Ardupilot2/libraries/AP_Quaternion/examples/Quaternion/Quaternion.pde
Andrew Tridgell 74eef7018a Quaternion: added an AP_Quaternion library
this is for experimenting with the Madgwick quaternion system, to see
if it is more or less noise sensitive than DCM
2012-03-10 10:34:28 +11:00

150 lines
3.1 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
//
// Simple test for the AP_Quaternion library
//
#include <FastSerial.h>
#include <SPI.h>
#include <I2C.h>
#include <Arduino_Mega_ISR_Registry.h>
#include <AP_PeriodicProcess.h>
#include <AP_InertialSensor.h>
#include <AP_ADC.h>
#include <AP_IMU.h>
#include <AP_GPS.h>
#include <AP_Quaternion.h>
#include <AP_Math.h>
#include <AP_Common.h>
#include <AP_Compass.h>
#include <AP_Baro.h>
#include <DataFlash.h>
#include <APM_RC.h>
#include <GCS_MAVLink.h>
// uncomment this for a APM2 board
//#define APM2_HARDWARE
FastSerialPort(Serial, 0);
Arduino_Mega_ISR_Registry isr_registry;
AP_TimerProcess scheduler;
#ifdef DESKTOP_BUILD
AP_Compass_HIL compass;
#else
AP_Compass_HMC5843 compass;
#endif
#ifdef APM2_HARDWARE
AP_InertialSensor_MPU6000 ins( 53 );
# else
AP_ADC_ADS7844 adc;
AP_InertialSensor_Oilpan ins( &adc );
#endif // CONFIG_IMU_TYPE
static GPS *g_gps;
AP_IMU_INS imu(&ins);
AP_Quaternion quaternion(&imu, g_gps);
AP_Baro_BMP085_HIL barometer;
#ifdef APM2_HARDWARE
# define A_LED_PIN 27
# define C_LED_PIN 25
# define LED_ON LOW
# define LED_OFF HIGH
# define MAG_ORIENTATION AP_COMPASS_APM2_SHIELD
#else
# define A_LED_PIN 37
# define C_LED_PIN 35
# define LED_ON HIGH
# define LED_OFF LOW
# define MAG_ORIENTATION AP_COMPASS_COMPONENTS_DOWN_PINS_FORWARD
#endif
static void flash_leds(bool on)
{
digitalWrite(A_LED_PIN, on?LED_OFF:LED_ON);
digitalWrite(C_LED_PIN, on?LED_ON:LED_OFF);
}
void setup(void)
{
Serial.begin(115200);
Serial.println("Starting up...");
#ifndef DESKTOP_BUILD
I2c.begin();
I2c.timeOut(5);
I2c.setSpeed(true);
#endif
SPI.begin();
SPI.setClockDivider(SPI_CLOCK_DIV16);
#ifdef APM2_HARDWARE
// we need to stop the barometer from holding the SPI bus
pinMode(40, OUTPUT);
digitalWrite(40, HIGH);
#endif
isr_registry.init();
scheduler.init(&isr_registry);
imu.init(IMU::COLD_START, delay, flash_leds, &scheduler);
imu.init_accel(delay, flash_leds);
compass.set_orientation(MAG_ORIENTATION);
if (compass.init()) {
Serial.printf("Enabling compass\n");
compass.null_offsets_enable();
quaternion.set_compass(&compass);
}
}
void loop(void)
{
static uint16_t counter;
static uint32_t last_t, last_print, last_compass;
uint32_t now = micros();
float deltat;
static uint32_t compass_reads;
static uint32_t compass_time;
if (last_t == 0) {
last_t = now;
return;
}
deltat = (now - last_t) * 1.0e-6;
last_t = now;
if (now - last_compass > 100*1000UL) {
// read compass at 10Hz
compass.read();
last_compass = now;
}
quaternion.update(deltat);
counter++;
if (now - last_print >= 0.5e6) {
Vector3f accel = imu.get_accel();
Vector3f gyro = imu.get_gyro();
Serial.printf_P(PSTR("r:%4.1f p:%4.1f y:%4.1f g=(%5.1f %5.1f %5.1f) a=(%5.1f %5.1f %5.1f) rate=%.1f\n"),
ToDeg(quaternion.roll),
ToDeg(quaternion.pitch),
ToDeg(quaternion.yaw),
gyro.x, gyro.y, gyro.z,
accel.x, accel.y, accel.z,
(1.0e6*counter)/(now-last_print));
last_print = now;
counter = 0;
compass_reads=0;
compass_time = 0;
}
}