Ardupilot2/libraries/AC_AutoTune/AC_AutoTune.cpp
Randy Mackay d1dda86f60 AC_AutoTune: report step in lower case
also shortens displayed accuracy to 0.1deg and removes one pair of brackets
we should use lower case for reporting because it is easier to read and it takes up less space when displayed on MP's HUD (and probably other GCSs too)
2021-02-06 14:45:53 +09:00

1780 lines
75 KiB
C++

#include "AC_AutoTune.h"
#include <GCS_MAVLink/GCS.h>
#include <AP_Scheduler/AP_Scheduler.h>
/*
* autotune support for multicopters
*
* Instructions:
* 1) Set up one flight mode switch position to be AltHold.
* 2) Set the Ch7 Opt or Ch8 Opt to AutoTune to allow you to turn the auto tuning on/off with the ch7 or ch8 switch.
* 3) Ensure the ch7 or ch8 switch is in the LOW position.
* 4) Wait for a calm day and go to a large open area.
* 5) Take off and put the vehicle into AltHold mode at a comfortable altitude.
* 6) Set the ch7/ch8 switch to the HIGH position to engage auto tuning:
* a) You will see it twitch about 20 degrees left and right for a few minutes, then it will repeat forward and back.
* b) Use the roll and pitch stick at any time to reposition the copter if it drifts away (it will use the original PID gains during repositioning and between tests).
* When you release the sticks it will continue auto tuning where it left off.
* c) Move the ch7/ch8 switch into the LOW position at any time to abandon the autotuning and return to the origin PIDs.
* d) Make sure that you do not have any trim set on your transmitter or the autotune may not get the signal that the sticks are centered.
* 7) When the tune completes the vehicle will change back to the original PID gains.
* 8) Put the ch7/ch8 switch into the LOW position then back to the HIGH position to test the tuned PID gains.
* 9) Put the ch7/ch8 switch into the LOW position to fly using the original PID gains.
* 10) If you are happy with the autotuned PID gains, leave the ch7/ch8 switch in the HIGH position, land and disarm to save the PIDs permanently.
* If you DO NOT like the new PIDS, switch ch7/ch8 LOW to return to the original PIDs. The gains will not be saved when you disarm
*
* What it's doing during each "twitch":
* a) invokes 90 deg/sec rate request
* b) records maximum "forward" roll rate and bounce back rate
* c) when copter reaches 20 degrees or 1 second has passed, it commands level
* d) tries to keep max rotation rate between 80% ~ 100% of requested rate (90deg/sec) by adjusting rate P
* e) increases rate D until the bounce back becomes greater than 10% of requested rate (90deg/sec)
* f) decreases rate D until the bounce back becomes less than 10% of requested rate (90deg/sec)
* g) increases rate P until the max rotate rate becomes greater than the request rate (90deg/sec)
* h) invokes a 20deg angle request on roll or pitch
* i) increases stab P until the maximum angle becomes greater than 110% of the requested angle (20deg)
* j) decreases stab P by 25%
*
*/
#define AUTOTUNE_AXIS_BITMASK_ROLL 1
#define AUTOTUNE_AXIS_BITMASK_PITCH 2
#define AUTOTUNE_AXIS_BITMASK_YAW 4
#define AUTOTUNE_PILOT_OVERRIDE_TIMEOUT_MS 500 // restart tuning if pilot has left sticks in middle for 2 seconds
#define AUTOTUNE_TESTING_STEP_TIMEOUT_MS 1000U // timeout for tuning mode's testing step
#if APM_BUILD_TYPE(APM_BUILD_ArduPlane)
# define AUTOTUNE_LEVEL_ANGLE_CD 500 // angle which qualifies as level (Plane uses more relaxed 5deg)
# define AUTOTUNE_LEVEL_RATE_RP_CD 1000 // rate which qualifies as level for roll and pitch (Plane uses more relaxed 10deg/sec)
#else
# define AUTOTUNE_LEVEL_ANGLE_CD 250 // angle which qualifies as level
# define AUTOTUNE_LEVEL_RATE_RP_CD 500 // rate which qualifies as level for roll and pitch
#endif
#define AUTOTUNE_LEVEL_RATE_Y_CD 750 // rate which qualifies as level for yaw
#define AUTOTUNE_REQUIRED_LEVEL_TIME_MS 500 // time we require the aircraft to be level
#define AUTOTUNE_LEVEL_TIMEOUT_MS 2000 // time out for level (relaxes criteria)
#define AUTOTUNE_LEVEL_WARNING_INTERVAL_MS 5000 // level failure warning messages sent at this interval to users
#define AUTOTUNE_RD_STEP 0.05f // minimum increment when increasing/decreasing Rate D term
#define AUTOTUNE_RP_STEP 0.05f // minimum increment when increasing/decreasing Rate P term
#define AUTOTUNE_SP_STEP 0.05f // minimum increment when increasing/decreasing Stab P term
#define AUTOTUNE_PI_RATIO_FOR_TESTING 0.1f // I is set 10x smaller than P during testing
#define AUTOTUNE_PI_RATIO_FINAL 1.0f // I is set 1x P after testing
#define AUTOTUNE_YAW_PI_RATIO_FINAL 0.1f // I is set 1x P after testing
#define AUTOTUNE_RD_MAX 0.200f // maximum Rate D value
#define AUTOTUNE_RLPF_MIN 1.0f // minimum Rate Yaw filter value
#define AUTOTUNE_RLPF_MAX 5.0f // maximum Rate Yaw filter value
#define AUTOTUNE_RP_MIN 0.01f // minimum Rate P value
#define AUTOTUNE_RP_MAX 2.0f // maximum Rate P value
#define AUTOTUNE_SP_MAX 20.0f // maximum Stab P value
#define AUTOTUNE_SP_MIN 0.5f // maximum Stab P value
#define AUTOTUNE_RP_ACCEL_MIN 4000.0f // Minimum acceleration for Roll and Pitch
#define AUTOTUNE_Y_ACCEL_MIN 1000.0f // Minimum acceleration for Yaw
#define AUTOTUNE_Y_FILT_FREQ 10.0f // Autotune filter frequency when testing Yaw
#define AUTOTUNE_SUCCESS_COUNT 4 // The number of successful iterations we need to freeze at current gains
#define AUTOTUNE_D_UP_DOWN_MARGIN 0.2f // The margin below the target that we tune D in
#define AUTOTUNE_RD_BACKOFF 1.0f // Rate D gains are reduced to 50% of their maximum value discovered during tuning
#define AUTOTUNE_RP_BACKOFF 1.0f // Rate P gains are reduced to 97.5% of their maximum value discovered during tuning
#define AUTOTUNE_SP_BACKOFF 0.9f // Stab P gains are reduced to 90% of their maximum value discovered during tuning
#define AUTOTUNE_ACCEL_RP_BACKOFF 1.0f // back off from maximum acceleration
#define AUTOTUNE_ACCEL_Y_BACKOFF 1.0f // back off from maximum acceleration
// roll and pitch axes
#define AUTOTUNE_TARGET_ANGLE_RLLPIT_CD 2000 // target angle during TESTING_RATE step that will cause us to move to next step
#define AUTOTUNE_TARGET_RATE_RLLPIT_CDS 18000 // target roll/pitch rate during AUTOTUNE_STEP_TWITCHING step
#define AUTOTUNE_TARGET_MIN_ANGLE_RLLPIT_CD 1000 // minimum target angle during TESTING_RATE step that will cause us to move to next step
#define AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS 4500 // target roll/pitch rate during AUTOTUNE_STEP_TWITCHING step
// yaw axis
#define AUTOTUNE_TARGET_ANGLE_YAW_CD 3000 // target angle during TESTING_RATE step that will cause us to move to next step
#define AUTOTUNE_TARGET_RATE_YAW_CDS 9000 // target yaw rate during AUTOTUNE_STEP_TWITCHING step
#define AUTOTUNE_TARGET_MIN_ANGLE_YAW_CD 500 // minimum target angle during TESTING_RATE step that will cause us to move to next step
#define AUTOTUNE_TARGET_MIN_RATE_YAW_CDS 1500 // minimum target yaw rate during AUTOTUNE_STEP_TWITCHING step
// Auto Tune message ids for ground station
#define AUTOTUNE_MESSAGE_STARTED 0
#define AUTOTUNE_MESSAGE_STOPPED 1
#define AUTOTUNE_MESSAGE_SUCCESS 2
#define AUTOTUNE_MESSAGE_FAILED 3
#define AUTOTUNE_MESSAGE_SAVED_GAINS 4
#define AUTOTUNE_MESSAGE_TESTING 5
#define AUTOTUNE_ANNOUNCE_INTERVAL_MS 2000
// second table of user settable parameters for quadplanes, this
// allows us to go beyond the 64 parameter limit
const AP_Param::GroupInfo AC_AutoTune::var_info[] = {
// @Param: AXES
// @DisplayName: Autotune axis bitmask
// @Description: 1-byte bitmap of axes to autotune
// @Values: 7:All,1:Roll Only,2:Pitch Only,4:Yaw Only,3:Roll and Pitch,5:Roll and Yaw,6:Pitch and Yaw
// @Bitmask: 0:Roll,1:Pitch,2:Yaw
// @User: Standard
AP_GROUPINFO("AXES", 1, AC_AutoTune, axis_bitmask, 7), // AUTOTUNE_AXIS_BITMASK_DEFAULT
// @Param: AGGR
// @DisplayName: Autotune aggressiveness
// @Description: Autotune aggressiveness. Defines the bounce back used to detect size of the D term.
// @Range: 0.05 0.10
// @User: Standard
AP_GROUPINFO("AGGR", 2, AC_AutoTune, aggressiveness, 0.1f),
// @Param: MIN_D
// @DisplayName: AutoTune minimum D
// @Description: Defines the minimum D gain
// @Range: 0.001 0.006
// @User: Standard
AP_GROUPINFO("MIN_D", 3, AC_AutoTune, min_d, 0.001f),
AP_GROUPEND
};
AC_AutoTune::AC_AutoTune()
{
AP_Param::setup_object_defaults(this, var_info);
}
// autotune_init - should be called when autotune mode is selected
bool AC_AutoTune::init_internals(bool _use_poshold,
AC_AttitudeControl_Multi *_attitude_control,
AC_PosControl *_pos_control,
AP_AHRS_View *_ahrs_view,
AP_InertialNav *_inertial_nav)
{
bool success = true;
use_poshold = _use_poshold;
attitude_control = _attitude_control;
pos_control = _pos_control;
ahrs_view = _ahrs_view;
inertial_nav = _inertial_nav;
motors = AP_Motors::get_singleton();
switch (mode) {
case FAILED:
// autotune has been run but failed so reset state to uninitialized
mode = UNINITIALISED;
// fall through to restart the tuning
FALLTHROUGH;
case UNINITIALISED:
// autotune has never been run
success = start();
if (success) {
// so store current gains as original gains
backup_gains_and_initialise();
// advance mode to tuning
mode = TUNING;
// send message to ground station that we've started tuning
update_gcs(AUTOTUNE_MESSAGE_STARTED);
}
break;
case TUNING:
// we are restarting tuning after the user must have switched ch7/ch8 off so we restart tuning where we left off
success = start();
if (success) {
// reset gains to tuning-start gains (i.e. low I term)
load_gains(GAIN_INTRA_TEST);
AP::logger().Write_Event(LogEvent::AUTOTUNE_RESTART);
update_gcs(AUTOTUNE_MESSAGE_STARTED);
}
break;
case SUCCESS:
// we have completed a tune and the pilot wishes to test the new gains in the current flight mode
// so simply apply tuning gains (i.e. do not change flight mode)
load_gains(GAIN_TUNED);
update_gcs(AUTOTUNE_MESSAGE_TESTING);
AP::logger().Write_Event(LogEvent::AUTOTUNE_PILOT_TESTING);
break;
}
have_position = false;
return success;
}
// stop - should be called when the ch7/ch8 switch is switched OFF
void AC_AutoTune::stop()
{
// set gains to their original values
load_gains(GAIN_ORIGINAL);
// re-enable angle-to-rate request limits
attitude_control->use_sqrt_controller(true);
update_gcs(AUTOTUNE_MESSAGE_STOPPED);
AP::logger().Write_Event(LogEvent::AUTOTUNE_OFF);
// Note: we leave the mode as it was so that we know how the autotune ended
// we expect the caller will change the flight mode back to the flight mode indicated by the flight mode switch
}
// start - Initialize autotune flight mode
bool AC_AutoTune::start(void)
{
if (!motors->armed()) {
return false;
}
// initialize vertical speeds and leash lengths
init_z_limits();
// initialise position and desired velocity
if (!pos_control->is_active_z()) {
pos_control->set_alt_target_to_current_alt();
pos_control->set_desired_velocity_z(inertial_nav->get_velocity_z());
}
return true;
}
const char *AC_AutoTune::level_issue_string() const
{
switch (level_problem.issue) {
case LevelIssue::NONE:
return "None";
case LevelIssue::ANGLE_ROLL:
return "Angle(R)";
case LevelIssue::ANGLE_PITCH:
return "Angle(P)";
case LevelIssue::ANGLE_YAW:
return "Angle(Y)";
case LevelIssue::RATE_ROLL:
return "Rate(R)";
case LevelIssue::RATE_PITCH:
return "Rate(P)";
case LevelIssue::RATE_YAW:
return "Rate(Y)";
}
return "Bug";
}
void AC_AutoTune::send_step_string()
{
if (pilot_override) {
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Paused: Pilot Override Active");
return;
}
switch (step) {
case WAITING_FOR_LEVEL:
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Leveling (%s %4.1f > %4.1f)", level_issue_string(), (double)(level_problem.current*0.01f), (double)(level_problem.maximum*0.01f));
return;
case UPDATE_GAINS:
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Updating Gains");
return;
case TWITCHING:
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Twitching");
return;
}
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: unknown step");
}
const char *AC_AutoTune::type_string() const
{
switch (tune_type) {
case RD_UP:
return "Rate D Up";
case RD_DOWN:
return "Rate D Down";
case RP_UP:
return "Rate P Up";
case SP_DOWN:
return "Angle P Down";
case SP_UP:
return "Angle P Up";
}
return "Bug";
}
void AC_AutoTune::do_gcs_announcements()
{
const uint32_t now = AP_HAL::millis();
if (now - announce_time < AUTOTUNE_ANNOUNCE_INTERVAL_MS) {
return;
}
float tune_rp = 0.0f;
float tune_rd = 0.0f;
float tune_sp = 0.0f;
float tune_accel = 0.0f;
char axis_char = '?';
switch (axis) {
case ROLL:
tune_rp = tune_roll_rp;
tune_rd = tune_roll_rd;
tune_sp = tune_roll_sp;
tune_accel = tune_roll_accel;
axis_char = 'R';
break;
case PITCH:
tune_rp = tune_pitch_rp;
tune_rd = tune_pitch_rd;
tune_sp = tune_pitch_sp;
tune_accel = tune_pitch_accel;
axis_char = 'P';
break;
case YAW:
tune_rp = tune_yaw_rp;
tune_rd = tune_yaw_rLPF;
tune_sp = tune_yaw_sp;
tune_accel = tune_yaw_accel;
axis_char = 'Y';
break;
}
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: (%c) %s", axis_char, type_string());
send_step_string();
if (!is_zero(lean_angle)) {
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: lean=%f target=%f", (double)lean_angle, (double)target_angle);
}
if (!is_zero(rotation_rate)) {
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: rotation=%f target=%f", (double)(rotation_rate*0.01f), (double)(target_rate*0.01f));
}
switch (tune_type) {
case RD_UP:
case RD_DOWN:
case RP_UP:
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: p=%f d=%f", (double)tune_rp, (double)tune_rd);
break;
case SP_DOWN:
case SP_UP:
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: p=%f accel=%f", (double)tune_sp, (double)tune_accel);
break;
}
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: success %u/%u", counter, AUTOTUNE_SUCCESS_COUNT);
announce_time = now;
}
// run - runs the autotune flight mode
// should be called at 100hz or more
void AC_AutoTune::run()
{
// initialize vertical speeds and acceleration
init_z_limits();
// if not auto armed or motor interlock not enabled set throttle to zero and exit immediately
// this should not actually be possible because of the init() checks
if (!motors->armed() || !motors->get_interlock()) {
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE);
attitude_control->set_throttle_out(0.0f, true, 0.0f);
pos_control->relax_alt_hold_controllers(0.0f);
return;
}
float target_roll_cd, target_pitch_cd, target_yaw_rate_cds;
get_pilot_desired_rp_yrate_cd(target_roll_cd, target_pitch_cd, target_yaw_rate_cds);
// get pilot desired climb rate
const float target_climb_rate_cms = get_pilot_desired_climb_rate_cms();
const bool zero_rp_input = is_zero(target_roll_cd) && is_zero(target_pitch_cd);
const uint32_t now = AP_HAL::millis();
if (!zero_rp_input || !is_zero(target_yaw_rate_cds) || !is_zero(target_climb_rate_cms)) {
if (!pilot_override) {
pilot_override = true;
// set gains to their original values
load_gains(GAIN_ORIGINAL);
attitude_control->use_sqrt_controller(true);
}
// reset pilot override time
override_time = now;
if (!zero_rp_input) {
// only reset position on roll or pitch input
have_position = false;
}
} else if (pilot_override) {
// check if we should resume tuning after pilot's override
if (now - override_time > AUTOTUNE_PILOT_OVERRIDE_TIMEOUT_MS) {
pilot_override = false; // turn off pilot override
// set gains to their intra-test values (which are very close to the original gains)
// load_gains(GAIN_INTRA_TEST); //I think we should be keeping the originals here to let the I term settle quickly
step = WAITING_FOR_LEVEL; // set tuning step back from beginning
step_start_time_ms = now;
level_start_time_ms = now;
desired_yaw_cd = ahrs_view->yaw_sensor;
}
}
if (pilot_override) {
if (now - last_pilot_override_warning > 1000) {
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: pilot overrides active");
last_pilot_override_warning = now;
}
}
if (zero_rp_input) {
// pilot input on throttle and yaw will still use position hold if enabled
get_poshold_attitude(target_roll_cd, target_pitch_cd, desired_yaw_cd);
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// if pilot override call attitude controller
if (pilot_override || mode != TUNING) {
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(target_roll_cd, target_pitch_cd, target_yaw_rate_cds);
} else {
// somehow get attitude requests from autotuning
control_attitude();
// tell the user what's going on
do_gcs_announcements();
}
// call position controller
pos_control->set_alt_target_from_climb_rate_ff(target_climb_rate_cms, AP::scheduler().get_last_loop_time_s(), false);
pos_control->update_z_controller();
}
bool AC_AutoTune::check_level(const LevelIssue issue, const float current, const float maximum)
{
if (current > maximum) {
level_problem.current = current;
level_problem.maximum = maximum;
level_problem.issue = issue;
return false;
}
return true;
}
bool AC_AutoTune::currently_level()
{
float threshold_mul = 1.0;
uint32_t now_ms = AP_HAL::millis();
if (now_ms - level_start_time_ms > AUTOTUNE_LEVEL_TIMEOUT_MS) {
// after a long wait we use looser threshold, to allow tuning
// with poor initial gains
threshold_mul *= 2;
}
// display warning if vehicle fails to level
if ((now_ms - level_start_time_ms > AUTOTUNE_LEVEL_WARNING_INTERVAL_MS) &&
(now_ms - level_fail_warning_time_ms > AUTOTUNE_LEVEL_WARNING_INTERVAL_MS)) {
gcs().send_text(MAV_SEVERITY_CRITICAL, "AutoTune: failing to level, manual tune may be required");
level_fail_warning_time_ms = now_ms;
}
if (!check_level(LevelIssue::ANGLE_ROLL,
fabsf(ahrs_view->roll_sensor - roll_cd),
threshold_mul*AUTOTUNE_LEVEL_ANGLE_CD)) {
return false;
}
if (!check_level(LevelIssue::ANGLE_PITCH,
fabsf(ahrs_view->pitch_sensor - pitch_cd),
threshold_mul*AUTOTUNE_LEVEL_ANGLE_CD)) {
return false;
}
if (!check_level(LevelIssue::ANGLE_YAW,
fabsf(wrap_180_cd(ahrs_view->yaw_sensor - desired_yaw_cd)),
threshold_mul*AUTOTUNE_LEVEL_ANGLE_CD)) {
return false;
}
if (!check_level(LevelIssue::RATE_ROLL,
(ToDeg(ahrs_view->get_gyro().x) * 100.0f),
threshold_mul*AUTOTUNE_LEVEL_RATE_RP_CD)) {
return false;
}
if (!check_level(LevelIssue::RATE_PITCH,
(ToDeg(ahrs_view->get_gyro().y) * 100.0f),
threshold_mul*AUTOTUNE_LEVEL_RATE_RP_CD)) {
return false;
}
if (!check_level(LevelIssue::RATE_YAW,
(ToDeg(ahrs_view->get_gyro().z) * 100.0f),
threshold_mul*AUTOTUNE_LEVEL_RATE_Y_CD)) {
return false;
}
return true;
}
// attitude_controller - sets attitude control targets during tuning
void AC_AutoTune::control_attitude()
{
rotation_rate = 0.0f; // rotation rate in radians/second
lean_angle = 0.0f;
const float direction_sign = positive_direction ? 1.0f : -1.0f;
const uint32_t now = AP_HAL::millis();
// check tuning step
switch (step) {
case WAITING_FOR_LEVEL: {
// Note: we should be using intra-test gains (which are very close to the original gains but have lower I)
// re-enable rate limits
attitude_control->use_sqrt_controller(true);
get_poshold_attitude(roll_cd, pitch_cd, desired_yaw_cd);
// hold level attitude
attitude_control->input_euler_angle_roll_pitch_yaw(roll_cd, pitch_cd, desired_yaw_cd, true);
// hold the copter level for 0.5 seconds before we begin a twitch
// reset counter if we are no longer level
if (!currently_level()) {
step_start_time_ms = now;
}
// if we have been level for a sufficient amount of time (0.5 seconds) move onto tuning step
if (now - step_start_time_ms > AUTOTUNE_REQUIRED_LEVEL_TIME_MS) {
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Twitch");
// initiate variables for next step
step = TWITCHING;
step_start_time_ms = now;
step_time_limit_ms = AUTOTUNE_TESTING_STEP_TIMEOUT_MS;
twitch_first_iter = true;
test_rate_max = 0.0f;
test_rate_min = 0.0f;
test_angle_max = 0.0f;
test_angle_min = 0.0f;
rotation_rate_filt.reset(0.0f);
rate_max = 0.0f;
// set gains to their to-be-tested values
load_gains(GAIN_TWITCH);
} else {
// when waiting for level we use the intra-test gains
load_gains(GAIN_INTRA_TEST);
}
float target_max_rate;
switch (axis) {
case ROLL:
target_max_rate = MAX(AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, step_scaler*AUTOTUNE_TARGET_RATE_RLLPIT_CDS);
target_rate = constrain_float(ToDeg(attitude_control->max_rate_step_bf_roll())*100.0f, AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, target_max_rate);
target_angle = constrain_float(ToDeg(attitude_control->max_angle_step_bf_roll())*100.0f, AUTOTUNE_TARGET_MIN_ANGLE_RLLPIT_CD, AUTOTUNE_TARGET_ANGLE_RLLPIT_CD);
abort_angle = AUTOTUNE_TARGET_ANGLE_RLLPIT_CD;
start_rate = ToDeg(ahrs_view->get_gyro().x) * 100.0f;
start_angle = ahrs_view->roll_sensor;
rotation_rate_filt.set_cutoff_frequency(attitude_control->get_rate_roll_pid().filt_D_hz()*2.0f);
break;
case PITCH:
target_max_rate = MAX(AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, step_scaler*AUTOTUNE_TARGET_RATE_RLLPIT_CDS);
target_rate = constrain_float(ToDeg(attitude_control->max_rate_step_bf_pitch())*100.0f, AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, target_max_rate);
target_angle = constrain_float(ToDeg(attitude_control->max_angle_step_bf_pitch())*100.0f, AUTOTUNE_TARGET_MIN_ANGLE_RLLPIT_CD, AUTOTUNE_TARGET_ANGLE_RLLPIT_CD);
abort_angle = AUTOTUNE_TARGET_ANGLE_RLLPIT_CD;
start_rate = ToDeg(ahrs_view->get_gyro().y) * 100.0f;
start_angle = ahrs_view->pitch_sensor;
rotation_rate_filt.set_cutoff_frequency(attitude_control->get_rate_pitch_pid().filt_D_hz()*2.0f);
break;
case YAW:
target_max_rate = MAX(AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, step_scaler*AUTOTUNE_TARGET_RATE_YAW_CDS);
target_rate = constrain_float(ToDeg(attitude_control->max_rate_step_bf_yaw()*0.75f)*100.0f, AUTOTUNE_TARGET_MIN_RATE_YAW_CDS, target_max_rate);
target_angle = constrain_float(ToDeg(attitude_control->max_angle_step_bf_yaw()*0.75f)*100.0f, AUTOTUNE_TARGET_MIN_ANGLE_YAW_CD, AUTOTUNE_TARGET_ANGLE_YAW_CD);
abort_angle = AUTOTUNE_TARGET_ANGLE_YAW_CD;
start_rate = ToDeg(ahrs_view->get_gyro().z) * 100.0f;
start_angle = ahrs_view->yaw_sensor;
rotation_rate_filt.set_cutoff_frequency(AUTOTUNE_Y_FILT_FREQ);
break;
}
if ((tune_type == SP_DOWN) || (tune_type == SP_UP)) {
rotation_rate_filt.reset(start_rate);
} else {
rotation_rate_filt.reset(0);
}
break;
}
case TWITCHING: {
// Run the twitching step
load_gains(GAIN_TWITCH);
// disable rate limits
attitude_control->use_sqrt_controller(false);
// hold current attitude
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, 0.0f);
if ((tune_type == SP_DOWN) || (tune_type == SP_UP)) {
// step angle targets on first iteration
if (twitch_first_iter) {
twitch_first_iter = false;
// Testing increasing stabilize P gain so will set lean angle target
switch (axis) {
case ROLL:
// request roll to 20deg
attitude_control->input_angle_step_bf_roll_pitch_yaw(direction_sign * target_angle, 0.0f, 0.0f);
break;
case PITCH:
// request pitch to 20deg
attitude_control->input_angle_step_bf_roll_pitch_yaw(0.0f, direction_sign * target_angle, 0.0f);
break;
case YAW:
// request pitch to 20deg
attitude_control->input_angle_step_bf_roll_pitch_yaw(0.0f, 0.0f, direction_sign * target_angle);
break;
}
}
} else {
// Testing rate P and D gains so will set body-frame rate targets.
// Rate controller will use existing body-frame rates and convert to motor outputs
// for all axes except the one we override here.
switch (axis) {
case ROLL:
// override body-frame roll rate
attitude_control->rate_bf_roll_target(direction_sign * target_rate + start_rate);
break;
case PITCH:
// override body-frame pitch rate
attitude_control->rate_bf_pitch_target(direction_sign * target_rate + start_rate);
break;
case YAW:
// override body-frame yaw rate
attitude_control->rate_bf_yaw_target(direction_sign * target_rate + start_rate);
break;
}
}
// capture this iterations rotation rate and lean angle
float gyro_reading = 0;
switch (axis) {
case ROLL:
gyro_reading = ahrs_view->get_gyro().x;
lean_angle = direction_sign * (ahrs_view->roll_sensor - (int32_t)start_angle);
break;
case PITCH:
gyro_reading = ahrs_view->get_gyro().y;
lean_angle = direction_sign * (ahrs_view->pitch_sensor - (int32_t)start_angle);
break;
case YAW:
gyro_reading = ahrs_view->get_gyro().z;
lean_angle = direction_sign * wrap_180_cd(ahrs_view->yaw_sensor-(int32_t)start_angle);
break;
}
// Add filter to measurements
float filter_value;
switch (tune_type) {
case SP_DOWN:
case SP_UP:
filter_value = direction_sign * (ToDeg(gyro_reading) * 100.0f);
break;
default:
filter_value = direction_sign * (ToDeg(gyro_reading) * 100.0f - start_rate);
break;
}
rotation_rate = rotation_rate_filt.apply(filter_value,
AP::scheduler().get_loop_period_s());
switch (tune_type) {
case RD_UP:
case RD_DOWN:
twitching_test_rate(rotation_rate, target_rate, test_rate_min, test_rate_max);
twitching_measure_acceleration(test_accel_max, rotation_rate, rate_max);
twitching_abort_rate(lean_angle, rotation_rate, abort_angle, test_rate_min);
break;
case RP_UP:
twitching_test_rate(rotation_rate, target_rate*(1+0.5f*aggressiveness), test_rate_min, test_rate_max);
twitching_measure_acceleration(test_accel_max, rotation_rate, rate_max);
twitching_abort_rate(lean_angle, rotation_rate, abort_angle, test_rate_min);
break;
case SP_DOWN:
case SP_UP:
twitching_test_angle(lean_angle, rotation_rate, target_angle*(1+0.5f*aggressiveness), test_angle_min, test_angle_max, test_rate_min, test_rate_max);
twitching_measure_acceleration(test_accel_max, rotation_rate - direction_sign * start_rate, rate_max);
break;
}
// Check for failure causing reverse response
if (lean_angle <= -AUTOTUNE_TARGET_MIN_ANGLE_RLLPIT_CD) {
step = WAITING_FOR_LEVEL;
}
// log this iterations lean angle and rotation rate
Log_Write_AutoTuneDetails(lean_angle, rotation_rate);
ahrs_view->Write_Rate(*motors, *attitude_control, *pos_control);
log_pids();
break;
}
case UPDATE_GAINS:
// re-enable rate limits
attitude_control->use_sqrt_controller(true);
// log the latest gains
if ((tune_type == SP_DOWN) || (tune_type == SP_UP)) {
switch (axis) {
case ROLL:
Log_Write_AutoTune(axis, tune_type, target_angle, test_angle_min, test_angle_max, tune_roll_rp, tune_roll_rd, tune_roll_sp, test_accel_max);
break;
case PITCH:
Log_Write_AutoTune(axis, tune_type, target_angle, test_angle_min, test_angle_max, tune_pitch_rp, tune_pitch_rd, tune_pitch_sp, test_accel_max);
break;
case YAW:
Log_Write_AutoTune(axis, tune_type, target_angle, test_angle_min, test_angle_max, tune_yaw_rp, tune_yaw_rLPF, tune_yaw_sp, test_accel_max);
break;
}
} else {
switch (axis) {
case ROLL:
Log_Write_AutoTune(axis, tune_type, target_rate, test_rate_min, test_rate_max, tune_roll_rp, tune_roll_rd, tune_roll_sp, test_accel_max);
break;
case PITCH:
Log_Write_AutoTune(axis, tune_type, target_rate, test_rate_min, test_rate_max, tune_pitch_rp, tune_pitch_rd, tune_pitch_sp, test_accel_max);
break;
case YAW:
Log_Write_AutoTune(axis, tune_type, target_rate, test_rate_min, test_rate_max, tune_yaw_rp, tune_yaw_rLPF, tune_yaw_sp, test_accel_max);
break;
}
}
// Check results after mini-step to increase rate D gain
switch (tune_type) {
case RD_UP:
switch (axis) {
case ROLL:
updating_rate_d_up(tune_roll_rd, min_d, AUTOTUNE_RD_MAX, AUTOTUNE_RD_STEP, tune_roll_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max);
break;
case PITCH:
updating_rate_d_up(tune_pitch_rd, min_d, AUTOTUNE_RD_MAX, AUTOTUNE_RD_STEP, tune_pitch_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max);
break;
case YAW:
updating_rate_d_up(tune_yaw_rLPF, AUTOTUNE_RLPF_MIN, AUTOTUNE_RLPF_MAX, AUTOTUNE_RD_STEP, tune_yaw_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max);
break;
}
break;
// Check results after mini-step to decrease rate D gain
case RD_DOWN:
switch (axis) {
case ROLL:
updating_rate_d_down(tune_roll_rd, min_d, AUTOTUNE_RD_STEP, tune_roll_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max);
break;
case PITCH:
updating_rate_d_down(tune_pitch_rd, min_d, AUTOTUNE_RD_STEP, tune_pitch_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max);
break;
case YAW:
updating_rate_d_down(tune_yaw_rLPF, AUTOTUNE_RLPF_MIN, AUTOTUNE_RD_STEP, tune_yaw_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max);
break;
}
break;
// Check results after mini-step to increase rate P gain
case RP_UP:
switch (axis) {
case ROLL:
updating_rate_p_up_d_down(tune_roll_rd, min_d, AUTOTUNE_RD_STEP, tune_roll_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max);
break;
case PITCH:
updating_rate_p_up_d_down(tune_pitch_rd, min_d, AUTOTUNE_RD_STEP, tune_pitch_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max);
break;
case YAW:
updating_rate_p_up_d_down(tune_yaw_rLPF, AUTOTUNE_RLPF_MIN, AUTOTUNE_RD_STEP, tune_yaw_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max);
break;
}
break;
// Check results after mini-step to increase stabilize P gain
case SP_DOWN:
switch (axis) {
case ROLL:
updating_angle_p_down(tune_roll_sp, AUTOTUNE_SP_MIN, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max);
break;
case PITCH:
updating_angle_p_down(tune_pitch_sp, AUTOTUNE_SP_MIN, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max);
break;
case YAW:
updating_angle_p_down(tune_yaw_sp, AUTOTUNE_SP_MIN, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max);
break;
}
break;
// Check results after mini-step to increase stabilize P gain
case SP_UP:
switch (axis) {
case ROLL:
updating_angle_p_up(tune_roll_sp, AUTOTUNE_SP_MAX, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max);
break;
case PITCH:
updating_angle_p_up(tune_pitch_sp, AUTOTUNE_SP_MAX, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max);
break;
case YAW:
updating_angle_p_up(tune_yaw_sp, AUTOTUNE_SP_MAX, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max);
break;
}
break;
}
// we've complete this step, finalize pids and move to next step
if (counter >= AUTOTUNE_SUCCESS_COUNT) {
// reset counter
counter = 0;
// reset scaling factor
step_scaler = 1.0f;
// move to the next tuning type
switch (tune_type) {
case RD_UP:
tune_type = TuneType(tune_type + 1);
break;
case RD_DOWN:
tune_type = TuneType(tune_type + 1);
switch (axis) {
case ROLL:
tune_roll_rd = MAX(min_d, tune_roll_rd * AUTOTUNE_RD_BACKOFF);
tune_roll_rp = MAX(AUTOTUNE_RP_MIN, tune_roll_rp * AUTOTUNE_RD_BACKOFF);
break;
case PITCH:
tune_pitch_rd = MAX(min_d, tune_pitch_rd * AUTOTUNE_RD_BACKOFF);
tune_pitch_rp = MAX(AUTOTUNE_RP_MIN, tune_pitch_rp * AUTOTUNE_RD_BACKOFF);
break;
case YAW:
tune_yaw_rLPF = MAX(AUTOTUNE_RLPF_MIN, tune_yaw_rLPF * AUTOTUNE_RD_BACKOFF);
tune_yaw_rp = MAX(AUTOTUNE_RP_MIN, tune_yaw_rp * AUTOTUNE_RD_BACKOFF);
break;
}
break;
case RP_UP:
tune_type = TuneType(tune_type + 1);
switch (axis) {
case ROLL:
tune_roll_rp = MAX(AUTOTUNE_RP_MIN, tune_roll_rp * AUTOTUNE_RP_BACKOFF);
break;
case PITCH:
tune_pitch_rp = MAX(AUTOTUNE_RP_MIN, tune_pitch_rp * AUTOTUNE_RP_BACKOFF);
break;
case YAW:
tune_yaw_rp = MAX(AUTOTUNE_RP_MIN, tune_yaw_rp * AUTOTUNE_RP_BACKOFF);
break;
}
break;
case SP_DOWN:
tune_type = TuneType(tune_type + 1);
break;
case SP_UP:
// we've reached the end of a D-up-down PI-up-down tune type cycle
tune_type = RD_UP;
// advance to the next axis
bool complete = false;
switch (axis) {
case ROLL:
axes_completed |= AUTOTUNE_AXIS_BITMASK_ROLL;
tune_roll_sp = MAX(AUTOTUNE_SP_MIN, tune_roll_sp * AUTOTUNE_SP_BACKOFF);
tune_roll_accel = MAX(AUTOTUNE_RP_ACCEL_MIN, test_accel_max * AUTOTUNE_ACCEL_RP_BACKOFF);
if (pitch_enabled()) {
axis = PITCH;
} else if (yaw_enabled()) {
axis = YAW;
} else {
complete = true;
}
break;
case PITCH:
axes_completed |= AUTOTUNE_AXIS_BITMASK_PITCH;
tune_pitch_sp = MAX(AUTOTUNE_SP_MIN, tune_pitch_sp * AUTOTUNE_SP_BACKOFF);
tune_pitch_accel = MAX(AUTOTUNE_RP_ACCEL_MIN, test_accel_max * AUTOTUNE_ACCEL_RP_BACKOFF);
if (yaw_enabled()) {
axis = YAW;
} else {
complete = true;
}
break;
case YAW:
axes_completed |= AUTOTUNE_AXIS_BITMASK_YAW;
tune_yaw_sp = MAX(AUTOTUNE_SP_MIN, tune_yaw_sp * AUTOTUNE_SP_BACKOFF);
tune_yaw_accel = MAX(AUTOTUNE_Y_ACCEL_MIN, test_accel_max * AUTOTUNE_ACCEL_Y_BACKOFF);
complete = true;
break;
}
// if we've just completed all axes we have successfully completed the autotune
// change to TESTING mode to allow user to fly with new gains
if (complete) {
mode = SUCCESS;
update_gcs(AUTOTUNE_MESSAGE_SUCCESS);
AP::logger().Write_Event(LogEvent::AUTOTUNE_SUCCESS);
AP_Notify::events.autotune_complete = true;
} else {
AP_Notify::events.autotune_next_axis = true;
}
break;
}
}
// reverse direction
positive_direction = !positive_direction;
if (axis == YAW) {
attitude_control->input_euler_angle_roll_pitch_yaw(0.0f, 0.0f, ahrs_view->yaw_sensor, false);
}
// set gains to their intra-test values (which are very close to the original gains)
load_gains(GAIN_INTRA_TEST);
// reset testing step
step = WAITING_FOR_LEVEL;
step_start_time_ms = now;
level_start_time_ms = step_start_time_ms;
step_time_limit_ms = AUTOTUNE_REQUIRED_LEVEL_TIME_MS;
break;
}
}
// backup_gains_and_initialise - store current gains as originals
// called before tuning starts to backup original gains
void AC_AutoTune::backup_gains_and_initialise()
{
// initialise state because this is our first time
if (roll_enabled()) {
axis = ROLL;
} else if (pitch_enabled()) {
axis = PITCH;
} else if (yaw_enabled()) {
axis = YAW;
}
// no axes are complete
axes_completed = 0;
positive_direction = false;
step = WAITING_FOR_LEVEL;
step_start_time_ms = AP_HAL::millis();
level_start_time_ms = step_start_time_ms;
tune_type = RD_UP;
step_scaler = 1.0f;
desired_yaw_cd = ahrs_view->yaw_sensor;
aggressiveness = constrain_float(aggressiveness, 0.05f, 0.2f);
orig_bf_feedforward = attitude_control->get_bf_feedforward();
// backup original pids and initialise tuned pid values
orig_roll_rp = attitude_control->get_rate_roll_pid().kP();
orig_roll_ri = attitude_control->get_rate_roll_pid().kI();
orig_roll_rd = attitude_control->get_rate_roll_pid().kD();
orig_roll_rff = attitude_control->get_rate_roll_pid().ff();
orig_roll_fltt = attitude_control->get_rate_roll_pid().filt_T_hz();
orig_roll_sp = attitude_control->get_angle_roll_p().kP();
orig_roll_accel = attitude_control->get_accel_roll_max();
tune_roll_rp = attitude_control->get_rate_roll_pid().kP();
tune_roll_rd = attitude_control->get_rate_roll_pid().kD();
tune_roll_sp = attitude_control->get_angle_roll_p().kP();
tune_roll_accel = attitude_control->get_accel_roll_max();
orig_pitch_rp = attitude_control->get_rate_pitch_pid().kP();
orig_pitch_ri = attitude_control->get_rate_pitch_pid().kI();
orig_pitch_rd = attitude_control->get_rate_pitch_pid().kD();
orig_pitch_rff = attitude_control->get_rate_pitch_pid().ff();
orig_pitch_fltt = attitude_control->get_rate_pitch_pid().filt_T_hz();
orig_pitch_sp = attitude_control->get_angle_pitch_p().kP();
orig_pitch_accel = attitude_control->get_accel_pitch_max();
tune_pitch_rp = attitude_control->get_rate_pitch_pid().kP();
tune_pitch_rd = attitude_control->get_rate_pitch_pid().kD();
tune_pitch_sp = attitude_control->get_angle_pitch_p().kP();
tune_pitch_accel = attitude_control->get_accel_pitch_max();
orig_yaw_rp = attitude_control->get_rate_yaw_pid().kP();
orig_yaw_ri = attitude_control->get_rate_yaw_pid().kI();
orig_yaw_rd = attitude_control->get_rate_yaw_pid().kD();
orig_yaw_rff = attitude_control->get_rate_yaw_pid().ff();
orig_yaw_fltt = attitude_control->get_rate_yaw_pid().filt_T_hz();
orig_yaw_rLPF = attitude_control->get_rate_yaw_pid().filt_E_hz();
orig_yaw_accel = attitude_control->get_accel_yaw_max();
orig_yaw_sp = attitude_control->get_angle_yaw_p().kP();
tune_yaw_rp = attitude_control->get_rate_yaw_pid().kP();
tune_yaw_rLPF = attitude_control->get_rate_yaw_pid().filt_E_hz();
tune_yaw_sp = attitude_control->get_angle_yaw_p().kP();
tune_yaw_accel = attitude_control->get_accel_yaw_max();
AP::logger().Write_Event(LogEvent::AUTOTUNE_INITIALISED);
}
// load_orig_gains - set gains to their original values
// called by stop and failed functions
void AC_AutoTune::load_orig_gains()
{
attitude_control->bf_feedforward(orig_bf_feedforward);
if (roll_enabled()) {
if (!is_zero(orig_roll_rp)) {
attitude_control->get_rate_roll_pid().kP(orig_roll_rp);
attitude_control->get_rate_roll_pid().kI(orig_roll_ri);
attitude_control->get_rate_roll_pid().kD(orig_roll_rd);
attitude_control->get_rate_roll_pid().ff(orig_roll_rff);
attitude_control->get_rate_roll_pid().filt_T_hz(orig_roll_fltt);
attitude_control->get_angle_roll_p().kP(orig_roll_sp);
attitude_control->set_accel_roll_max(orig_roll_accel);
}
}
if (pitch_enabled()) {
if (!is_zero(orig_pitch_rp)) {
attitude_control->get_rate_pitch_pid().kP(orig_pitch_rp);
attitude_control->get_rate_pitch_pid().kI(orig_pitch_ri);
attitude_control->get_rate_pitch_pid().kD(orig_pitch_rd);
attitude_control->get_rate_pitch_pid().ff(orig_pitch_rff);
attitude_control->get_rate_pitch_pid().filt_T_hz(orig_pitch_fltt);
attitude_control->get_angle_pitch_p().kP(orig_pitch_sp);
attitude_control->set_accel_pitch_max(orig_pitch_accel);
}
}
if (yaw_enabled()) {
if (!is_zero(orig_yaw_rp)) {
attitude_control->get_rate_yaw_pid().kP(orig_yaw_rp);
attitude_control->get_rate_yaw_pid().kI(orig_yaw_ri);
attitude_control->get_rate_yaw_pid().kD(orig_yaw_rd);
attitude_control->get_rate_yaw_pid().ff(orig_yaw_rff);
attitude_control->get_rate_yaw_pid().filt_E_hz(orig_yaw_rLPF);
attitude_control->get_rate_yaw_pid().filt_T_hz(orig_yaw_fltt);
attitude_control->get_angle_yaw_p().kP(orig_yaw_sp);
attitude_control->set_accel_yaw_max(orig_yaw_accel);
}
}
}
// load_tuned_gains - load tuned gains
void AC_AutoTune::load_tuned_gains()
{
if (!attitude_control->get_bf_feedforward()) {
attitude_control->bf_feedforward(true);
attitude_control->set_accel_roll_max(0.0f);
attitude_control->set_accel_pitch_max(0.0f);
}
if (roll_enabled()) {
if (!is_zero(tune_roll_rp)) {
attitude_control->get_rate_roll_pid().kP(tune_roll_rp);
attitude_control->get_rate_roll_pid().kI(tune_roll_rp*AUTOTUNE_PI_RATIO_FINAL);
attitude_control->get_rate_roll_pid().kD(tune_roll_rd);
attitude_control->get_rate_roll_pid().ff(orig_roll_rff);
attitude_control->get_angle_roll_p().kP(tune_roll_sp);
attitude_control->set_accel_roll_max(tune_roll_accel);
}
}
if (pitch_enabled()) {
if (!is_zero(tune_pitch_rp)) {
attitude_control->get_rate_pitch_pid().kP(tune_pitch_rp);
attitude_control->get_rate_pitch_pid().kI(tune_pitch_rp*AUTOTUNE_PI_RATIO_FINAL);
attitude_control->get_rate_pitch_pid().kD(tune_pitch_rd);
attitude_control->get_rate_pitch_pid().ff(orig_pitch_rff);
attitude_control->get_angle_pitch_p().kP(tune_pitch_sp);
attitude_control->set_accel_pitch_max(tune_pitch_accel);
}
}
if (yaw_enabled()) {
if (!is_zero(tune_yaw_rp)) {
attitude_control->get_rate_yaw_pid().kP(tune_yaw_rp);
attitude_control->get_rate_yaw_pid().kI(tune_yaw_rp*AUTOTUNE_YAW_PI_RATIO_FINAL);
attitude_control->get_rate_yaw_pid().kD(0.0f);
attitude_control->get_rate_yaw_pid().ff(orig_yaw_rff);
attitude_control->get_rate_yaw_pid().filt_E_hz(tune_yaw_rLPF);
attitude_control->get_angle_yaw_p().kP(tune_yaw_sp);
attitude_control->set_accel_yaw_max(tune_yaw_accel);
}
}
}
// load_intra_test_gains - gains used between tests
// called during testing mode's update-gains step to set gains ahead of return-to-level step
void AC_AutoTune::load_intra_test_gains()
{
// we are restarting tuning so reset gains to tuning-start gains (i.e. low I term)
// sanity check the gains
attitude_control->bf_feedforward(true);
if (roll_enabled()) {
attitude_control->get_rate_roll_pid().kP(orig_roll_rp);
attitude_control->get_rate_roll_pid().kI(orig_roll_rp*AUTOTUNE_PI_RATIO_FOR_TESTING);
attitude_control->get_rate_roll_pid().kD(orig_roll_rd);
attitude_control->get_rate_roll_pid().ff(orig_roll_rff);
attitude_control->get_rate_roll_pid().filt_T_hz(orig_roll_fltt);
attitude_control->get_angle_roll_p().kP(orig_roll_sp);
}
if (pitch_enabled()) {
attitude_control->get_rate_pitch_pid().kP(orig_pitch_rp);
attitude_control->get_rate_pitch_pid().kI(orig_pitch_rp*AUTOTUNE_PI_RATIO_FOR_TESTING);
attitude_control->get_rate_pitch_pid().kD(orig_pitch_rd);
attitude_control->get_rate_pitch_pid().ff(orig_pitch_rff);
attitude_control->get_rate_pitch_pid().filt_T_hz(orig_pitch_fltt);
attitude_control->get_angle_pitch_p().kP(orig_pitch_sp);
}
if (yaw_enabled()) {
attitude_control->get_rate_yaw_pid().kP(orig_yaw_rp);
attitude_control->get_rate_yaw_pid().kI(orig_yaw_rp*AUTOTUNE_PI_RATIO_FOR_TESTING);
attitude_control->get_rate_yaw_pid().kD(orig_yaw_rd);
attitude_control->get_rate_yaw_pid().ff(orig_yaw_rff);
attitude_control->get_rate_yaw_pid().filt_T_hz(orig_yaw_fltt);
attitude_control->get_rate_yaw_pid().filt_E_hz(orig_yaw_rLPF);
attitude_control->get_angle_yaw_p().kP(orig_yaw_sp);
}
}
// load_twitch_gains - load the to-be-tested gains for a single axis
// called by control_attitude() just before it beings testing a gain (i.e. just before it twitches)
void AC_AutoTune::load_twitch_gains()
{
switch (axis) {
case ROLL:
attitude_control->get_rate_roll_pid().kP(tune_roll_rp);
attitude_control->get_rate_roll_pid().kI(tune_roll_rp*0.01f);
attitude_control->get_rate_roll_pid().kD(tune_roll_rd);
attitude_control->get_rate_roll_pid().ff(0.0f);
attitude_control->get_rate_roll_pid().filt_T_hz(0.0f);
attitude_control->get_angle_roll_p().kP(tune_roll_sp);
break;
case PITCH:
attitude_control->get_rate_pitch_pid().kP(tune_pitch_rp);
attitude_control->get_rate_pitch_pid().kI(tune_pitch_rp*0.01f);
attitude_control->get_rate_pitch_pid().kD(tune_pitch_rd);
attitude_control->get_rate_pitch_pid().ff(0.0f);
attitude_control->get_rate_pitch_pid().filt_T_hz(0.0f);
attitude_control->get_angle_pitch_p().kP(tune_pitch_sp);
break;
case YAW:
attitude_control->get_rate_yaw_pid().kP(tune_yaw_rp);
attitude_control->get_rate_yaw_pid().kI(tune_yaw_rp*0.01f);
attitude_control->get_rate_yaw_pid().kD(0.0f);
attitude_control->get_rate_yaw_pid().ff(0.0f);
attitude_control->get_rate_yaw_pid().filt_E_hz(tune_yaw_rLPF);
attitude_control->get_rate_yaw_pid().filt_T_hz(0.0f);
attitude_control->get_angle_yaw_p().kP(tune_yaw_sp);
break;
}
}
/*
load a specified set of gains
*/
void AC_AutoTune::load_gains(enum GainType gain_type)
{
switch (gain_type) {
case GAIN_ORIGINAL:
load_orig_gains();
break;
case GAIN_INTRA_TEST:
load_intra_test_gains();
break;
case GAIN_TWITCH:
load_twitch_gains();
break;
case GAIN_TUNED:
load_tuned_gains();
break;
}
}
// save_tuning_gains - save the final tuned gains for each axis
// save discovered gains to eeprom if autotuner is enabled (i.e. switch is in the high position)
void AC_AutoTune::save_tuning_gains()
{
// see if we successfully completed tuning of at least one axis
if (axes_completed == 0) {
return;
}
if (!attitude_control->get_bf_feedforward()) {
attitude_control->bf_feedforward_save(true);
attitude_control->save_accel_roll_max(0.0f);
attitude_control->save_accel_pitch_max(0.0f);
}
// sanity check the rate P values
if ((axes_completed & AUTOTUNE_AXIS_BITMASK_ROLL) && roll_enabled() && !is_zero(tune_roll_rp)) {
// rate roll gains
attitude_control->get_rate_roll_pid().kP(tune_roll_rp);
attitude_control->get_rate_roll_pid().kI(tune_roll_rp*AUTOTUNE_PI_RATIO_FINAL);
attitude_control->get_rate_roll_pid().kD(tune_roll_rd);
attitude_control->get_rate_roll_pid().ff(orig_roll_rff);
attitude_control->get_rate_roll_pid().filt_T_hz(orig_roll_fltt);
attitude_control->get_rate_roll_pid().save_gains();
// stabilize roll
attitude_control->get_angle_roll_p().kP(tune_roll_sp);
attitude_control->get_angle_roll_p().save_gains();
// acceleration roll
attitude_control->save_accel_roll_max(tune_roll_accel);
// resave pids to originals in case the autotune is run again
orig_roll_rp = attitude_control->get_rate_roll_pid().kP();
orig_roll_ri = attitude_control->get_rate_roll_pid().kI();
orig_roll_rd = attitude_control->get_rate_roll_pid().kD();
orig_roll_rff = attitude_control->get_rate_roll_pid().ff();
orig_roll_sp = attitude_control->get_angle_roll_p().kP();
orig_roll_accel = attitude_control->get_accel_roll_max();
}
if ((axes_completed & AUTOTUNE_AXIS_BITMASK_PITCH) && pitch_enabled() && !is_zero(tune_pitch_rp)) {
// rate pitch gains
attitude_control->get_rate_pitch_pid().kP(tune_pitch_rp);
attitude_control->get_rate_pitch_pid().kI(tune_pitch_rp*AUTOTUNE_PI_RATIO_FINAL);
attitude_control->get_rate_pitch_pid().kD(tune_pitch_rd);
attitude_control->get_rate_pitch_pid().ff(orig_pitch_rff);
attitude_control->get_rate_pitch_pid().filt_T_hz(orig_pitch_fltt);
attitude_control->get_rate_pitch_pid().save_gains();
// stabilize pitch
attitude_control->get_angle_pitch_p().kP(tune_pitch_sp);
attitude_control->get_angle_pitch_p().save_gains();
// acceleration pitch
attitude_control->save_accel_pitch_max(tune_pitch_accel);
// resave pids to originals in case the autotune is run again
orig_pitch_rp = attitude_control->get_rate_pitch_pid().kP();
orig_pitch_ri = attitude_control->get_rate_pitch_pid().kI();
orig_pitch_rd = attitude_control->get_rate_pitch_pid().kD();
orig_pitch_rff = attitude_control->get_rate_pitch_pid().ff();
orig_pitch_sp = attitude_control->get_angle_pitch_p().kP();
orig_pitch_accel = attitude_control->get_accel_pitch_max();
}
if ((axes_completed & AUTOTUNE_AXIS_BITMASK_YAW) && yaw_enabled() && !is_zero(tune_yaw_rp)) {
// rate yaw gains
attitude_control->get_rate_yaw_pid().kP(tune_yaw_rp);
attitude_control->get_rate_yaw_pid().kI(tune_yaw_rp*AUTOTUNE_YAW_PI_RATIO_FINAL);
attitude_control->get_rate_yaw_pid().kD(0.0f);
attitude_control->get_rate_yaw_pid().ff(orig_yaw_rff);
attitude_control->get_rate_yaw_pid().filt_T_hz(orig_yaw_fltt);
attitude_control->get_rate_yaw_pid().filt_E_hz(tune_yaw_rLPF);
attitude_control->get_rate_yaw_pid().save_gains();
// stabilize yaw
attitude_control->get_angle_yaw_p().kP(tune_yaw_sp);
attitude_control->get_angle_yaw_p().save_gains();
// acceleration yaw
attitude_control->save_accel_yaw_max(tune_yaw_accel);
// resave pids to originals in case the autotune is run again
orig_yaw_rp = attitude_control->get_rate_yaw_pid().kP();
orig_yaw_ri = attitude_control->get_rate_yaw_pid().kI();
orig_yaw_rd = attitude_control->get_rate_yaw_pid().kD();
orig_yaw_rff = attitude_control->get_rate_yaw_pid().ff();
orig_yaw_rLPF = attitude_control->get_rate_yaw_pid().filt_E_hz();
orig_yaw_sp = attitude_control->get_angle_yaw_p().kP();
orig_yaw_accel = attitude_control->get_accel_yaw_max();
}
// update GCS and log save gains event
update_gcs(AUTOTUNE_MESSAGE_SAVED_GAINS);
AP::logger().Write_Event(LogEvent::AUTOTUNE_SAVEDGAINS);
reset();
}
// update_gcs - send message to ground station
void AC_AutoTune::update_gcs(uint8_t message_id) const
{
switch (message_id) {
case AUTOTUNE_MESSAGE_STARTED:
gcs().send_text(MAV_SEVERITY_INFO,"AutoTune: Started");
break;
case AUTOTUNE_MESSAGE_STOPPED:
gcs().send_text(MAV_SEVERITY_INFO,"AutoTune: Stopped");
break;
case AUTOTUNE_MESSAGE_SUCCESS:
gcs().send_text(MAV_SEVERITY_NOTICE,"AutoTune: Success");
break;
case AUTOTUNE_MESSAGE_FAILED:
gcs().send_text(MAV_SEVERITY_NOTICE,"AutoTune: Failed");
break;
case AUTOTUNE_MESSAGE_TESTING:
gcs().send_text(MAV_SEVERITY_NOTICE,"AutoTune: Pilot Testing");
break;
case AUTOTUNE_MESSAGE_SAVED_GAINS:
gcs().send_text(MAV_SEVERITY_NOTICE,"AutoTune: Saved gains for %s%s%s",
(axes_completed&AUTOTUNE_AXIS_BITMASK_ROLL)?"Roll ":"",
(axes_completed&AUTOTUNE_AXIS_BITMASK_PITCH)?"Pitch ":"",
(axes_completed&AUTOTUNE_AXIS_BITMASK_YAW)?"Yaw":"");
break;
}
}
// axis helper functions
inline bool AC_AutoTune::roll_enabled()
{
return axis_bitmask & AUTOTUNE_AXIS_BITMASK_ROLL;
}
inline bool AC_AutoTune::pitch_enabled()
{
return axis_bitmask & AUTOTUNE_AXIS_BITMASK_PITCH;
}
inline bool AC_AutoTune::yaw_enabled()
{
return axis_bitmask & AUTOTUNE_AXIS_BITMASK_YAW;
}
// twitching_test_rate - twitching tests
// update min and max and test for end conditions
void AC_AutoTune::twitching_test_rate(float rate, float rate_target_max, float &meas_rate_min, float &meas_rate_max)
{
const uint32_t now = AP_HAL::millis();
// capture maximum rate
if (rate > meas_rate_max) {
// the measurement is continuing to increase without stopping
meas_rate_max = rate;
meas_rate_min = rate;
}
// capture minimum measurement after the measurement has peaked (aka "bounce back")
if ((rate < meas_rate_min) && (meas_rate_max > rate_target_max * 0.5f)) {
// the measurement is bouncing back
meas_rate_min = rate;
}
// calculate early stopping time based on the time it takes to get to 75%
if (meas_rate_max < rate_target_max * 0.75f) {
// the measurement not reached the 75% threshold yet
step_time_limit_ms = (now - step_start_time_ms) * 3;
step_time_limit_ms = MIN(step_time_limit_ms, AUTOTUNE_TESTING_STEP_TIMEOUT_MS);
}
if (meas_rate_max > rate_target_max) {
// the measured rate has passed the maximum target rate
step = UPDATE_GAINS;
}
if (meas_rate_max-meas_rate_min > meas_rate_max*aggressiveness) {
// the measurement has passed 50% of the maximum rate and bounce back is larger than the threshold
step = UPDATE_GAINS;
}
if (now - step_start_time_ms >= step_time_limit_ms) {
// we have passed the maximum stop time
step = UPDATE_GAINS;
}
}
// twitching_test_rate - twitching tests
// update min and max and test for end conditions
void AC_AutoTune::twitching_abort_rate(float angle, float rate, float angle_max, float meas_rate_min)
{
if (angle >= angle_max) {
if (is_equal(rate, meas_rate_min) && step_scaler > 0.5f) {
// we have reached the angle limit before completing the measurement of maximum and minimum
// reduce the maximum target rate
step_scaler *= 0.9f;
// ignore result and start test again
step = WAITING_FOR_LEVEL;
} else {
step = UPDATE_GAINS;
}
}
}
// twitching_test_angle - twitching tests
// update min and max and test for end conditions
void AC_AutoTune::twitching_test_angle(float angle, float rate, float angle_target_max, float &meas_angle_min, float &meas_angle_max, float &meas_rate_min, float &meas_rate_max)
{
const uint32_t now = AP_HAL::millis();
// capture maximum angle
if (angle > meas_angle_max) {
// the angle still increasing
meas_angle_max = angle;
meas_angle_min = angle;
}
// capture minimum angle after we have reached a reasonable maximum angle
if ((angle < meas_angle_min) && (meas_angle_max > angle_target_max * 0.5f)) {
// the measurement is bouncing back
meas_angle_min = angle;
}
// capture maximum rate
if (rate > meas_rate_max) {
// the measurement is still increasing
meas_rate_max = rate;
meas_rate_min = rate;
}
// capture minimum rate after we have reached maximum rate
if (rate < meas_rate_min) {
// the measurement is still decreasing
meas_rate_min = rate;
}
// calculate early stopping time based on the time it takes to get to 75%
if (meas_angle_max < angle_target_max * 0.75f) {
// the measurement not reached the 75% threshold yet
step_time_limit_ms = (now - step_start_time_ms) * 3;
step_time_limit_ms = MIN(step_time_limit_ms, AUTOTUNE_TESTING_STEP_TIMEOUT_MS);
}
if (meas_angle_max > angle_target_max) {
// the measurement has passed the maximum angle
step = UPDATE_GAINS;
}
if (meas_angle_max-meas_angle_min > meas_angle_max*aggressiveness) {
// the measurement has passed 50% of the maximum angle and bounce back is larger than the threshold
step = UPDATE_GAINS;
}
if (now - step_start_time_ms >= step_time_limit_ms) {
// we have passed the maximum stop time
step = UPDATE_GAINS;
}
}
// twitching_measure_acceleration - measure rate of change of measurement
void AC_AutoTune::twitching_measure_acceleration(float &rate_of_change, float rate_measurement, float &rate_measurement_max) const
{
if (rate_measurement_max < rate_measurement) {
rate_measurement_max = rate_measurement;
rate_of_change = (1000.0f*rate_measurement_max)/(AP_HAL::millis() - step_start_time_ms);
}
}
// updating_rate_d_up - increase D and adjust P to optimize the D term for a little bounce back
// optimize D term while keeping the maximum just below the target by adjusting P
void AC_AutoTune::updating_rate_d_up(float &tune_d, float tune_d_min, float tune_d_max, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float rate_target, float meas_rate_min, float meas_rate_max)
{
if (meas_rate_max > rate_target) {
// if maximum measurement was higher than target
// reduce P gain (which should reduce maximum)
tune_p -= tune_p*tune_p_step_ratio;
if (tune_p < tune_p_min) {
// P gain is at minimum so start reducing D
tune_p = tune_p_min;
tune_d -= tune_d*tune_d_step_ratio;
if (tune_d <= tune_d_min) {
// We have reached minimum D gain so stop tuning
tune_d = tune_d_min;
counter = AUTOTUNE_SUCCESS_COUNT;
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
}
}
} else if ((meas_rate_max < rate_target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (tune_p <= tune_p_max)) {
// we have not achieved a high enough maximum to get a good measurement of bounce back.
// increase P gain (which should increase maximum)
tune_p += tune_p*tune_p_step_ratio;
if (tune_p >= tune_p_max) {
tune_p = tune_p_max;
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
}
} else {
// we have a good measurement of bounce back
if (meas_rate_max-meas_rate_min > meas_rate_max*aggressiveness) {
// ignore the next result unless it is the same as this one
ignore_next = true;
// bounce back is bigger than our threshold so increment the success counter
counter++;
} else {
if (ignore_next == false) {
// bounce back is smaller than our threshold so decrement the success counter
if (counter > 0) {
counter--;
}
// increase D gain (which should increase bounce back)
tune_d += tune_d*tune_d_step_ratio*2.0f;
// stop tuning if we hit maximum D
if (tune_d >= tune_d_max) {
tune_d = tune_d_max;
counter = AUTOTUNE_SUCCESS_COUNT;
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
}
} else {
ignore_next = false;
}
}
}
}
// updating_rate_d_down - decrease D and adjust P to optimize the D term for no bounce back
// optimize D term while keeping the maximum just below the target by adjusting P
void AC_AutoTune::updating_rate_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float rate_target, float meas_rate_min, float meas_rate_max)
{
if (meas_rate_max > rate_target) {
// if maximum measurement was higher than target
// reduce P gain (which should reduce maximum)
tune_p -= tune_p*tune_p_step_ratio;
if (tune_p < tune_p_min) {
// P gain is at minimum so start reducing D gain
tune_p = tune_p_min;
tune_d -= tune_d*tune_d_step_ratio;
if (tune_d <= tune_d_min) {
// We have reached minimum D so stop tuning
tune_d = tune_d_min;
counter = AUTOTUNE_SUCCESS_COUNT;
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
}
}
} else if ((meas_rate_max < rate_target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (tune_p <= tune_p_max)) {
// we have not achieved a high enough maximum to get a good measurement of bounce back.
// increase P gain (which should increase maximum)
tune_p += tune_p*tune_p_step_ratio;
if (tune_p >= tune_p_max) {
tune_p = tune_p_max;
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
}
} else {
// we have a good measurement of bounce back
if (meas_rate_max-meas_rate_min < meas_rate_max*aggressiveness) {
if (ignore_next == false) {
// bounce back is less than our threshold so increment the success counter
counter++;
} else {
ignore_next = false;
}
} else {
// ignore the next result unless it is the same as this one
ignore_next = true;
// bounce back is larger than our threshold so decrement the success counter
if (counter > 0) {
counter--;
}
// decrease D gain (which should decrease bounce back)
tune_d -= tune_d*tune_d_step_ratio;
// stop tuning if we hit minimum D
if (tune_d <= tune_d_min) {
tune_d = tune_d_min;
counter = AUTOTUNE_SUCCESS_COUNT;
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
}
}
}
}
// updating_rate_p_up_d_down - increase P to ensure the target is reached while checking bounce back isn't increasing
// P is increased until we achieve our target within a reasonable time while reducing D if bounce back increases above the threshold
void AC_AutoTune::updating_rate_p_up_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float rate_target, float meas_rate_min, float meas_rate_max)
{
if (meas_rate_max > rate_target*(1+0.5f*aggressiveness)) {
// ignore the next result unless it is the same as this one
ignore_next = true;
// if maximum measurement was greater than target so increment the success counter
counter++;
} else if ((meas_rate_max < rate_target) && (meas_rate_max > rate_target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (meas_rate_max-meas_rate_min > meas_rate_max*aggressiveness) && (tune_d > tune_d_min)) {
// if bounce back was larger than the threshold so decrement the success counter
if (counter > 0) {
counter--;
}
// decrease D gain (which should decrease bounce back)
tune_d -= tune_d*tune_d_step_ratio;
// do not decrease the D term past the minimum
if (tune_d <= tune_d_min) {
tune_d = tune_d_min;
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
}
// decrease P gain to match D gain reduction
tune_p -= tune_p*tune_p_step_ratio;
// do not decrease the P term past the minimum
if (tune_p <= tune_p_min) {
tune_p = tune_p_min;
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
}
// cancel change in direction
positive_direction = !positive_direction;
} else {
if (ignore_next == false) {
// if maximum measurement was lower than target so decrement the success counter
if (counter > 0) {
counter--;
}
// increase P gain (which should increase the maximum)
tune_p += tune_p*tune_p_step_ratio;
// stop tuning if we hit maximum P
if (tune_p >= tune_p_max) {
tune_p = tune_p_max;
counter = AUTOTUNE_SUCCESS_COUNT;
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
}
} else {
ignore_next = false;
}
}
}
// updating_angle_p_down - decrease P until we don't reach the target before time out
// P is decreased to ensure we are not overshooting the target
void AC_AutoTune::updating_angle_p_down(float &tune_p, float tune_p_min, float tune_p_step_ratio, float angle_target, float meas_angle_max, float meas_rate_min, float meas_rate_max)
{
if (meas_angle_max < angle_target*(1+0.5f*aggressiveness)) {
if (ignore_next == false) {
// if maximum measurement was lower than target so increment the success counter
counter++;
} else {
ignore_next = false;
}
} else {
// ignore the next result unless it is the same as this one
ignore_next = true;
// if maximum measurement was higher than target so decrement the success counter
if (counter > 0) {
counter--;
}
// decrease P gain (which should decrease the maximum)
tune_p -= tune_p*tune_p_step_ratio;
// stop tuning if we hit maximum P
if (tune_p <= tune_p_min) {
tune_p = tune_p_min;
counter = AUTOTUNE_SUCCESS_COUNT;
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
}
}
}
// updating_angle_p_up - increase P to ensure the target is reached
// P is increased until we achieve our target within a reasonable time
void AC_AutoTune::updating_angle_p_up(float &tune_p, float tune_p_max, float tune_p_step_ratio, float angle_target, float meas_angle_max, float meas_rate_min, float meas_rate_max)
{
if ((meas_angle_max > angle_target*(1+0.5f*aggressiveness)) ||
((meas_angle_max > angle_target) && (meas_rate_min < -meas_rate_max*aggressiveness))) {
// ignore the next result unless it is the same as this one
ignore_next = true;
// if maximum measurement was greater than target so increment the success counter
counter++;
} else {
if (ignore_next == false) {
// if maximum measurement was lower than target so decrement the success counter
if (counter > 0) {
counter--;
}
// increase P gain (which should increase the maximum)
tune_p += tune_p*tune_p_step_ratio;
// stop tuning if we hit maximum P
if (tune_p >= tune_p_max) {
tune_p = tune_p_max;
counter = AUTOTUNE_SUCCESS_COUNT;
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
}
} else {
ignore_next = false;
}
}
}
/*
check if we have a good position estimate
*/
bool AC_AutoTune::position_ok(void)
{
if (!AP::ahrs().have_inertial_nav()) {
// do not allow navigation with dcm position
return false;
}
// with EKF use filter status and ekf check
nav_filter_status filt_status = inertial_nav->get_filter_status();
// require a good absolute position and EKF must not be in const_pos_mode
return (filt_status.flags.horiz_pos_abs && !filt_status.flags.const_pos_mode);
}
// get attitude for slow position hold in autotune mode
void AC_AutoTune::get_poshold_attitude(float &roll_cd_out, float &pitch_cd_out, float &yaw_cd_out)
{
roll_cd_out = pitch_cd_out = 0;
if (!use_poshold) {
// we are not trying to hold position
return;
}
// do we know where we are? If not then don't do poshold
if (!position_ok()) {
return;
}
if (!have_position) {
have_position = true;
start_position = inertial_nav->get_position();
}
// don't go past 10 degrees, as autotune result would deteriorate too much
const float angle_max_cd = 1000;
// hit the 10 degree limit at 20 meters position error
const float dist_limit_cm = 2000;
// we only start adjusting yaw if we are more than 5m from the
// target position. That corresponds to a lean angle of 2.5 degrees
const float yaw_dist_limit_cm = 500;
Vector3f pdiff = inertial_nav->get_position() - start_position;
pdiff.z = 0;
float dist_cm = pdiff.length();
if (dist_cm < 10) {
// don't do anything within 10cm
return;
}
/*
very simple linear controller
*/
float scaling = constrain_float(angle_max_cd * dist_cm / dist_limit_cm, 0, angle_max_cd);
Vector2f angle_ne(pdiff.x, pdiff.y);
angle_ne *= scaling / dist_cm;
// rotate into body frame
pitch_cd_out = angle_ne.x * ahrs_view->cos_yaw() + angle_ne.y * ahrs_view->sin_yaw();
roll_cd_out = angle_ne.x * ahrs_view->sin_yaw() - angle_ne.y * ahrs_view->cos_yaw();
if (dist_cm < yaw_dist_limit_cm) {
// no yaw adjustment
return;
}
/*
also point so that twitching occurs perpendicular to the wind,
if we have drifted more than yaw_dist_limit_cm from the desired
position. This ensures that autotune doesn't have to deal with
more than 2.5 degrees of attitude on the axis it is tuning
*/
float target_yaw_cd = degrees(atan2f(pdiff.y, pdiff.x)) * 100;
if (axis == PITCH) {
// for roll and yaw tuning we point along the wind, for pitch
// we point across the wind
target_yaw_cd += 9000;
}
// go to the nearest 180 degree mark, with 5 degree slop to prevent oscillation
if (fabsf(yaw_cd_out - target_yaw_cd) > 9500) {
target_yaw_cd += 18000;
}
yaw_cd_out = target_yaw_cd;
}
// @LoggerMessage: ATUN
// @Description: Copter/QuadPlane AutoTune
// @Vehicles: Copter, Plane
// @Field: TimeUS: Time since system startup
// @Field: Axis: which axis is currently being tuned
// @Field: TuneStep: step in autotune process
// @Field: Targ: target angle or rate, depending on tuning step
// @Field: Min: measured minimum target angle or rate
// @Field: Max: measured maximum target angle or rate
// @Field: RP: new rate gain P term
// @Field: RD: new rate gain D term
// @Field: SP: new angle P term
// @Field: ddt: maximum measured twitching acceleration
// Write an Autotune data packet
void AC_AutoTune::Log_Write_AutoTune(uint8_t _axis, uint8_t tune_step, float meas_target, float meas_min, float meas_max, float new_gain_rp, float new_gain_rd, float new_gain_sp, float new_ddt)
{
AP::logger().Write(
"ATUN",
"TimeUS,Axis,TuneStep,Targ,Min,Max,RP,RD,SP,ddt",
"s--ddd---o",
"F--000---0",
"QBBfffffff",
AP_HAL::micros64(),
axis,
tune_step,
meas_target*0.01f,
meas_min*0.01f,
meas_max*0.01f,
new_gain_rp,
new_gain_rd,
new_gain_sp,
new_ddt);
}
// Write an Autotune data packet
void AC_AutoTune::Log_Write_AutoTuneDetails(float angle_cd, float rate_cds)
{
// @LoggerMessage: ATDE
// @Description: AutoTune data packet
// @Field: TimeUS: Time since system startup
// @Field: Angle: current angle
// @Field: Rate: current angular rate
AP::logger().Write(
"ATDE",
"TimeUS,Angle,Rate",
"sdk",
"F00",
"Qff",
AP_HAL::micros64(),
angle_cd*0.01f,
rate_cds*0.01f);
}