Ardupilot2/libraries/AP_HAL/examples/DSP_test/DSP_test.cpp
Peter Barker a9b90a3b5a AP_HAL: stop libraries including AP_Logger.h in .h files
AP_Logger.h is a nexus of includes; while this is being improved over
time, there's no reason for the library headers to include AP_Logger.h
as the logger itself is access by singleton and the structures are in
LogStructure.h

This necessitated moving The PID_Info structure out of AP_Logger's
namespace.  This cleans up a pretty nasty bit - that structure is
definitely not simply used for logging, but also used to pass pid
information around to controllers!

There are a lot of patches in here because AP_Logger.h, acting as a
nexus, was providing transitive header file inclusion in many (some
unlikely!) places.
2022-04-08 19:18:38 +10:00

177 lines
5.4 KiB
C++

#include <AP_HAL/AP_HAL.h>
#include <AP_HAL_Empty/AP_HAL_Empty.h>
#include <GCS_MAVLink/GCS_Dummy.h>
#include <AP_Vehicle/AP_Vehicle.h>
#include <AP_SerialManager/AP_SerialManager.h>
#include <AP_Logger/AP_Logger.h>
#include "GyroFrame.h"
#if HAL_WITH_DSP
const AP_HAL::HAL &hal = AP_HAL::get_HAL();
static const uint16_t WINDOW_SIZE = 128;
static const uint16_t FRAME_SIZE = 1024;
static const float max_hz = 350;
static const float attenuation_power_db = 15;
static const float frequency1 = 120;
static const float frequency2 = 50;
static const float frequency3 = 350;
static float attenuation_cutoff;
static FloatBuffer fft_window {WINDOW_SIZE};
static const uint16_t last_bin = MIN(ceilf(max_hz / ((float)SAMPLE_RATE/ WINDOW_SIZE)), WINDOW_SIZE/2);
static AP_HAL::DSP::FFTWindowState* fft;
void setup();
void loop();
void update();
void do_fft(const float* data);
static AP_SerialManager serial_manager;
static AP_BoardConfig board_config;
static AP_InertialSensor ins;
AP_Int32 logger_bitmask;
static AP_Logger logger{logger_bitmask};
class DummyVehicle {
public:
};
class DSPTest : public AP_HAL::DSP {
public:
virtual FFTWindowState* fft_init(uint16_t w, uint16_t sample_rate) override { return nullptr; }
virtual void fft_start(FFTWindowState* state, FloatBuffer& samples, uint16_t advance) override {}
virtual uint16_t fft_analyse(FFTWindowState* state, uint16_t start_bin, uint16_t end_bin, float noise_att_cutoff) override { return 0; }
protected:
virtual void vector_max_float(const float* vin, uint16_t len, float* maxValue, uint16_t* maxIndex) const override {}
virtual void vector_scale_float(const float* vin, float scale, float* vout, uint16_t len) const override {}
virtual float vector_mean_float(const float* vin, uint16_t len) const override { return 0.0f; };
public:
void run_tests();
} dsptest;
//static DummyVehicle vehicle;
// create fake gcs object
GCS_Dummy _gcs;
const AP_Param::GroupInfo GCS_MAVLINK_Parameters::var_info[] = {
AP_GROUPEND
};
uint32_t frame_num = 0;
void setup()
{
hal.console->printf("DSP test\n");
board_config.init();
serial_manager.init();
fft = hal.dsp->fft_init(WINDOW_SIZE, SAMPLE_RATE);
attenuation_cutoff = powf(10.0f, -attenuation_power_db / 10.0f);
for(uint16_t i = 0; i < WINDOW_SIZE; i++) {
float sample = sinf(2.0f * M_PI * frequency1 * i / SAMPLE_RATE) * ToRad(20) * 2000;
sample += sinf(2.0f * M_PI * frequency2 * i / SAMPLE_RATE) * ToRad(10) * 2000;
sample += sinf(2.0f * M_PI * frequency3 * i / SAMPLE_RATE) * ToRad(10) * 2000;
fft_window.push(sample);
}
dsptest.run_tests();
}
void DSPTest::run_tests() {
float vals[] = {1, 1, 1, 10, 10, 10, 1, 1, 1, 1};
fastsmooth(vals, 10, 3);
for (int i=0; i < 10; i++) {
hal.console->printf("%.f ", vals[i]);
}
hal.console->printf("\n");
// fastsmooth([1 1 1 10 10 10 1 1 1 1],3) => [0 1 4 7 10 7 4 1 1 0]
}
void do_fft(const float* data)
{
fft_window.push(data, WINDOW_SIZE);
hal.dsp->fft_start(fft, fft_window, WINDOW_SIZE);
uint16_t max_bin = hal.dsp->fft_analyse(fft, 1, last_bin, attenuation_cutoff);
if (max_bin <= 0) {
hal.console->printf("FFT: could not detect frequency %.1f\n", frequency1);
}
const float max_energy = fft->_freq_bins[fft->_peak_data[AP_HAL::DSP::CENTER]._bin];
for (uint16_t i = 0; i < 32; i++) {
const uint16_t height = uint16_t(roundf(80.0f * fft->_freq_bins[i] / max_energy));
hal.console->printf("[%3.f]", i * fft->_bin_resolution);
for (uint16_t j = 0; j < height; j++) {
hal.console->printf("\u2588");
}
hal.console->printf("\n");
}
hal.console->printf("FFT: detected frequencies %.1f/%d/[%.1f-%.1f] %.1f/%d/[%.1f-%.1f] %.1f/%d/[%.1f-%.1f]\n",
fft->_peak_data[AP_HAL::DSP::CENTER]._freq_hz,
fft->_peak_data[AP_HAL::DSP::CENTER]._bin,
(fft->_peak_data[AP_HAL::DSP::CENTER]._bin - 0.5) * fft->_bin_resolution,
(fft->_peak_data[AP_HAL::DSP::CENTER]._bin + 0.5) * fft->_bin_resolution,
fft->_peak_data[AP_HAL::DSP::LOWER_SHOULDER]._freq_hz,
fft->_peak_data[AP_HAL::DSP::LOWER_SHOULDER]._bin,
(fft->_peak_data[AP_HAL::DSP::LOWER_SHOULDER]._bin - 0.5) * fft->_bin_resolution,
(fft->_peak_data[AP_HAL::DSP::LOWER_SHOULDER]._bin + 0.5) * fft->_bin_resolution,
fft->_peak_data[AP_HAL::DSP::UPPER_SHOULDER]._freq_hz,
fft->_peak_data[AP_HAL::DSP::UPPER_SHOULDER]._bin,
(fft->_peak_data[AP_HAL::DSP::UPPER_SHOULDER]._bin - 0.5) * fft->_bin_resolution,
(fft->_peak_data[AP_HAL::DSP::UPPER_SHOULDER]._bin + 0.5) * fft->_bin_resolution);
}
void update()
{
for (uint16_t i = 0; i < FRAME_SIZE / WINDOW_SIZE; i++) {
do_fft(&gyro_frames[frame_num].x[i * WINDOW_SIZE]);
}
if (++frame_num > NUM_FRAMES) {
exit(0);
};
}
void loop()
{
if (!hal.console->is_initialized()) {
return;
}
uint32_t reference_time, run_time;
hal.console->printf("--------------------\n");
reference_time = AP_HAL::micros();
update();
run_time = AP_HAL::micros() - reference_time;
if (run_time > 1000) {
hal.console->printf("ran for %d\n", unsigned(run_time));
}
// delay before next display
hal.scheduler->delay(1e3); // 1 second
}
AP_HAL_MAIN();
#else
#include <stdio.h>
const AP_HAL::HAL& hal = AP_HAL::get_HAL();
static void loop() { }
static void setup()
{
printf("Board not currently supported\n");
}
AP_HAL_MAIN();
#endif