Ardupilot2/ArduPlane/is_flying.cpp
Tom Pittenger 7cde90553d Plane: new param CRASH_ACC_THRESH
@Description: X-Axis deceleration threshold to notify the crash detector that there was a possible impact which helps disarm the motor quickly after a crash. This value should be much higher than normal negative x-axis forces during normal flight, check flight log files to determine the average IMU.x values for your aircraft and motor type. Higher value means less sensative (triggers on higher impact). For electric planes that don't vibrate much during fight a value of 25 is good (that's about 2.5G). For petrol/nitro planes you'll want a higher value. Set to 0 to disable the collision detector.
2016-01-02 09:58:32 +11:00

280 lines
10 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include "Plane.h"
/*
is_flying and crash detection logic
*/
#define CRASH_DETECTION_DELAY_MS 300
#define IS_FLYING_IMPACT_TIMER_MS 3000
/*
Do we think we are flying?
Probabilistic method where a bool is low-passed and considered a probability.
*/
void Plane::update_is_flying_5Hz(void)
{
float aspeed;
bool is_flying_bool;
uint32_t now_ms = AP_HAL::millis();
uint32_t ground_speed_thresh_cm = (g.min_gndspeed_cm > 0) ? ((uint32_t)(g.min_gndspeed_cm*0.9f)) : 500;
bool gps_confirmed_movement = (gps.status() >= AP_GPS::GPS_OK_FIX_3D) &&
(gps.ground_speed_cm() >= ground_speed_thresh_cm);
// airspeed at least 75% of stall speed?
bool airspeed_movement = ahrs.airspeed_estimate(&aspeed) && (aspeed >= (aparm.airspeed_min*0.75f));
if(arming.is_armed()) {
// when armed assuming flying and we need overwhelming evidence that we ARE NOT flying
// short drop-outs of GPS are common during flight due to banking which points the antenna in different directions
bool gps_lost_recently = (gps.last_fix_time_ms() > 0) && // we have locked to GPS before
(gps.status() < AP_GPS::GPS_OK_FIX_2D) && // and it's lost now
(now_ms - gps.last_fix_time_ms() < 5000); // but it wasn't that long ago (<5s)
if ((auto_state.last_flying_ms > 0) && gps_lost_recently) {
// we've flown before, remove GPS constraints temporarily and only use airspeed
is_flying_bool = airspeed_movement; // moving through the air
} else {
// we've never flown yet, require good GPS movement
is_flying_bool = airspeed_movement || // moving through the air
gps_confirmed_movement; // locked and we're moving
}
if (control_mode == AUTO) {
/*
make is_flying() more accurate during various auto modes
*/
// Detect X-axis deceleration for probable ground impacts.
// Limit the max probability so it can decay faster. This
// will not change the is_flying state, anything above 0.1
// is "true", it just allows it to decay faster once we decide we
// aren't flying using the normal schemes
if (g.crash_accel_threshold == 0) {
crash_state.impact_detected = false;
} else if (ins.get_accel_peak_hold_neg().x < -(g.crash_accel_threshold)) {
// large deceleration detected, lets lower confidence VERY quickly
crash_state.impact_detected = true;
crash_state.impact_timer_ms = now_ms;
if (isFlyingProbability > 0.2f) {
isFlyingProbability = 0.2f;
}
} else if (crash_state.impact_detected &&
(now_ms - crash_state.impact_timer_ms > IS_FLYING_IMPACT_TIMER_MS)) {
// no impacts seen in a while, clear the flag so we stop clipping isFlyingProbability
crash_state.impact_detected = false;
}
switch (flight_stage)
{
case AP_SpdHgtControl::FLIGHT_TAKEOFF:
break;
case AP_SpdHgtControl::FLIGHT_NORMAL:
if (in_preLaunch_flight_stage()) {
// while on the ground, an uncalibrated airspeed sensor can drift to 7m/s so
// ensure we aren't showing a false positive.
is_flying_bool = false;
crash_state.is_crashed = false;
auto_state.started_flying_in_auto_ms = 0;
}
break;
case AP_SpdHgtControl::FLIGHT_LAND_APPROACH:
if (fabsf(auto_state.sink_rate) > 0.2f) {
is_flying_bool = true;
}
break;
case AP_SpdHgtControl::FLIGHT_LAND_FINAL:
break;
case AP_SpdHgtControl::FLIGHT_LAND_ABORT:
if (auto_state.sink_rate < -0.5f) {
// steep climb
is_flying_bool = true;
}
break;
default:
break;
} // switch
}
} else {
// when disarmed assume not flying and need overwhelming evidence that we ARE flying
is_flying_bool = airspeed_movement && gps_confirmed_movement;
if ((control_mode == AUTO) &&
((flight_stage == AP_SpdHgtControl::FLIGHT_TAKEOFF) ||
(flight_stage == AP_SpdHgtControl::FLIGHT_LAND_FINAL)) ) {
is_flying_bool = false;
}
}
if (!crash_state.impact_detected || !is_flying_bool) {
// when impact is detected, enforce a clip. Only allow isFlyingProbability to go down, not up.
// low-pass the result.
// coef=0.15f @ 5Hz takes 3.0s to go from 100% down to 10% (or 0% up to 90%)
isFlyingProbability = (0.85f * isFlyingProbability) + (0.15f * (float)is_flying_bool);
}
/*
update last_flying_ms so we always know how long we have not
been flying for. This helps for crash detection and auto-disarm
*/
bool new_is_flying = is_flying();
// we are flying, note the time
if (new_is_flying) {
auto_state.last_flying_ms = now_ms;
if (!previous_is_flying) {
// just started flying in any mode
started_flying_ms = now_ms;
}
if ((control_mode == AUTO) &&
((auto_state.started_flying_in_auto_ms == 0) || !previous_is_flying) ) {
// We just started flying, note that time also
auto_state.started_flying_in_auto_ms = now_ms;
}
}
previous_is_flying = new_is_flying;
if (should_log(MASK_LOG_MODE)) {
Log_Write_Status();
}
}
/*
return true if we think we are flying. This is a probabilistic
estimate, and needs to be used very carefully. Each use case needs
to be thought about individually.
*/
bool Plane::is_flying(void)
{
if (hal.util->get_soft_armed()) {
// when armed, assume we're flying unless we probably aren't
return (isFlyingProbability >= 0.1f);
}
// when disarmed, assume we're not flying unless we probably are
return (isFlyingProbability >= 0.9f);
}
/*
* Determine if we have crashed
*/
void Plane::crash_detection_update(void)
{
if (control_mode != AUTO || !g.crash_detection_enable)
{
// crash detection is only available in AUTO mode
crash_state.debounce_timer_ms = 0;
crash_state.is_crashed = false;
return;
}
uint32_t now_ms = AP_HAL::millis();
bool crashed_near_land_waypoint = false;
bool crashed = false;
bool been_auto_flying = (auto_state.started_flying_in_auto_ms > 0) &&
(now_ms - auto_state.started_flying_in_auto_ms >= 2500);
if (!is_flying() && been_auto_flying)
{
switch (flight_stage)
{
case AP_SpdHgtControl::FLIGHT_TAKEOFF:
case AP_SpdHgtControl::FLIGHT_NORMAL:
if (!in_preLaunch_flight_stage()) {
crashed = true;
}
// TODO: handle auto missions without NAV_TAKEOFF mission cmd
break;
case AP_SpdHgtControl::FLIGHT_LAND_APPROACH:
crashed = true;
// when altitude gets low, we automatically progress to FLIGHT_LAND_FINAL
// so ground crashes most likely can not be triggered from here. However,
// a crash into a tree would be caught here.
break;
case AP_SpdHgtControl::FLIGHT_LAND_FINAL:
// We should be nice and level-ish in this flight stage. If not, we most
// likely had a crazy landing. Throttle is inhibited already at the flare
// but go ahead and notify GCS and perform any additional post-crash actions.
// Declare a crash if we are oriented more that 60deg in pitch or roll
if (!crash_state.checkedHardLanding && // only check once
(fabsf(ahrs.roll_sensor) > 6000 || fabsf(ahrs.pitch_sensor) > 6000)) {
crashed = true;
// did we "crash" within 75m of the landing location? Probably just a hard landing
crashed_near_land_waypoint =
get_distance(current_loc, mission.get_current_nav_cmd().content.location) < 75;
// trigger hard landing event right away, or never again. This inhibits a false hard landing
// event when, for example, a minute after a good landing you pick the plane up and
// this logic is still running and detects the plane is on its side as you carry it.
crash_state.debounce_timer_ms = now_ms + CRASH_DETECTION_DELAY_MS;
}
crash_state.checkedHardLanding = true;
break;
default:
break;
} // switch
} else {
crash_state.checkedHardLanding = false;
}
if (!crashed) {
// reset timer
crash_state.debounce_timer_ms = 0;
} else if (crash_state.debounce_timer_ms == 0) {
// start timer
crash_state.debounce_timer_ms = now_ms;
} else if ((now_ms - crash_state.debounce_timer_ms >= CRASH_DETECTION_DELAY_MS) && !crash_state.is_crashed) {
crash_state.is_crashed = true;
if (g.crash_detection_enable == CRASH_DETECT_ACTION_BITMASK_DISABLED) {
if (crashed_near_land_waypoint) {
gcs_send_text(MAV_SEVERITY_CRITICAL, "Hard landing detected. No action taken");
} else {
gcs_send_text(MAV_SEVERITY_EMERGENCY, "Crash detected. No action taken");
}
}
else {
if (g.crash_detection_enable & CRASH_DETECT_ACTION_BITMASK_DISARM) {
disarm_motors();
}
auto_state.land_complete = true;
if (crashed_near_land_waypoint) {
gcs_send_text(MAV_SEVERITY_CRITICAL, "Hard landing detected");
} else {
gcs_send_text(MAV_SEVERITY_EMERGENCY, "Crash detected");
}
}
}
}
/*
* return true if we are in a pre-launch phase of an auto-launch, typically used in bungee launches
*/
bool Plane::in_preLaunch_flight_stage(void) {
return (control_mode == AUTO &&
throttle_suppressed &&
flight_stage == AP_SpdHgtControl::FLIGHT_NORMAL &&
mission.get_current_nav_cmd().id == MAV_CMD_NAV_TAKEOFF);
}