Ardupilot2/libraries/AP_NavEKF2/AP_NavEKF2_MagFusion.cpp
Paul Riseborough 7459bfb96b AP_NavEKF2: Eliminate simple compass fusion singularities near +-90 deg pitch
The use of yaw angle fusion during startup and ground operation causes problems with tail-sitter vehicle types.
Instead of observing an Euler yaw angle, we now observe the yaw angle obtained by projecting the measured magnetic field onto the the horizontal plain.
This avoids the singularities associated with the observation of Euler yaw angle.
2016-02-22 16:29:36 +11:00

915 lines
47 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_HAL/AP_HAL.h>
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_150
#include "AP_NavEKF2.h"
#include "AP_NavEKF2_core.h"
#include <AP_AHRS/AP_AHRS.h>
#include <AP_Vehicle/AP_Vehicle.h>
#include <stdio.h>
extern const AP_HAL::HAL& hal;
/********************************************************
* RESET FUNCTIONS *
********************************************************/
// Control reset of yaw and magnetic field states
void NavEKF2_core::controlMagYawReset()
{
// Use a quaternion division to calcualte the delta quaternion between the rotation at the current and last time
Quaternion deltaQuat = stateStruct.quat / prevQuatMagReset;
prevQuatMagReset = stateStruct.quat;
// convert the quaternion to a rotation vector and find its length
Vector3f deltaRotVec;
deltaQuat.to_axis_angle(deltaRotVec);
float deltaRot = deltaRotVec.length();
// In-Flight reset for vehicle that cannot use a zero sideslip assumption
// Monitor the gain in height and reset the magnetic field states and heading when initial altitude has been gained
// This is done to prevent magnetic field distoration from steel roofs and adjacent structures causing bad earth field and initial yaw values
// Delay if rotated too far since the last check as rapid rotations will produce errors in the magnetic field states
if (!assume_zero_sideslip() && inFlight && !firstMagYawInit && (stateStruct.position.z - posDownAtTakeoff) < -5.0f && deltaRot < 0.1745f) {
firstMagYawInit = true;
// reset the timer used to prevent magnetometer fusion from affecting attitude until initial field learning is complete
magFuseTiltInhibit_ms = imuSampleTime_ms;
// Update the yaw angle and earth field states using the magnetic field measurements
Quaternion tempQuat;
Vector3f eulerAngles;
stateStruct.quat.to_euler(eulerAngles.x, eulerAngles.y, eulerAngles.z);
tempQuat = stateStruct.quat;
stateStruct.quat = calcQuatAndFieldStates(eulerAngles.x, eulerAngles.y);
// calculate the change in the quaternion state and apply it to the ouput history buffer
tempQuat = stateStruct.quat/tempQuat;
StoreQuatRotate(tempQuat);
}
// In-Flight reset for vehicles that can use a zero sideslip assumption (Planes)
// this is done to protect against unrecoverable heading alignment errors due to compass faults
if (assume_zero_sideslip() && inFlight && !firstMagYawInit) {
alignYawGPS();
firstMagYawInit = true;
}
// inhibit the 3-axis mag fusion from modifying the tilt states for the first few seconds after a mag field reset
// to allow the mag states to converge and prevent disturbances in roll and pitch.
if (imuSampleTime_ms - magFuseTiltInhibit_ms < 5000) {
magFuseTiltInhibit = true;
} else {
magFuseTiltInhibit = false;
}
}
// this function is used to do a forced alignment of the yaw angle to align with the horizontal velocity
// vector from GPS. It is used to align the yaw angle after launch or takeoff.
void NavEKF2_core::alignYawGPS()
{
// get quaternion from existing filter states and calculate roll, pitch and yaw angles
Vector3f eulerAngles;
stateStruct.quat.to_euler(eulerAngles.x, eulerAngles.y, eulerAngles.z);
if ((sq(gpsDataDelayed.vel.x) + sq(gpsDataDelayed.vel.y)) > 25.0f) {
// calculate course yaw angle
float velYaw = atan2f(stateStruct.velocity.y,stateStruct.velocity.x);
// calculate course yaw angle from GPS velocity
float gpsYaw = atan2f(gpsDataNew.vel.y,gpsDataNew.vel.x);
// Check the yaw angles for consistency
float yawErr = MAX(fabsf(wrap_PI(gpsYaw - velYaw)),MAX(fabsf(wrap_PI(gpsYaw - eulerAngles.z)),fabsf(wrap_PI(velYaw - eulerAngles.z))));
// If the angles disagree by more than 45 degrees and GPS innovations are large, we declare the magnetic yaw as bad
badMagYaw = ((yawErr > 0.7854f) && (velTestRatio > 1.0f));
// correct yaw angle using GPS ground course compass failed or if not previously aligned
if (badMagYaw) {
// calculate new filter quaternion states from Euler angles
stateStruct.quat.from_euler(eulerAngles.x, eulerAngles.y, gpsYaw);
// The correlations between attitude errors and positon and velocity errors in the covariance matrix
// are invalid becasue og the changed yaw angle, so reset the corresponding row and columns
zeroCols(P,0,2);
zeroRows(P,0,2);
// Set the initial attitude error covariances
P[1][1] = P[0][0] = sq(radians(5.0f));
P[2][2] = sq(radians(45.0f));
// reset tposition fusion timer to casue the states to be reset to the GPS on the next GPS fusion cycle
lastPosPassTime_ms = 0;
}
}
// reset the magnetometer field states - we could have got bad external interference when initialising on-ground
calcQuatAndFieldStates(eulerAngles.x, eulerAngles.y);
// We shoud retry the primary magnetoemter if previously switched or failed
magSelectIndex = 0;
allMagSensorsFailed = false;
}
/********************************************************
* FUSE MEASURED_DATA *
********************************************************/
// select fusion of magnetometer data
void NavEKF2_core::SelectMagFusion()
{
// start performance timer
hal.util->perf_begin(_perf_FuseMagnetometer);
// clear the flag that lets other processes know that the expensive magnetometer fusion operation has been perfomred on that time step
// used for load levelling
magFusePerformed = false;
// check for and read new magnetometer measurements
readMagData();
// If we are using the compass and the magnetometer has been unhealthy for too long we declare a timeout
if (magHealth) {
magTimeout = false;
lastHealthyMagTime_ms = imuSampleTime_ms;
} else if ((imuSampleTime_ms - lastHealthyMagTime_ms) > frontend->magFailTimeLimit_ms && use_compass()) {
magTimeout = true;
}
// check for availability of magnetometer data to fuse
magDataToFuse = storedMag.recall(magDataDelayed,imuDataDelayed.time_ms);
if (magDataToFuse) {
// Control reset of yaw and magnetic field states
controlMagYawReset();
}
// determine if conditions are right to start a new fusion cycle
// wait until the EKF time horizon catches up with the measurement
bool dataReady = (magDataToFuse && statesInitialised && use_compass() && yawAlignComplete);
if (dataReady) {
// If we haven't performed the first airborne magnetic field update or have inhibited magnetic field learning, then we use the simple method of declination to maintain heading
if(inhibitMagStates) {
fuseCompass();
// zero the test ratio output from the inactive 3-axis magneteometer fusion
magTestRatio.zero();
} else {
// if we are not doing aiding with earth relative observations (eg GPS) then the declination is
// maintained by fusing declination as a synthesised observation
if (PV_AidingMode != AID_ABSOLUTE || (imuSampleTime_ms - lastPosPassTime_ms) > 4000) {
FuseDeclination();
}
// fuse the three magnetometer componenents sequentially
for (mag_state.obsIndex = 0; mag_state.obsIndex <= 2; mag_state.obsIndex++) {
hal.util->perf_begin(_perf_test[0]);
FuseMagnetometer();
hal.util->perf_end(_perf_test[0]);
// don't continue fusion if unhealthy
if (!magHealth) {
break;
}
}
// zero the test ratio output from the inactive simple magnetometer yaw fusion
yawTestRatio = 0.0f;
}
}
// stop performance timer
hal.util->perf_end(_perf_FuseMagnetometer);
}
/*
* Fuse magnetometer measurements using explicit algebraic equations generated with Matlab symbolic toolbox.
* The script file used to generate these and other equations in this filter can be found here:
* https://github.com/priseborough/InertialNav/blob/master/derivations/RotationVectorAttitudeParameterisation/GenerateNavFilterEquations.m
*/
void NavEKF2_core::FuseMagnetometer()
{
hal.util->perf_begin(_perf_test[1]);
// declarations
ftype &q0 = mag_state.q0;
ftype &q1 = mag_state.q1;
ftype &q2 = mag_state.q2;
ftype &q3 = mag_state.q3;
ftype &magN = mag_state.magN;
ftype &magE = mag_state.magE;
ftype &magD = mag_state.magD;
ftype &magXbias = mag_state.magXbias;
ftype &magYbias = mag_state.magYbias;
ftype &magZbias = mag_state.magZbias;
uint8_t &obsIndex = mag_state.obsIndex;
Matrix3f &DCM = mag_state.DCM;
Vector3f &MagPred = mag_state.MagPred;
ftype &R_MAG = mag_state.R_MAG;
ftype *SH_MAG = &mag_state.SH_MAG[0];
Vector24 H_MAG;
Vector6 SK_MX;
Vector6 SK_MY;
Vector6 SK_MZ;
hal.util->perf_end(_perf_test[1]);
// perform sequential fusion of magnetometer measurements.
// this assumes that the errors in the different components are
// uncorrelated which is not true, however in the absence of covariance
// data fit is the only assumption we can make
// so we might as well take advantage of the computational efficiencies
// associated with sequential fusion
// calculate observation jacobians and Kalman gains
if (obsIndex == 0)
{
hal.util->perf_begin(_perf_test[2]);
// copy required states to local variable names
q0 = stateStruct.quat[0];
q1 = stateStruct.quat[1];
q2 = stateStruct.quat[2];
q3 = stateStruct.quat[3];
magN = stateStruct.earth_magfield[0];
magE = stateStruct.earth_magfield[1];
magD = stateStruct.earth_magfield[2];
magXbias = stateStruct.body_magfield[0];
magYbias = stateStruct.body_magfield[1];
magZbias = stateStruct.body_magfield[2];
// rotate predicted earth components into body axes and calculate
// predicted measurements
DCM[0][0] = q0*q0 + q1*q1 - q2*q2 - q3*q3;
DCM[0][1] = 2.0f*(q1*q2 + q0*q3);
DCM[0][2] = 2.0f*(q1*q3-q0*q2);
DCM[1][0] = 2.0f*(q1*q2 - q0*q3);
DCM[1][1] = q0*q0 - q1*q1 + q2*q2 - q3*q3;
DCM[1][2] = 2.0f*(q2*q3 + q0*q1);
DCM[2][0] = 2.0f*(q1*q3 + q0*q2);
DCM[2][1] = 2.0f*(q2*q3 - q0*q1);
DCM[2][2] = q0*q0 - q1*q1 - q2*q2 + q3*q3;
MagPred[0] = DCM[0][0]*magN + DCM[0][1]*magE + DCM[0][2]*magD + magXbias;
MagPred[1] = DCM[1][0]*magN + DCM[1][1]*magE + DCM[1][2]*magD + magYbias;
MagPred[2] = DCM[2][0]*magN + DCM[2][1]*magE + DCM[2][2]*magD + magZbias;
// calculate the measurement innovation for each axis
for (uint8_t i = 0; i<=2; i++) {
innovMag[i] = MagPred[i] - magDataDelayed.mag[i];
}
// scale magnetometer observation error with total angular rate to allow for timing errors
R_MAG = sq(constrain_float(frontend->_magNoise, 0.01f, 0.5f)) + sq(frontend->magVarRateScale*imuDataDelayed.delAng.length() / imuDataDelayed.delAngDT);
// calculate common expressions used to calculate observation jacobians an innovation variance for each component
SH_MAG[0] = sq(q0) - sq(q1) + sq(q2) - sq(q3);
SH_MAG[1] = sq(q0) + sq(q1) - sq(q2) - sq(q3);
SH_MAG[2] = sq(q0) - sq(q1) - sq(q2) + sq(q3);
SH_MAG[3] = 2.0f*q0*q1 + 2.0f*q2*q3;
SH_MAG[4] = 2.0f*q0*q3 + 2.0f*q1*q2;
SH_MAG[5] = 2.0f*q0*q2 + 2.0f*q1*q3;
SH_MAG[6] = magE*(2.0f*q0*q1 - 2.0f*q2*q3);
SH_MAG[7] = 2.0f*q1*q3 - 2.0f*q0*q2;
SH_MAG[8] = 2.0f*q0*q3;
// Calculate the innovation variance for each axis
// X axis
varInnovMag[0] = (P[19][19] + R_MAG - P[1][19]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[16][19]*SH_MAG[1] + P[17][19]*SH_MAG[4] + P[18][19]*SH_MAG[7] + P[2][19]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2)) - (magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5])*(P[19][1] - P[1][1]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[16][1]*SH_MAG[1] + P[17][1]*SH_MAG[4] + P[18][1]*SH_MAG[7] + P[2][1]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2))) + SH_MAG[1]*(P[19][16] - P[1][16]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[16][16]*SH_MAG[1] + P[17][16]*SH_MAG[4] + P[18][16]*SH_MAG[7] + P[2][16]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2))) + SH_MAG[4]*(P[19][17] - P[1][17]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[16][17]*SH_MAG[1] + P[17][17]*SH_MAG[4] + P[18][17]*SH_MAG[7] + P[2][17]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2))) + SH_MAG[7]*(P[19][18] - P[1][18]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[16][18]*SH_MAG[1] + P[17][18]*SH_MAG[4] + P[18][18]*SH_MAG[7] + P[2][18]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2))) + (magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2))*(P[19][2] - P[1][2]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[16][2]*SH_MAG[1] + P[17][2]*SH_MAG[4] + P[18][2]*SH_MAG[7] + P[2][2]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2))));
if (varInnovMag[0] >= R_MAG) {
faultStatus.bad_xmag = false;
} else {
// the calculation is badly conditioned, so we cannot perform fusion on this step
// we reset the covariance matrix and try again next measurement
CovarianceInit();
obsIndex = 1;
faultStatus.bad_xmag = true;
hal.util->perf_end(_perf_test[2]);
return;
}
// Y axis
varInnovMag[1] = (P[20][20] + R_MAG + P[0][20]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[17][20]*SH_MAG[0] + P[18][20]*SH_MAG[3] - (SH_MAG[8] - 2.0f*q1*q2)*(P[20][16] + P[0][16]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[17][16]*SH_MAG[0] + P[18][16]*SH_MAG[3] - P[2][16]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) - P[16][16]*(SH_MAG[8] - 2.0f*q1*q2)) - P[2][20]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) + (magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5])*(P[20][0] + P[0][0]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[17][0]*SH_MAG[0] + P[18][0]*SH_MAG[3] - P[2][0]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) - P[16][0]*(SH_MAG[8] - 2.0f*q1*q2)) + SH_MAG[0]*(P[20][17] + P[0][17]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[17][17]*SH_MAG[0] + P[18][17]*SH_MAG[3] - P[2][17]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) - P[16][17]*(SH_MAG[8] - 2.0f*q1*q2)) + SH_MAG[3]*(P[20][18] + P[0][18]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[17][18]*SH_MAG[0] + P[18][18]*SH_MAG[3] - P[2][18]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) - P[16][18]*(SH_MAG[8] - 2.0f*q1*q2)) - P[16][20]*(SH_MAG[8] - 2.0f*q1*q2) - (magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1])*(P[20][2] + P[0][2]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[17][2]*SH_MAG[0] + P[18][2]*SH_MAG[3] - P[2][2]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) - P[16][2]*(SH_MAG[8] - 2.0f*q1*q2)));
if (varInnovMag[1] >= R_MAG) {
faultStatus.bad_ymag = false;
} else {
// the calculation is badly conditioned, so we cannot perform fusion on this step
// we reset the covariance matrix and try again next measurement
CovarianceInit();
obsIndex = 2;
faultStatus.bad_ymag = true;
hal.util->perf_end(_perf_test[2]);
return;
}
// Z axis
varInnovMag[2] = (P[21][21] + R_MAG + P[16][21]*SH_MAG[5] + P[18][21]*SH_MAG[2] - (2.0f*q0*q1 - 2.0f*q2*q3)*(P[21][17] + P[16][17]*SH_MAG[5] + P[18][17]*SH_MAG[2] - P[0][17]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2)) + P[1][17]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) - P[17][17]*(2.0f*q0*q1 - 2.0f*q2*q3)) - P[0][21]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2)) + P[1][21]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) + SH_MAG[5]*(P[21][16] + P[16][16]*SH_MAG[5] + P[18][16]*SH_MAG[2] - P[0][16]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2)) + P[1][16]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) - P[17][16]*(2.0f*q0*q1 - 2.0f*q2*q3)) + SH_MAG[2]*(P[21][18] + P[16][18]*SH_MAG[5] + P[18][18]*SH_MAG[2] - P[0][18]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2)) + P[1][18]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) - P[17][18]*(2.0f*q0*q1 - 2.0f*q2*q3)) - (magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2))*(P[21][0] + P[16][0]*SH_MAG[5] + P[18][0]*SH_MAG[2] - P[0][0]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2)) + P[1][0]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) - P[17][0]*(2.0f*q0*q1 - 2.0f*q2*q3)) - P[17][21]*(2.0f*q0*q1 - 2.0f*q2*q3) + (magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1])*(P[21][1] + P[16][1]*SH_MAG[5] + P[18][1]*SH_MAG[2] - P[0][1]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2)) + P[1][1]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) - P[17][1]*(2.0f*q0*q1 - 2.0f*q2*q3)));
if (varInnovMag[2] >= R_MAG) {
faultStatus.bad_zmag = false;
} else {
// the calculation is badly conditioned, so we cannot perform fusion on this step
// we reset the covariance matrix and try again next measurement
CovarianceInit();
obsIndex = 3;
faultStatus.bad_zmag = true;
hal.util->perf_end(_perf_test[2]);
return;
}
// calculate the innovation test ratios
for (uint8_t i = 0; i<=2; i++) {
magTestRatio[i] = sq(innovMag[i]) / (sq(MAX(0.01f * (float)frontend->_magInnovGate, 1.0f)) * varInnovMag[i]);
}
// check the last values from all components and set magnetometer health accordingly
magHealth = (magTestRatio[0] < 1.0f && magTestRatio[1] < 1.0f && magTestRatio[2] < 1.0f);
// if the magnetometer is unhealthy, do not proceed further
if (!magHealth) {
return;
}
for (uint8_t i = 0; i<=stateIndexLim; i++) H_MAG[i] = 0.0f;
H_MAG[1] = SH_MAG[6] - magD*SH_MAG[2] - magN*SH_MAG[5];
H_MAG[2] = magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2);
H_MAG[16] = SH_MAG[1];
H_MAG[17] = SH_MAG[4];
H_MAG[18] = SH_MAG[7];
H_MAG[19] = 1.0f;
// calculate Kalman gain
SK_MX[0] = 1.0f / varInnovMag[0];
SK_MX[1] = magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2);
SK_MX[2] = magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5];
SK_MX[3] = SH_MAG[7];
Kfusion[0] = SK_MX[0]*(P[0][19] + P[0][16]*SH_MAG[1] + P[0][17]*SH_MAG[4] - P[0][1]*SK_MX[2] + P[0][2]*SK_MX[1] + P[0][18]*SK_MX[3]);
Kfusion[1] = SK_MX[0]*(P[1][19] + P[1][16]*SH_MAG[1] + P[1][17]*SH_MAG[4] - P[1][1]*SK_MX[2] + P[1][2]*SK_MX[1] + P[1][18]*SK_MX[3]);
Kfusion[2] = SK_MX[0]*(P[2][19] + P[2][16]*SH_MAG[1] + P[2][17]*SH_MAG[4] - P[2][1]*SK_MX[2] + P[2][2]*SK_MX[1] + P[2][18]*SK_MX[3]);
Kfusion[3] = SK_MX[0]*(P[3][19] + P[3][16]*SH_MAG[1] + P[3][17]*SH_MAG[4] - P[3][1]*SK_MX[2] + P[3][2]*SK_MX[1] + P[3][18]*SK_MX[3]);
Kfusion[4] = SK_MX[0]*(P[4][19] + P[4][16]*SH_MAG[1] + P[4][17]*SH_MAG[4] - P[4][1]*SK_MX[2] + P[4][2]*SK_MX[1] + P[4][18]*SK_MX[3]);
Kfusion[5] = SK_MX[0]*(P[5][19] + P[5][16]*SH_MAG[1] + P[5][17]*SH_MAG[4] - P[5][1]*SK_MX[2] + P[5][2]*SK_MX[1] + P[5][18]*SK_MX[3]);
Kfusion[6] = SK_MX[0]*(P[6][19] + P[6][16]*SH_MAG[1] + P[6][17]*SH_MAG[4] - P[6][1]*SK_MX[2] + P[6][2]*SK_MX[1] + P[6][18]*SK_MX[3]);
Kfusion[7] = SK_MX[0]*(P[7][19] + P[7][16]*SH_MAG[1] + P[7][17]*SH_MAG[4] - P[7][1]*SK_MX[2] + P[7][2]*SK_MX[1] + P[7][18]*SK_MX[3]);
Kfusion[8] = SK_MX[0]*(P[8][19] + P[8][16]*SH_MAG[1] + P[8][17]*SH_MAG[4] - P[8][1]*SK_MX[2] + P[8][2]*SK_MX[1] + P[8][18]*SK_MX[3]);
Kfusion[9] = SK_MX[0]*(P[9][19] + P[9][16]*SH_MAG[1] + P[9][17]*SH_MAG[4] - P[9][1]*SK_MX[2] + P[9][2]*SK_MX[1] + P[9][18]*SK_MX[3]);
Kfusion[10] = SK_MX[0]*(P[10][19] + P[10][16]*SH_MAG[1] + P[10][17]*SH_MAG[4] - P[10][1]*SK_MX[2] + P[10][2]*SK_MX[1] + P[10][18]*SK_MX[3]);
Kfusion[11] = SK_MX[0]*(P[11][19] + P[11][16]*SH_MAG[1] + P[11][17]*SH_MAG[4] - P[11][1]*SK_MX[2] + P[11][2]*SK_MX[1] + P[11][18]*SK_MX[3]);
Kfusion[12] = SK_MX[0]*(P[12][19] + P[12][16]*SH_MAG[1] + P[12][17]*SH_MAG[4] - P[12][1]*SK_MX[2] + P[12][2]*SK_MX[1] + P[12][18]*SK_MX[3]);
Kfusion[13] = SK_MX[0]*(P[13][19] + P[13][16]*SH_MAG[1] + P[13][17]*SH_MAG[4] - P[13][1]*SK_MX[2] + P[13][2]*SK_MX[1] + P[13][18]*SK_MX[3]);
Kfusion[14] = SK_MX[0]*(P[14][19] + P[14][16]*SH_MAG[1] + P[14][17]*SH_MAG[4] - P[14][1]*SK_MX[2] + P[14][2]*SK_MX[1] + P[14][18]*SK_MX[3]);
Kfusion[15] = SK_MX[0]*(P[15][19] + P[15][16]*SH_MAG[1] + P[15][17]*SH_MAG[4] - P[15][1]*SK_MX[2] + P[15][2]*SK_MX[1] + P[15][18]*SK_MX[3]);
// end perf block
// zero Kalman gains to inhibit wind state estimation
if (!inhibitWindStates) {
Kfusion[22] = SK_MX[0]*(P[22][19] + P[22][16]*SH_MAG[1] + P[22][17]*SH_MAG[4] - P[22][1]*SK_MX[2] + P[22][2]*SK_MX[1] + P[22][18]*SK_MX[3]);
Kfusion[23] = SK_MX[0]*(P[23][19] + P[23][16]*SH_MAG[1] + P[23][17]*SH_MAG[4] - P[23][1]*SK_MX[2] + P[23][2]*SK_MX[1] + P[23][18]*SK_MX[3]);
} else {
Kfusion[22] = 0.0f;
Kfusion[23] = 0.0f;
}
// zero Kalman gains to inhibit magnetic field state estimation
if (!inhibitMagStates) {
Kfusion[16] = SK_MX[0]*(P[16][19] + P[16][16]*SH_MAG[1] + P[16][17]*SH_MAG[4] - P[16][1]*SK_MX[2] + P[16][2]*SK_MX[1] + P[16][18]*SK_MX[3]);
Kfusion[17] = SK_MX[0]*(P[17][19] + P[17][16]*SH_MAG[1] + P[17][17]*SH_MAG[4] - P[17][1]*SK_MX[2] + P[17][2]*SK_MX[1] + P[17][18]*SK_MX[3]);
Kfusion[18] = SK_MX[0]*(P[18][19] + P[18][16]*SH_MAG[1] + P[18][17]*SH_MAG[4] - P[18][1]*SK_MX[2] + P[18][2]*SK_MX[1] + P[18][18]*SK_MX[3]);
Kfusion[19] = SK_MX[0]*(P[19][19] + P[19][16]*SH_MAG[1] + P[19][17]*SH_MAG[4] - P[19][1]*SK_MX[2] + P[19][2]*SK_MX[1] + P[19][18]*SK_MX[3]);
Kfusion[20] = SK_MX[0]*(P[20][19] + P[20][16]*SH_MAG[1] + P[20][17]*SH_MAG[4] - P[20][1]*SK_MX[2] + P[20][2]*SK_MX[1] + P[20][18]*SK_MX[3]);
Kfusion[21] = SK_MX[0]*(P[21][19] + P[21][16]*SH_MAG[1] + P[21][17]*SH_MAG[4] - P[21][1]*SK_MX[2] + P[21][2]*SK_MX[1] + P[21][18]*SK_MX[3]);
} else {
for (uint8_t i=16; i<=21; i++) {
Kfusion[i] = 0.0f;
}
}
// reset the observation index to 0 (we start by fusing the X measurement)
obsIndex = 0;
// set flags to indicate to other processes that fusion has been performed and is required on the next frame
// this can be used by other fusion processes to avoid fusing on the same frame as this expensive step
magFusePerformed = true;
magFuseRequired = true;
hal.util->perf_end(_perf_test[2]);
}
else if (obsIndex == 1) // we are now fusing the Y measurement
{
hal.util->perf_begin(_perf_test[3]);
// calculate observation jacobians
for (uint8_t i = 0; i<=stateIndexLim; i++) H_MAG[i] = 0.0f;
H_MAG[0] = magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5];
H_MAG[2] = - magE*SH_MAG[4] - magD*SH_MAG[7] - magN*SH_MAG[1];
H_MAG[16] = 2.0f*q1*q2 - SH_MAG[8];
H_MAG[17] = SH_MAG[0];
H_MAG[18] = SH_MAG[3];
H_MAG[20] = 1.0f;
// calculate Kalman gain
SK_MY[0] = 1.0f / varInnovMag[1];
SK_MY[1] = magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1];
SK_MY[2] = magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5];
SK_MY[3] = SH_MAG[8] - 2.0f*q1*q2;
Kfusion[0] = SK_MY[0]*(P[0][20] + P[0][17]*SH_MAG[0] + P[0][18]*SH_MAG[3] + P[0][0]*SK_MY[2] - P[0][2]*SK_MY[1] - P[0][16]*SK_MY[3]);
Kfusion[1] = SK_MY[0]*(P[1][20] + P[1][17]*SH_MAG[0] + P[1][18]*SH_MAG[3] + P[1][0]*SK_MY[2] - P[1][2]*SK_MY[1] - P[1][16]*SK_MY[3]);
Kfusion[2] = SK_MY[0]*(P[2][20] + P[2][17]*SH_MAG[0] + P[2][18]*SH_MAG[3] + P[2][0]*SK_MY[2] - P[2][2]*SK_MY[1] - P[2][16]*SK_MY[3]);
Kfusion[3] = SK_MY[0]*(P[3][20] + P[3][17]*SH_MAG[0] + P[3][18]*SH_MAG[3] + P[3][0]*SK_MY[2] - P[3][2]*SK_MY[1] - P[3][16]*SK_MY[3]);
Kfusion[4] = SK_MY[0]*(P[4][20] + P[4][17]*SH_MAG[0] + P[4][18]*SH_MAG[3] + P[4][0]*SK_MY[2] - P[4][2]*SK_MY[1] - P[4][16]*SK_MY[3]);
Kfusion[5] = SK_MY[0]*(P[5][20] + P[5][17]*SH_MAG[0] + P[5][18]*SH_MAG[3] + P[5][0]*SK_MY[2] - P[5][2]*SK_MY[1] - P[5][16]*SK_MY[3]);
Kfusion[6] = SK_MY[0]*(P[6][20] + P[6][17]*SH_MAG[0] + P[6][18]*SH_MAG[3] + P[6][0]*SK_MY[2] - P[6][2]*SK_MY[1] - P[6][16]*SK_MY[3]);
Kfusion[7] = SK_MY[0]*(P[7][20] + P[7][17]*SH_MAG[0] + P[7][18]*SH_MAG[3] + P[7][0]*SK_MY[2] - P[7][2]*SK_MY[1] - P[7][16]*SK_MY[3]);
Kfusion[8] = SK_MY[0]*(P[8][20] + P[8][17]*SH_MAG[0] + P[8][18]*SH_MAG[3] + P[8][0]*SK_MY[2] - P[8][2]*SK_MY[1] - P[8][16]*SK_MY[3]);
Kfusion[9] = SK_MY[0]*(P[9][20] + P[9][17]*SH_MAG[0] + P[9][18]*SH_MAG[3] + P[9][0]*SK_MY[2] - P[9][2]*SK_MY[1] - P[9][16]*SK_MY[3]);
Kfusion[10] = SK_MY[0]*(P[10][20] + P[10][17]*SH_MAG[0] + P[10][18]*SH_MAG[3] + P[10][0]*SK_MY[2] - P[10][2]*SK_MY[1] - P[10][16]*SK_MY[3]);
Kfusion[11] = SK_MY[0]*(P[11][20] + P[11][17]*SH_MAG[0] + P[11][18]*SH_MAG[3] + P[11][0]*SK_MY[2] - P[11][2]*SK_MY[1] - P[11][16]*SK_MY[3]);
Kfusion[12] = SK_MY[0]*(P[12][20] + P[12][17]*SH_MAG[0] + P[12][18]*SH_MAG[3] + P[12][0]*SK_MY[2] - P[12][2]*SK_MY[1] - P[12][16]*SK_MY[3]);
Kfusion[13] = SK_MY[0]*(P[13][20] + P[13][17]*SH_MAG[0] + P[13][18]*SH_MAG[3] + P[13][0]*SK_MY[2] - P[13][2]*SK_MY[1] - P[13][16]*SK_MY[3]);
Kfusion[14] = SK_MY[0]*(P[14][20] + P[14][17]*SH_MAG[0] + P[14][18]*SH_MAG[3] + P[14][0]*SK_MY[2] - P[14][2]*SK_MY[1] - P[14][16]*SK_MY[3]);
Kfusion[15] = SK_MY[0]*(P[15][20] + P[15][17]*SH_MAG[0] + P[15][18]*SH_MAG[3] + P[15][0]*SK_MY[2] - P[15][2]*SK_MY[1] - P[15][16]*SK_MY[3]);
// zero Kalman gains to inhibit wind state estimation
if (!inhibitWindStates) {
Kfusion[22] = SK_MY[0]*(P[22][20] + P[22][17]*SH_MAG[0] + P[22][18]*SH_MAG[3] + P[22][0]*SK_MY[2] - P[22][2]*SK_MY[1] - P[22][16]*SK_MY[3]);
Kfusion[23] = SK_MY[0]*(P[23][20] + P[23][17]*SH_MAG[0] + P[23][18]*SH_MAG[3] + P[23][0]*SK_MY[2] - P[23][2]*SK_MY[1] - P[23][16]*SK_MY[3]);
} else {
Kfusion[22] = 0.0f;
Kfusion[23] = 0.0f;
}
// zero Kalman gains to inhibit magnetic field state estimation
if (!inhibitMagStates) {
Kfusion[16] = SK_MY[0]*(P[16][20] + P[16][17]*SH_MAG[0] + P[16][18]*SH_MAG[3] + P[16][0]*SK_MY[2] - P[16][2]*SK_MY[1] - P[16][16]*SK_MY[3]);
Kfusion[17] = SK_MY[0]*(P[17][20] + P[17][17]*SH_MAG[0] + P[17][18]*SH_MAG[3] + P[17][0]*SK_MY[2] - P[17][2]*SK_MY[1] - P[17][16]*SK_MY[3]);
Kfusion[18] = SK_MY[0]*(P[18][20] + P[18][17]*SH_MAG[0] + P[18][18]*SH_MAG[3] + P[18][0]*SK_MY[2] - P[18][2]*SK_MY[1] - P[18][16]*SK_MY[3]);
Kfusion[19] = SK_MY[0]*(P[19][20] + P[19][17]*SH_MAG[0] + P[19][18]*SH_MAG[3] + P[19][0]*SK_MY[2] - P[19][2]*SK_MY[1] - P[19][16]*SK_MY[3]);
Kfusion[20] = SK_MY[0]*(P[20][20] + P[20][17]*SH_MAG[0] + P[20][18]*SH_MAG[3] + P[20][0]*SK_MY[2] - P[20][2]*SK_MY[1] - P[20][16]*SK_MY[3]);
Kfusion[21] = SK_MY[0]*(P[21][20] + P[21][17]*SH_MAG[0] + P[21][18]*SH_MAG[3] + P[21][0]*SK_MY[2] - P[21][2]*SK_MY[1] - P[21][16]*SK_MY[3]);
} else {
for (uint8_t i=16; i<=21; i++) {
Kfusion[i] = 0.0f;
}
}
// set flags to indicate to other processes that fusion has been performede and is required on the next frame
// this can be used by other fusion processes to avoid fusing on the same frame as this expensive step
magFusePerformed = true;
magFuseRequired = true;
hal.util->perf_end(_perf_test[3]);
}
else if (obsIndex == 2) // we are now fusing the Z measurement
{
hal.util->perf_begin(_perf_test[4]);
// calculate observation jacobians
for (uint8_t i = 0; i<=stateIndexLim; i++) H_MAG[i] = 0.0f;
H_MAG[0] = magN*(SH_MAG[8] - 2.0f*q1*q2) - magD*SH_MAG[3] - magE*SH_MAG[0];
H_MAG[1] = magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1];
H_MAG[16] = SH_MAG[5];
H_MAG[17] = 2.0f*q2*q3 - 2.0f*q0*q1;
H_MAG[18] = SH_MAG[2];
H_MAG[21] = 1.0f;
// calculate Kalman gain
SK_MZ[0] = 1.0f / varInnovMag[2];
SK_MZ[1] = magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2);
SK_MZ[2] = magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1];
SK_MZ[3] = 2.0f*q0*q1 - 2.0f*q2*q3;
Kfusion[0] = SK_MZ[0]*(P[0][21] + P[0][18]*SH_MAG[2] + P[0][16]*SH_MAG[5] - P[0][0]*SK_MZ[1] + P[0][1]*SK_MZ[2] - P[0][17]*SK_MZ[3]);
Kfusion[1] = SK_MZ[0]*(P[1][21] + P[1][18]*SH_MAG[2] + P[1][16]*SH_MAG[5] - P[1][0]*SK_MZ[1] + P[1][1]*SK_MZ[2] - P[1][17]*SK_MZ[3]);
Kfusion[2] = SK_MZ[0]*(P[2][21] + P[2][18]*SH_MAG[2] + P[2][16]*SH_MAG[5] - P[2][0]*SK_MZ[1] + P[2][1]*SK_MZ[2] - P[2][17]*SK_MZ[3]);
Kfusion[3] = SK_MZ[0]*(P[3][21] + P[3][18]*SH_MAG[2] + P[3][16]*SH_MAG[5] - P[3][0]*SK_MZ[1] + P[3][1]*SK_MZ[2] - P[3][17]*SK_MZ[3]);
Kfusion[4] = SK_MZ[0]*(P[4][21] + P[4][18]*SH_MAG[2] + P[4][16]*SH_MAG[5] - P[4][0]*SK_MZ[1] + P[4][1]*SK_MZ[2] - P[4][17]*SK_MZ[3]);
Kfusion[5] = SK_MZ[0]*(P[5][21] + P[5][18]*SH_MAG[2] + P[5][16]*SH_MAG[5] - P[5][0]*SK_MZ[1] + P[5][1]*SK_MZ[2] - P[5][17]*SK_MZ[3]);
Kfusion[6] = SK_MZ[0]*(P[6][21] + P[6][18]*SH_MAG[2] + P[6][16]*SH_MAG[5] - P[6][0]*SK_MZ[1] + P[6][1]*SK_MZ[2] - P[6][17]*SK_MZ[3]);
Kfusion[7] = SK_MZ[0]*(P[7][21] + P[7][18]*SH_MAG[2] + P[7][16]*SH_MAG[5] - P[7][0]*SK_MZ[1] + P[7][1]*SK_MZ[2] - P[7][17]*SK_MZ[3]);
Kfusion[8] = SK_MZ[0]*(P[8][21] + P[8][18]*SH_MAG[2] + P[8][16]*SH_MAG[5] - P[8][0]*SK_MZ[1] + P[8][1]*SK_MZ[2] - P[8][17]*SK_MZ[3]);
Kfusion[9] = SK_MZ[0]*(P[9][21] + P[9][18]*SH_MAG[2] + P[9][16]*SH_MAG[5] - P[9][0]*SK_MZ[1] + P[9][1]*SK_MZ[2] - P[9][17]*SK_MZ[3]);
Kfusion[10] = SK_MZ[0]*(P[10][21] + P[10][18]*SH_MAG[2] + P[10][16]*SH_MAG[5] - P[10][0]*SK_MZ[1] + P[10][1]*SK_MZ[2] - P[10][17]*SK_MZ[3]);
Kfusion[11] = SK_MZ[0]*(P[11][21] + P[11][18]*SH_MAG[2] + P[11][16]*SH_MAG[5] - P[11][0]*SK_MZ[1] + P[11][1]*SK_MZ[2] - P[11][17]*SK_MZ[3]);
Kfusion[12] = SK_MZ[0]*(P[12][21] + P[12][18]*SH_MAG[2] + P[12][16]*SH_MAG[5] - P[12][0]*SK_MZ[1] + P[12][1]*SK_MZ[2] - P[12][17]*SK_MZ[3]);
Kfusion[13] = SK_MZ[0]*(P[13][21] + P[13][18]*SH_MAG[2] + P[13][16]*SH_MAG[5] - P[13][0]*SK_MZ[1] + P[13][1]*SK_MZ[2] - P[13][17]*SK_MZ[3]);
Kfusion[14] = SK_MZ[0]*(P[14][21] + P[14][18]*SH_MAG[2] + P[14][16]*SH_MAG[5] - P[14][0]*SK_MZ[1] + P[14][1]*SK_MZ[2] - P[14][17]*SK_MZ[3]);
Kfusion[15] = SK_MZ[0]*(P[15][21] + P[15][18]*SH_MAG[2] + P[15][16]*SH_MAG[5] - P[15][0]*SK_MZ[1] + P[15][1]*SK_MZ[2] - P[15][17]*SK_MZ[3]);
// zero Kalman gains to inhibit wind state estimation
if (!inhibitWindStates) {
Kfusion[22] = SK_MZ[0]*(P[22][21] + P[22][18]*SH_MAG[2] + P[22][16]*SH_MAG[5] - P[22][0]*SK_MZ[1] + P[22][1]*SK_MZ[2] - P[22][17]*SK_MZ[3]);
Kfusion[23] = SK_MZ[0]*(P[23][21] + P[23][18]*SH_MAG[2] + P[23][16]*SH_MAG[5] - P[23][0]*SK_MZ[1] + P[23][1]*SK_MZ[2] - P[23][17]*SK_MZ[3]);
} else {
Kfusion[22] = 0.0f;
Kfusion[23] = 0.0f;
}
// zero Kalman gains to inhibit magnetic field state estimation
if (!inhibitMagStates) {
Kfusion[16] = SK_MZ[0]*(P[16][21] + P[16][18]*SH_MAG[2] + P[16][16]*SH_MAG[5] - P[16][0]*SK_MZ[1] + P[16][1]*SK_MZ[2] - P[16][17]*SK_MZ[3]);
Kfusion[17] = SK_MZ[0]*(P[17][21] + P[17][18]*SH_MAG[2] + P[17][16]*SH_MAG[5] - P[17][0]*SK_MZ[1] + P[17][1]*SK_MZ[2] - P[17][17]*SK_MZ[3]);
Kfusion[18] = SK_MZ[0]*(P[18][21] + P[18][18]*SH_MAG[2] + P[18][16]*SH_MAG[5] - P[18][0]*SK_MZ[1] + P[18][1]*SK_MZ[2] - P[18][17]*SK_MZ[3]);
Kfusion[19] = SK_MZ[0]*(P[19][21] + P[19][18]*SH_MAG[2] + P[19][16]*SH_MAG[5] - P[19][0]*SK_MZ[1] + P[19][1]*SK_MZ[2] - P[19][17]*SK_MZ[3]);
Kfusion[20] = SK_MZ[0]*(P[20][21] + P[20][18]*SH_MAG[2] + P[20][16]*SH_MAG[5] - P[20][0]*SK_MZ[1] + P[20][1]*SK_MZ[2] - P[20][17]*SK_MZ[3]);
Kfusion[21] = SK_MZ[0]*(P[21][21] + P[21][18]*SH_MAG[2] + P[21][16]*SH_MAG[5] - P[21][0]*SK_MZ[1] + P[21][1]*SK_MZ[2] - P[21][17]*SK_MZ[3]);
} else {
for (uint8_t i=16; i<=21; i++) {
Kfusion[i] = 0.0f;
}
}
// set flags to indicate to other processes that fusion has been performede and is required on the next frame
// this can be used by other fusion processes to avoid fusing on the same frame as this expensive step
magFusePerformed = true;
magFuseRequired = false;
hal.util->perf_end(_perf_test[4]);
}
hal.util->perf_begin(_perf_test[5]);
// zero the attitude error state - by definition it is assumed to be zero before each observaton fusion
stateStruct.angErr.zero();
// correct the state vector
for (uint8_t j= 0; j<=stateIndexLim; j++) {
statesArray[j] = statesArray[j] - Kfusion[j] * innovMag[obsIndex];
}
// Inhibit corrections to tilt if requested. This enables mag states to settle after a reset without causing sudden changes in roll and pitch
if (magFuseTiltInhibit) {
stateStruct.angErr.x = 0.0f;
stateStruct.angErr.y = 0.0f;
}
// the first 3 states represent the angular misalignment vector. This is
// is used to correct the estimated quaternion on the current time step
stateStruct.quat.rotate(stateStruct.angErr);
// correct the covariance P = (I - K*H)*P
// take advantage of the empty columns in KH to reduce the
// number of operations
for (unsigned i = 0; i<=stateIndexLim; i++) {
for (unsigned j = 0; j<=2; j++) {
KH[i][j] = Kfusion[i] * H_MAG[j];
}
for (unsigned j = 3; j<=15; j++) {
KH[i][j] = 0.0f;
}
for (unsigned j = 16; j<=21; j++) {
KH[i][j] = Kfusion[i] * H_MAG[j];
}
for (unsigned j = 22; j<=23; j++) {
KH[i][j] = 0.0f;
}
}
for (unsigned j = 0; j<=stateIndexLim; j++) {
for (unsigned i = 0; i<=stateIndexLim; i++) {
ftype res = 0;
res += KH[i][0] * P[0][j];
res += KH[i][1] * P[1][j];
res += KH[i][2] * P[2][j];
res += KH[i][16] * P[16][j];
res += KH[i][17] * P[17][j];
res += KH[i][18] * P[18][j];
res += KH[i][19] * P[19][j];
res += KH[i][20] * P[20][j];
res += KH[i][21] * P[21][j];
KHP[i][j] = res;
}
}
for (unsigned i = 0; i<=stateIndexLim; i++) {
for (unsigned j = 0; j<=stateIndexLim; j++) {
P[i][j] = P[i][j] - KHP[i][j];
}
}
// force the covariance matrix to be symmetrical and limit the variances to prevent
// ill-condiioning.
ForceSymmetry();
ConstrainVariances();
hal.util->perf_end(_perf_test[5]);
}
/*
* Fuse magnetic heading measurement using explicit algebraic equations generated with Matlab symbolic toolbox.
* The script file used to generate these and other equations in this filter can be found here:
* https://github.com/priseborough/InertialNav/blob/master/derivations/RotationVectorAttitudeParameterisation/GenerateNavFilterEquations.m
* This fusion method only modifies the orientation, does not require use of the magnetic field states and is computatonally cheaper.
* It is suitable for use when the external magnetic field environment is disturbed (eg close to metal structures, on ground).
* It is not as robust to magneometer failures.
* It is not suitable for operation where the horizontal magnetic field strength is weak (within 30 degreees latitude of the the magnetic poles)
*/
void NavEKF2_core::fuseCompass()
{
float q0 = stateStruct.quat[0];
float q1 = stateStruct.quat[1];
float q2 = stateStruct.quat[2];
float q3 = stateStruct.quat[3];
float magX = magDataDelayed.mag.x;
float magY = magDataDelayed.mag.y;
float magZ = magDataDelayed.mag.z;
// compass measurement error variance (rad^2)
const float R_MAG = 3e-2f;
// calculate intermediate variables for observation jacobian
float t2 = q0*q0;
float t3 = q1*q1;
float t4 = q2*q2;
float t5 = q3*q3;
float t6 = q0*q3*2.0f;
float t8 = t2-t3+t4-t5;
float t9 = q0*q1*2.0f;
float t10 = q2*q3*2.0f;
float t11 = t9-t10;
float t14 = q1*q2*2.0f;
float t21 = magY*t8;
float t22 = t6+t14;
float t23 = magX*t22;
float t24 = magZ*t11;
float t7 = t21+t23-t24;
float t12 = t2+t3-t4-t5;
float t13 = magX*t12;
float t15 = q0*q2*2.0f;
float t16 = q1*q3*2.0f;
float t17 = t15+t16;
float t18 = magZ*t17;
float t19 = t6-t14;
float t25 = magY*t19;
float t20 = t13+t18-t25;
if (fabsf(t20) < 1e-6f) {
return;
}
float t26 = 1.0f/(t20*t20);
float t27 = t7*t7;
float t28 = t26*t27;
float t29 = t28+1.0;
if (fabsf(t29) < 1e-12f) {
return;
}
float t30 = 1.0f/t29;
if (fabsf(t20) < 1e-12f) {
return;
}
float t31 = 1.0f/t20;
// calculate observation jacobian
float H_MAG[3];
H_MAG[0] = -t30*(t31*(magZ*t8+magY*t11)+t7*t26*(magY*t17+magZ*t19));
H_MAG[1] = t30*(t31*(magX*t11+magZ*t22)-t7*t26*(magZ*t12-magX*t17));
H_MAG[2] = t30*(t31*(magX*t8-magY*t22)+t7*t26*(magY*t12+magX*t19));
// Calculate innovation variance and Kalman gains, taking advantage of the fact that only the first 3 elements in H are non zero
float PH[3];
float varInnov = R_MAG;
for (uint8_t rowIndex=0; rowIndex<=2; rowIndex++) {
PH[rowIndex] = 0.0f;
for (uint8_t colIndex=0; colIndex<=2; colIndex++) {
PH[rowIndex] += P[rowIndex][colIndex]*H_MAG[colIndex];
}
varInnov += H_MAG[rowIndex]*PH[rowIndex];
}
float varInnovInv;
if (varInnov >= R_MAG) {
varInnovInv = 1.0f / varInnov;
// All three magnetometer components are used in this measurement, so we output health status on three axes
faultStatus.bad_xmag = false;
faultStatus.bad_ymag = false;
faultStatus.bad_zmag = false;
} else {
// the calculation is badly conditioned, so we cannot perform fusion on this step
// we reset the covariance matrix and try again next measurement
CovarianceInit();
// All three magnetometer components are used in this measurement, so we output health status on three axes
faultStatus.bad_xmag = true;
faultStatus.bad_ymag = true;
faultStatus.bad_zmag = true;
return;
}
for (uint8_t rowIndex=0; rowIndex<=stateIndexLim; rowIndex++) {
Kfusion[rowIndex] = 0.0f;
for (uint8_t colIndex=0; colIndex<=2; colIndex++) {
Kfusion[rowIndex] += P[rowIndex][colIndex]*H_MAG[colIndex];
}
Kfusion[rowIndex] *= varInnovInv;
}
// Calculate the innovation
float innovation = calcMagHeadingInnov();
// Copy raw value to output variable used for data logging
innovYaw = innovation;
// calculate the innovation test ratio
yawTestRatio = sq(innovation) / (sq(MAX(0.01f * (float)frontend->_magInnovGate, 1.0f)) * varInnov);
// Declare the magnetometer unhealthy if the innovation test fails
if (yawTestRatio > 1.0f) {
magHealth = false;
// On the ground a large innovation could be due to large initial gyro bias or magnetic interference from nearby objects
// If we are flying, then it is more likely due to a magnetometer fault and we should not fuse the data
if (inFlight) {
return;
}
} else {
magHealth = true;
}
// limit the innovation so that initial corrections are not too large
if (innovation > 0.5f) {
innovation = 0.5f;
} else if (innovation < -0.5f) {
innovation = -0.5f;
}
// correct the state vector
stateStruct.angErr.zero();
for (uint8_t i=0; i<=stateIndexLim; i++) {
statesArray[i] -= Kfusion[i] * innovation;
}
// the first 3 states represent the angular misalignment vector. This is
// is used to correct the estimated quaternion on the current time step
stateStruct.quat.rotate(stateStruct.angErr);
// correct the covariance using P = P - K*H*P taking advantage of the fact that only the first 3 elements in H are non zero
float HP[24];
for (uint8_t colIndex=0; colIndex<=stateIndexLim; colIndex++) {
HP[colIndex] = 0.0f;
for (uint8_t rowIndex=0; rowIndex<=2; rowIndex++) {
HP[colIndex] += H_MAG[rowIndex]*P[rowIndex][colIndex];
}
}
for (uint8_t rowIndex=0; rowIndex<=stateIndexLim; rowIndex++) {
for (uint8_t colIndex=0; colIndex<=stateIndexLim; colIndex++) {
P[rowIndex][colIndex] -= Kfusion[rowIndex] * HP[colIndex];
}
}
// force the covariance matrix to be symmetrical and limit the variances to prevent
// ill-condiioning.
ForceSymmetry();
ConstrainVariances();
}
/*
* Fuse declination angle using explicit algebraic equations generated with Matlab symbolic toolbox.
* The script file used to generate these and other equations in this filter can be found here:
* https://github.com/priseborough/InertialNav/blob/master/derivations/RotationVectorAttitudeParameterisation/GenerateNavFilterEquations.m
* This is used to prevent the declination of the EKF earth field states from drifting during operation without GPS
* or some other absolute position or velocity reference
*/
void NavEKF2_core::FuseDeclination()
{
// declination error variance (rad^2)
const float R_DECL = 1e-2f;
// copy required states to local variables
float magN = stateStruct.earth_magfield.x;
float magE = stateStruct.earth_magfield.y;
// prevent bad earth field states from causing numerical errors or exceptions
if (magN < 1e-3f) {
return;
}
// Calculate observation Jacobian and Kalman gains
float t2 = magE*magE;
float t3 = magN*magN;
float t4 = t2+t3;
float t5 = 1.0f/t4;
float t22 = magE*t5;
float t23 = magN*t5;
float t6 = P[16][16]*t22;
float t13 = P[17][16]*t23;
float t7 = t6-t13;
float t8 = t22*t7;
float t9 = P[16][17]*t22;
float t14 = P[17][17]*t23;
float t10 = t9-t14;
float t15 = t23*t10;
float t11 = R_DECL+t8-t15; // innovation variance
float t12 = 1.0f/t11;
float H_MAG[24];
H_MAG[16] = -magE*t5;
H_MAG[17] = magN*t5;
for (uint8_t i=0; i<=15; i++) {
Kfusion[i] = -t12*(P[i][16]*t22-P[i][17]*t23);
}
Kfusion[16] = -t12*(t6-P[16][17]*t23);
Kfusion[17] = t12*(t14-P[17][16]*t22);
for (uint8_t i=17; i<=23; i++) {
Kfusion[i] = -t12*(P[i][16]*t22-P[i][17]*t23);
}
// get the magnetic declination
float magDecAng = use_compass() ? _ahrs->get_compass()->get_declination() : 0;
// Calculate the innovation
float innovation = atanf(t4) - magDecAng;
// limit the innovation to protect against data errors
if (innovation > 0.5f) {
innovation = 0.5f;
} else if (innovation < -0.5f) {
innovation = -0.5f;
}
// zero the attitude error state - by definition it is assumed to be zero before each observaton fusion
stateStruct.angErr.zero();
// correct the state vector
for (uint8_t j= 0; j<=stateIndexLim; j++) {
statesArray[j] = statesArray[j] - Kfusion[j] * innovation;
}
// the first 3 states represent the angular misalignment vector. This is
// is used to correct the estimated quaternion on the current time step
stateStruct.quat.rotate(stateStruct.angErr);
// correct the covariance P = (I - K*H)*P
// take advantage of the empty columns in KH to reduce the
// number of operations
for (unsigned i = 0; i<=stateIndexLim; i++) {
for (unsigned j = 0; j<=15; j++) {
KH[i][j] = 0.0f;
}
KH[i][16] = Kfusion[i] * H_MAG[16];
KH[i][17] = Kfusion[i] * H_MAG[17];
for (unsigned j = 18; j<=23; j++) {
KH[i][j] = 0.0f;
}
}
for (unsigned j = 0; j<=stateIndexLim; j++) {
for (unsigned i = 0; i<=stateIndexLim; i++) {
KHP[i][j] = KH[i][16] * P[16][j] + KH[i][17] * P[17][j];
}
}
for (unsigned i = 0; i<=stateIndexLim; i++) {
for (unsigned j = 0; j<=stateIndexLim; j++) {
P[i][j] = P[i][j] - KHP[i][j];
}
}
// force the covariance matrix to be symmetrical and limit the variances to prevent
// ill-condiioning.
ForceSymmetry();
ConstrainVariances();
}
// Calculate magnetic heading declination innovation
float NavEKF2_core::calcMagHeadingInnov()
{
// rotate measured body components into earth axis
Matrix3f Tbn_temp;
stateStruct.quat.rotation_matrix(Tbn_temp);
Vector3f magMeasNED = Tbn_temp*magDataDelayed.mag;
// the observation is the declination angle of the earth field from the compass library
// the prediction is the azimuth angle of the projection of the measured field onto the horizontal
float innovation = atan2f(magMeasNED.y,magMeasNED.x) - _ahrs->get_compass()->get_declination();
// wrap the innovation so it sits on the range from +-pi
innovation = wrap_PI(innovation);
// Unwrap so that a large yaw gyro bias offset that causes the heading to wrap does not lead to continual uncontrolled heading drift
if (innovation - lastInnovation > M_PI_F) {
// Angle has wrapped in the positive direction to subtract an additional 2*Pi
innovationIncrement -= 2*M_PI_F;
} else if (innovation -innovationIncrement < -M_PI_F) {
// Angle has wrapped in the negative direction so add an additional 2*Pi
innovationIncrement += 2*M_PI_F;
}
lastInnovation = innovation;
return innovation + innovationIncrement;
}
/********************************************************
* MISC FUNCTIONS *
********************************************************/
// align the NE earth magnetic field states with the published declination
void NavEKF2_core::alignMagStateDeclination()
{
// get the magnetic declination
float magDecAng = use_compass() ? _ahrs->get_compass()->get_declination() : 0;
// rotate the NE values so that the declination matches the published value
Vector3f initMagNED = stateStruct.earth_magfield;
float magLengthNE = pythagorous2(initMagNED.x,initMagNED.y);
stateStruct.earth_magfield.x = magLengthNE * cosf(magDecAng);
stateStruct.earth_magfield.y = magLengthNE * sinf(magDecAng);
}
#endif // HAL_CPU_CLASS