneticFieldStrength2, MagneticFieldStrength2);
MSG_CB(uavcan_equipment_air_data_StaticPressure, StaticPressure)
MSG_CB(uavcan_equipment_air_data_StaticTemperature, StaticTemperature)
MSG_CB(uavcan_equipment_power_BatteryInfo, BatteryInfo);
MSG_CB(uavcan_equipment_actuator_ArrayCommand, ArrayCommand)
MSG_CB(uavcan_equipment_esc_RawCommand, RawCommand)
MSG_CB(uavcan_equipment_indication_LightsCommand, LightsCommand);
MSG_CB(com_hex_equipment_flow_Measurement, Measurement);
uavcan_protocol_NodeStatus node_status;
uavcan_protocol_GetNodeInfoResponse node_info;
CanardInterface *_uavcan_iface_mgr;
Canard::Publisher<uavcan_protocol_NodeStatus> *node_status_pub;
Canard::Server<uavcan_protocol_GetNodeInfoRequest> *node_info_srv;
static void cb_GetNodeInfoRequest(const CanardRxTransfer &transfer, const uavcan_protocol_GetNodeInfoRequest& msg)
{
if (node_info_srv == nullptr) {
return;
}
node_info_srv->respond(transfer, node_info);
}
void DroneCAN_sniffer::init(void)
{
// we need to mutate the HAL to install new CAN interfaces
AP_HAL::HAL& hal_mutable = AP_HAL::get_HAL_mutable();
hal_mutable.can[driver_index] = new HAL_CANIface(driver_index);
if (hal_mutable.can[driver_index] == nullptr) {
AP_HAL::panic("Couldn't allocate CANManager, something is very wrong");
}
hal_mutable.can[driver_index]->init(1000000, AP_HAL::CANIface::NormalMode);
if (!hal_mutable.can[driver_index]->is_initialized()) {
debug_dronecan("Can not initialised\n");
return;
}
_uavcan_iface_mgr = new CanardInterface{driver_index};
if (_uavcan_iface_mgr == nullptr) {
return;
}
if (!_uavcan_iface_mgr->add_interface(hal_mutable.can[driver_index])) {
debug_dronecan("Failed to add iface");
return;
}
_uavcan_iface_mgr->init(node_memory_pool, sizeof(node_memory_pool), 9);
node_status_pub = new Canard::Publisher<uavcan_protocol_NodeStatus>{*_uavcan_iface_mgr};
if (node_status_pub == nullptr) {
return;
}
node_info_srv = new Canard::Server<uavcan_protocol_GetNodeInfoRequest>{*_uavcan_iface_mgr, *Canard::allocate_static_callback(cb_GetNodeInfoRequest)};
if (node_info_srv == nullptr) {
return;
}
node_info.name.len = snprintf((char*)node_info.name.data, sizeof(node_info.name.data), "org.ardupilot:%u", driver_index);
node_info.software_version.major = AP_DRONECAN_SW_VERS_MAJOR;
node_info.software_version.minor = AP_DRONECAN_SW_VERS_MINOR;
node_info.hardware_version.major = AP_DRONECAN_HW_VERS_MAJOR;
node_info.hardware_version.minor = AP_DRONECAN_HW_VERS_MINOR;
#define START_CB(mtype, cbname) Canard::allocate_sub_static_callback(cb_ ## cbname,driver_index)
START_CB(uavcan_protocol_NodeStatus, NodeStatus);
START_CB(uavcan_equipment_gnss_Fix2, Fix2);
START_CB(uavcan_equipment_gnss_Auxiliary, Auxiliary);
START_CB(uavcan_equipment_ahrs_MagneticFieldStrength, MagneticFieldStrength);
START_CB(uavcan_equipment_ahrs_MagneticFieldStrength2, MagneticFieldStrength2);
START_CB(uavcan_equipment_air_data_StaticPressure, StaticPressure);
START_CB(uavcan_equipment_air_data_StaticTemperature, StaticTemperature);
START_CB(uavcan_equipment_power_BatteryInfo, BatteryInfo);
START_CB(uavcan_equipment_actuator_ArrayCommand, ArrayCommand);
START_CB(uavcan_equipment_esc_RawCommand, RawCommand);
START_CB(uavcan_equipment_indication_LightsCommand, LightsCommand);
START_CB(com_hex_equipment_flow_Measurement, Measurement);
debug_dronecan("DroneCAN: init done\n\r");
}
static void send_node_status()
{
uavcan_protocol_NodeStatus msg;
msg.uptime_sec = AP_HAL::millis() / 1000;
msg.health = UAVCAN_PROTOCOL_NODESTATUS_HEALTH_OK;
msg.mode = UAVCAN_PROTOCOL_NODESTATUS_MODE_OPERATIONAL;
msg.sub_mode = 0;
msg.vendor_specific_status_code = 0;
node_status_pub->broadcast(msg);
}
uint32_t last_status_send = 0;
void DroneCAN_sniffer::loop(void)
{
if (AP_HAL::millis() - last_status_send > 1000) {
last_status_send = AP_HAL::millis();
send_node_status();
}
_uavcan_iface_mgr->process(1);
}
void DroneCAN_sniffer::print_stats(void)
{
hal.console->printf("%lu\n", (unsigned long)AP_HAL::micros());
for (uint16_t i=0;i<100;i++) {
if (counters[i].msg_name == nullptr) {
break;
}
hal.console->printf("%s: %lu AVG_US: %lu MAX_US: %lu MIN_US: %lu\n", counters[i].msg_name,
(long unsigned)counters[i].count,
(long unsigned)counters[i].avg_period_us,
(long unsigned)counters[i].max_period_us,
(long unsigned)counters[i].min_period_us);
counters[i].count = 0;
counters[i].avg_period_us = 0;
counters[i].max_period_us = 0;
counters[i].min_period_us = 0;
}
hal.console->printf("\n");
}
static DroneCAN_sniffer sniffer;
DroneCAN_sniffer::DroneCAN_sniffer()
{}
DroneCAN_sniffer::~DroneCAN_sniffer()
{
}
void setup(void)
{
hal.scheduler->delay(2000);
hal.console->printf("Starting DroneCAN sniffer\n");
sniffer.init();
}
void loop(void)
{
sniffer.loop();
static uint32_t last_print_ms;
uint32_t now = AP_HAL::millis();
if (now - last_print_ms >= 1000) {
last_print_ms = now;
sniffer.print_stats();
}
// auto-reboot for --upload
if (hal.console->available() > 50) {
hal.console->printf("rebooting\n");
hal.console->discard_input();
hal.scheduler->reboot(false);
}
hal.console->discard_input();
}
AP_HAL_MAIN();
#else
#include <stdio.h>
const AP_HAL::HAL& hal = AP_HAL::get_HAL();
static void loop() { }
static void setup()
{
printf("Board not currently supported\n");
}
AP_HAL_MAIN();
#endif