Ardupilot2/ArduSub/GCS_Mavlink.cpp
Peter Barker 90f41c72f4 ArduSub: avoid using struct Location
clang reports this could be a problem when compiling under some EABIs.  Remove it from most places as it is just noise, replace with class where we want to avoid including Location.h
2023-02-04 22:51:54 +11:00

832 lines
28 KiB
C++

#include "Sub.h"
#include "GCS_Mavlink.h"
#include <AP_RPM/AP_RPM_config.h>
MAV_TYPE GCS_Sub::frame_type() const
{
return MAV_TYPE_SUBMARINE;
}
MAV_MODE GCS_MAVLINK_Sub::base_mode() const
{
uint8_t _base_mode = MAV_MODE_FLAG_STABILIZE_ENABLED;
// work out the base_mode. This value is not very useful
// for APM, but we calculate it as best we can so a generic
// MAVLink enabled ground station can work out something about
// what the MAV is up to. The actual bit values are highly
// ambiguous for most of the APM flight modes. In practice, you
// only get useful information from the custom_mode, which maps to
// the APM flight mode and has a well defined meaning in the
// ArduPlane documentation
switch (sub.control_mode) {
case AUTO:
case GUIDED:
case CIRCLE:
case POSHOLD:
_base_mode |= MAV_MODE_FLAG_GUIDED_ENABLED;
// note that MAV_MODE_FLAG_AUTO_ENABLED does not match what
// APM does in any mode, as that is defined as "system finds its own goal
// positions", which APM does not currently do
break;
default:
break;
}
// all modes except INITIALISING have some form of manual
// override if stick mixing is enabled
_base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
if (sub.motors.armed()) {
_base_mode |= MAV_MODE_FLAG_SAFETY_ARMED;
}
// indicate we have set a custom mode
_base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
return (MAV_MODE)_base_mode;
}
uint32_t GCS_Sub::custom_mode() const
{
return sub.control_mode;
}
MAV_STATE GCS_MAVLINK_Sub::vehicle_system_status() const
{
// set system as critical if any failsafe have triggered
if (sub.any_failsafe_triggered()) {
return MAV_STATE_CRITICAL;
}
if (sub.motors.armed()) {
return MAV_STATE_ACTIVE;
}
return MAV_STATE_STANDBY;
}
void GCS_MAVLINK_Sub::send_banner()
{
GCS_MAVLINK::send_banner();
send_text(MAV_SEVERITY_INFO, "Frame: %s", sub.motors.get_frame_string());
}
void GCS_MAVLINK_Sub::send_nav_controller_output() const
{
const Vector3f &targets = sub.attitude_control.get_att_target_euler_cd();
mavlink_msg_nav_controller_output_send(
chan,
targets.x * 1.0e-2f,
targets.y * 1.0e-2f,
targets.z * 1.0e-2f,
sub.wp_nav.get_wp_bearing_to_destination() * 1.0e-2f,
MIN(sub.wp_nav.get_wp_distance_to_destination() * 1.0e-2f, UINT16_MAX),
sub.pos_control.get_pos_error_z_cm() * 1.0e-2f,
0,
0);
}
int16_t GCS_MAVLINK_Sub::vfr_hud_throttle() const
{
return (int16_t)(sub.motors.get_throttle() * 100);
}
// Work around to get temperature sensor data out
void GCS_MAVLINK_Sub::send_scaled_pressure3()
{
#if AP_TEMPERATURE_SENSOR_ENABLED
float temperature;
if (!sub.temperature_sensor.get_temperature(temperature)) {
return;
}
mavlink_msg_scaled_pressure3_send(
chan,
AP_HAL::millis(),
0,
0,
temperature * 100,
0); // TODO: use differential pressure temperature
#endif
}
bool GCS_MAVLINK_Sub::send_info()
{
// Just do this all at once, hopefully the hard-wire telemetry requirement means this is ok
// Name is char[10]
CHECK_PAYLOAD_SIZE(NAMED_VALUE_FLOAT);
send_named_float("CamTilt",
1 - (SRV_Channels::get_output_norm(SRV_Channel::k_mount_tilt) / 2.0f + 0.5f));
CHECK_PAYLOAD_SIZE(NAMED_VALUE_FLOAT);
send_named_float("CamPan",
1 - (SRV_Channels::get_output_norm(SRV_Channel::k_mount_pan) / 2.0f + 0.5f));
CHECK_PAYLOAD_SIZE(NAMED_VALUE_FLOAT);
send_named_float("TetherTrn",
sub.quarter_turn_count/4);
CHECK_PAYLOAD_SIZE(NAMED_VALUE_FLOAT);
send_named_float("Lights1",
SRV_Channels::get_output_norm(SRV_Channel::k_rcin9) / 2.0f + 0.5f);
CHECK_PAYLOAD_SIZE(NAMED_VALUE_FLOAT);
send_named_float("Lights2",
SRV_Channels::get_output_norm(SRV_Channel::k_rcin10) / 2.0f + 0.5f);
CHECK_PAYLOAD_SIZE(NAMED_VALUE_FLOAT);
send_named_float("PilotGain", sub.gain);
CHECK_PAYLOAD_SIZE(NAMED_VALUE_FLOAT);
send_named_float("InputHold", sub.input_hold_engaged);
CHECK_PAYLOAD_SIZE(NAMED_VALUE_FLOAT);
send_named_float("RollPitch", sub.roll_pitch_flag);
return true;
}
/*
send PID tuning message
*/
void GCS_MAVLINK_Sub::send_pid_tuning()
{
const Parameters &g = sub.g;
AP_AHRS &ahrs = AP::ahrs();
AC_AttitudeControl_Sub &attitude_control = sub.attitude_control;
const Vector3f &gyro = ahrs.get_gyro();
if (g.gcs_pid_mask & 1) {
const AP_PIDInfo &pid_info = attitude_control.get_rate_roll_pid().get_pid_info();
mavlink_msg_pid_tuning_send(chan, PID_TUNING_ROLL,
pid_info.target*0.01f,
degrees(gyro.x),
pid_info.FF*0.01f,
pid_info.P*0.01f,
pid_info.I*0.01f,
pid_info.D*0.01f,
pid_info.slew_rate,
pid_info.Dmod);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
if (g.gcs_pid_mask & 2) {
const AP_PIDInfo &pid_info = attitude_control.get_rate_pitch_pid().get_pid_info();
mavlink_msg_pid_tuning_send(chan, PID_TUNING_PITCH,
pid_info.target*0.01f,
degrees(gyro.y),
pid_info.FF*0.01f,
pid_info.P*0.01f,
pid_info.I*0.01f,
pid_info.D*0.01f,
pid_info.slew_rate,
pid_info.Dmod);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
if (g.gcs_pid_mask & 4) {
const AP_PIDInfo &pid_info = attitude_control.get_rate_yaw_pid().get_pid_info();
mavlink_msg_pid_tuning_send(chan, PID_TUNING_YAW,
pid_info.target*0.01f,
degrees(gyro.z),
pid_info.FF*0.01f,
pid_info.P*0.01f,
pid_info.I*0.01f,
pid_info.D*0.01f,
pid_info.slew_rate,
pid_info.Dmod);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
if (g.gcs_pid_mask & 8) {
const AP_PIDInfo &pid_info = sub.pos_control.get_accel_z_pid().get_pid_info();
mavlink_msg_pid_tuning_send(chan, PID_TUNING_ACCZ,
pid_info.target*0.01f,
-(ahrs.get_accel_ef().z + GRAVITY_MSS),
pid_info.FF*0.01f,
pid_info.P*0.01f,
pid_info.I*0.01f,
pid_info.D*0.01f,
pid_info.slew_rate,
pid_info.Dmod);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
}
uint8_t GCS_MAVLINK_Sub::sysid_my_gcs() const
{
return sub.g.sysid_my_gcs;
}
bool GCS_Sub::vehicle_initialised() const {
return sub.ap.initialised;
}
// try to send a message, return false if it won't fit in the serial tx buffer
bool GCS_MAVLINK_Sub::try_send_message(enum ap_message id)
{
switch (id) {
case MSG_NAMED_FLOAT:
send_info();
break;
case MSG_TERRAIN:
#if AP_TERRAIN_AVAILABLE
CHECK_PAYLOAD_SIZE(TERRAIN_REQUEST);
sub.terrain.send_request(chan);
#endif
break;
default:
return GCS_MAVLINK::try_send_message(id);
}
return true;
}
const AP_Param::GroupInfo GCS_MAVLINK_Parameters::var_info[] = {
// @Param: RAW_SENS
// @DisplayName: Raw sensor stream rate
// @Description: Stream rate of RAW_IMU, SCALED_IMU2, SCALED_PRESSURE, and SENSOR_OFFSETS to ground station
// @Units: Hz
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK_Parameters, streamRates[GCS_MAVLINK::STREAM_RAW_SENSORS], 0),
// @Param: EXT_STAT
// @DisplayName: Extended status stream rate to ground station
// @Description: Stream rate of SYS_STATUS, MEMINFO, MISSION_CURRENT, GPS_RAW_INT, NAV_CONTROLLER_OUTPUT, and LIMITS_STATUS to ground station
// @Units: Hz
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK_Parameters, streamRates[GCS_MAVLINK::STREAM_EXTENDED_STATUS], 0),
// @Param: RC_CHAN
// @DisplayName: RC Channel stream rate to ground station
// @Description: Stream rate of SERVO_OUTPUT_RAW and RC_CHANNELS_RAW to ground station
// @Units: Hz
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK_Parameters, streamRates[GCS_MAVLINK::STREAM_RC_CHANNELS], 0),
// @Param: POSITION
// @DisplayName: Position stream rate to ground station
// @Description: Stream rate of GLOBAL_POSITION_INT to ground station
// @Units: Hz
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("POSITION", 4, GCS_MAVLINK_Parameters, streamRates[GCS_MAVLINK::STREAM_POSITION], 0),
// @Param: EXTRA1
// @DisplayName: Extra data type 1 stream rate to ground station
// @Description: Stream rate of ATTITUDE and SIMSTATE (SITL only) to ground station
// @Units: Hz
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK_Parameters, streamRates[GCS_MAVLINK::STREAM_EXTRA1], 0),
// @Param: EXTRA2
// @DisplayName: Extra data type 2 stream rate to ground station
// @Description: Stream rate of VFR_HUD to ground station
// @Units: Hz
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK_Parameters, streamRates[GCS_MAVLINK::STREAM_EXTRA2], 0),
// @Param: EXTRA3
// @DisplayName: Extra data type 3 stream rate to ground station
// @Description: Stream rate of AHRS and SYSTEM_TIME to ground station
// @Units: Hz
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK_Parameters, streamRates[GCS_MAVLINK::STREAM_EXTRA3], 0),
// @Param: PARAMS
// @DisplayName: Parameter stream rate to ground station
// @Description: Stream rate of PARAM_VALUE to ground station
// @Units: Hz
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK_Parameters, streamRates[GCS_MAVLINK::STREAM_PARAMS], 0),
AP_GROUPEND
};
static const ap_message STREAM_RAW_SENSORS_msgs[] = {
MSG_RAW_IMU,
MSG_SCALED_IMU2,
MSG_SCALED_IMU3,
MSG_SCALED_PRESSURE,
MSG_SCALED_PRESSURE2,
MSG_SCALED_PRESSURE3,
};
static const ap_message STREAM_EXTENDED_STATUS_msgs[] = {
MSG_SYS_STATUS,
MSG_POWER_STATUS,
MSG_MCU_STATUS,
MSG_MEMINFO,
MSG_CURRENT_WAYPOINT,
MSG_GPS_RAW,
MSG_GPS_RTK,
MSG_GPS2_RAW,
MSG_GPS2_RTK,
MSG_NAV_CONTROLLER_OUTPUT,
MSG_FENCE_STATUS,
MSG_NAMED_FLOAT
};
static const ap_message STREAM_POSITION_msgs[] = {
MSG_LOCATION,
MSG_LOCAL_POSITION
};
static const ap_message STREAM_RC_CHANNELS_msgs[] = {
MSG_SERVO_OUTPUT_RAW,
MSG_RC_CHANNELS,
MSG_RC_CHANNELS_RAW, // only sent on a mavlink1 connection
};
static const ap_message STREAM_EXTRA1_msgs[] = {
MSG_ATTITUDE,
MSG_SIMSTATE,
MSG_AHRS2,
MSG_PID_TUNING
};
static const ap_message STREAM_EXTRA2_msgs[] = {
MSG_VFR_HUD
};
static const ap_message STREAM_EXTRA3_msgs[] = {
MSG_AHRS,
MSG_SYSTEM_TIME,
MSG_RANGEFINDER,
MSG_DISTANCE_SENSOR,
#if AP_TERRAIN_AVAILABLE
MSG_TERRAIN,
#endif
MSG_BATTERY_STATUS,
MSG_GIMBAL_DEVICE_ATTITUDE_STATUS,
MSG_OPTICAL_FLOW,
MSG_MAG_CAL_REPORT,
MSG_MAG_CAL_PROGRESS,
MSG_EKF_STATUS_REPORT,
MSG_VIBRATION,
#if AP_RPM_ENABLED
MSG_RPM,
#endif
MSG_ESC_TELEMETRY,
};
static const ap_message STREAM_PARAMS_msgs[] = {
MSG_NEXT_PARAM
};
const struct GCS_MAVLINK::stream_entries GCS_MAVLINK::all_stream_entries[] = {
MAV_STREAM_ENTRY(STREAM_RAW_SENSORS),
MAV_STREAM_ENTRY(STREAM_EXTENDED_STATUS),
MAV_STREAM_ENTRY(STREAM_POSITION),
MAV_STREAM_ENTRY(STREAM_RC_CHANNELS),
MAV_STREAM_ENTRY(STREAM_EXTRA1),
MAV_STREAM_ENTRY(STREAM_EXTRA2),
MAV_STREAM_ENTRY(STREAM_EXTRA3),
MAV_STREAM_ENTRY(STREAM_PARAMS),
MAV_STREAM_TERMINATOR // must have this at end of stream_entries
};
bool GCS_MAVLINK_Sub::handle_guided_request(AP_Mission::Mission_Command &cmd)
{
return sub.do_guided(cmd);
}
MAV_RESULT GCS_MAVLINK_Sub::_handle_command_preflight_calibration_baro()
{
if (sub.motors.armed()) {
gcs().send_text(MAV_SEVERITY_INFO, "Disarm before calibration.");
return MAV_RESULT_FAILED;
}
if (!sub.control_check_barometer()) {
return MAV_RESULT_FAILED;
}
AP::baro().calibrate(true);
return MAV_RESULT_ACCEPTED;
}
MAV_RESULT GCS_MAVLINK_Sub::_handle_command_preflight_calibration(const mavlink_command_long_t &packet)
{
if (is_equal(packet.param6,1.0f)) {
// compassmot calibration
//result = sub.mavlink_compassmot(chan);
gcs().send_text(MAV_SEVERITY_INFO, "#CompassMot calibration not supported");
return MAV_RESULT_UNSUPPORTED;
}
return GCS_MAVLINK::_handle_command_preflight_calibration(packet);
}
MAV_RESULT GCS_MAVLINK_Sub::handle_command_do_set_roi(const Location &roi_loc)
{
if (!roi_loc.check_latlng()) {
return MAV_RESULT_FAILED;
}
sub.set_auto_yaw_roi(roi_loc);
return MAV_RESULT_ACCEPTED;
}
bool GCS_MAVLINK_Sub::set_home_to_current_location(bool _lock) {
return sub.set_home_to_current_location(_lock);
}
bool GCS_MAVLINK_Sub::set_home(const Location& loc, bool _lock) {
return sub.set_home(loc, _lock);
}
MAV_RESULT GCS_MAVLINK_Sub::handle_command_long_packet(const mavlink_command_long_t &packet)
{
switch (packet.command) {
case MAV_CMD_NAV_LOITER_UNLIM:
if (!sub.set_mode(POSHOLD, ModeReason::GCS_COMMAND)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
case MAV_CMD_NAV_LAND:
if (!sub.set_mode(SURFACE, ModeReason::GCS_COMMAND)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
case MAV_CMD_CONDITION_YAW:
// param1 : target angle [0-360]
// param2 : speed during change [deg per second]
// param3 : direction (-1:ccw, +1:cw)
// param4 : relative offset (1) or absolute angle (0)
if ((packet.param1 >= 0.0f) &&
(packet.param1 <= 360.0f) &&
(is_zero(packet.param4) || is_equal(packet.param4,1.0f))) {
sub.set_auto_yaw_look_at_heading(packet.param1, packet.param2, (int8_t)packet.param3, (uint8_t)packet.param4);
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
case MAV_CMD_DO_CHANGE_SPEED:
// param1 : unused
// param2 : new speed in m/s
// param3 : unused
// param4 : unused
if (packet.param2 > 0.0f) {
sub.wp_nav.set_speed_xy(packet.param2 * 100.0f);
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
case MAV_CMD_MISSION_START:
if (sub.motors.armed() && sub.set_mode(AUTO, ModeReason::GCS_COMMAND)) {
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
case MAV_CMD_DO_MOTOR_TEST:
// param1 : motor sequence number (a number from 1 to max number of motors on the vehicle)
// param2 : throttle type (0=throttle percentage, 1=PWM, 2=pilot throttle channel pass-through. See MOTOR_TEST_THROTTLE_TYPE enum)
// param3 : throttle (range depends upon param2)
// param4 : timeout (in seconds)
if (!sub.handle_do_motor_test(packet)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
default:
return GCS_MAVLINK::handle_command_long_packet(packet);
}
}
void GCS_MAVLINK_Sub::handleMessage(const mavlink_message_t &msg)
{
switch (msg.msgid) {
case MAVLINK_MSG_ID_MANUAL_CONTROL: { // MAV ID: 69
if (msg.sysid != sub.g.sysid_my_gcs) {
break; // Only accept control from our gcs
}
mavlink_manual_control_t packet;
mavlink_msg_manual_control_decode(&msg, &packet);
if (packet.target != sub.g.sysid_this_mav) {
break; // only accept control aimed at us
}
sub.transform_manual_control_to_rc_override(packet.x,packet.y,packet.z,packet.r,packet.buttons);
sub.failsafe.last_pilot_input_ms = AP_HAL::millis();
// a RC override message is considered to be a 'heartbeat'
// from the ground station for failsafe purposes
gcs().sysid_myggcs_seen(AP_HAL::millis());
break;
}
case MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE: { // MAV ID: 70
if (msg.sysid != sub.g.sysid_my_gcs) {
break; // Only accept control from our gcs
}
sub.failsafe.last_pilot_input_ms = AP_HAL::millis();
// a RC override message is considered to be a 'heartbeat'
// from the ground station for failsafe purposes
handle_rc_channels_override(msg);
break;
}
case MAVLINK_MSG_ID_SET_ATTITUDE_TARGET: { // MAV ID: 82
// decode packet
mavlink_set_attitude_target_t packet;
mavlink_msg_set_attitude_target_decode(&msg, &packet);
// ensure type_mask specifies to use attitude
// the thrust can be used from the altitude hold
if (packet.type_mask & (1<<6)) {
sub.set_attitude_target_no_gps = {AP_HAL::millis(), packet};
}
// ensure type_mask specifies to use attitude and thrust
if ((packet.type_mask & ((1<<7)|(1<<6))) != 0) {
break;
}
// convert thrust to climb rate
packet.thrust = constrain_float(packet.thrust, 0.0f, 1.0f);
float climb_rate_cms = 0.0f;
if (is_equal(packet.thrust, 0.5f)) {
climb_rate_cms = 0.0f;
} else if (packet.thrust > 0.5f) {
// climb at up to WPNAV_SPEED_UP
climb_rate_cms = (packet.thrust - 0.5f) * 2.0f * sub.wp_nav.get_default_speed_up();
} else {
// descend at up to WPNAV_SPEED_DN
climb_rate_cms = (packet.thrust - 0.5f) * 2.0f * sub.wp_nav.get_default_speed_down();
}
sub.guided_set_angle(Quaternion(packet.q[0],packet.q[1],packet.q[2],packet.q[3]), climb_rate_cms);
break;
}
case MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED: { // MAV ID: 84
// decode packet
mavlink_set_position_target_local_ned_t packet;
mavlink_msg_set_position_target_local_ned_decode(&msg, &packet);
// exit if vehicle is not in Guided mode or Auto-Guided mode
if ((sub.control_mode != GUIDED) && !(sub.control_mode == AUTO && sub.auto_mode == Auto_NavGuided)) {
break;
}
// check for supported coordinate frames
if (packet.coordinate_frame != MAV_FRAME_LOCAL_NED &&
packet.coordinate_frame != MAV_FRAME_LOCAL_OFFSET_NED &&
packet.coordinate_frame != MAV_FRAME_BODY_NED &&
packet.coordinate_frame != MAV_FRAME_BODY_OFFSET_NED) {
break;
}
bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE;
bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE;
bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE;
/*
* for future use:
* bool force = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_FORCE;
* bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE;
* bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE;
*/
// prepare position
Vector3f pos_vector;
if (!pos_ignore) {
// convert to cm
pos_vector = Vector3f(packet.x * 100.0f, packet.y * 100.0f, -packet.z * 100.0f);
// rotate to body-frame if necessary
if (packet.coordinate_frame == MAV_FRAME_BODY_NED ||
packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) {
sub.rotate_body_frame_to_NE(pos_vector.x, pos_vector.y);
}
// add body offset if necessary
if (packet.coordinate_frame == MAV_FRAME_LOCAL_OFFSET_NED ||
packet.coordinate_frame == MAV_FRAME_BODY_NED ||
packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) {
pos_vector += sub.inertial_nav.get_position_neu_cm();
}
}
// prepare velocity
Vector3f vel_vector;
if (!vel_ignore) {
// convert to cm
vel_vector = Vector3f(packet.vx * 100.0f, packet.vy * 100.0f, -packet.vz * 100.0f);
// rotate to body-frame if necessary
if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) {
sub.rotate_body_frame_to_NE(vel_vector.x, vel_vector.y);
}
}
// send request
if (!pos_ignore && !vel_ignore && acc_ignore) {
sub.guided_set_destination_posvel(pos_vector, vel_vector);
} else if (pos_ignore && !vel_ignore && acc_ignore) {
sub.guided_set_velocity(vel_vector);
} else if (!pos_ignore && vel_ignore && acc_ignore) {
sub.guided_set_destination(pos_vector);
}
break;
}
case MAVLINK_MSG_ID_SET_POSITION_TARGET_GLOBAL_INT: { // MAV ID: 86
// decode packet
mavlink_set_position_target_global_int_t packet;
mavlink_msg_set_position_target_global_int_decode(&msg, &packet);
// exit if vehicle is not in Guided, Auto-Guided, or Depth Hold modes
if ((sub.control_mode != GUIDED)
&& !(sub.control_mode == AUTO && sub.auto_mode == Auto_NavGuided)
&& !(sub.control_mode == ALT_HOLD)) {
break;
}
bool z_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_Z_IGNORE;
bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE;
bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE;
bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE;
/*
* for future use:
* bool force = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_FORCE;
* bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE;
* bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE;
*/
if (!z_ignore && sub.control_mode == ALT_HOLD) { // Control only target depth when in ALT_HOLD
sub.pos_control.set_pos_target_z_cm(packet.alt*100);
break;
}
Vector3f pos_neu_cm; // position (North, East, Up coordinates) in centimeters
if (!pos_ignore) {
// sanity check location
if (!check_latlng(packet.lat_int, packet.lon_int)) {
break;
}
Location::AltFrame frame;
if (!mavlink_coordinate_frame_to_location_alt_frame((MAV_FRAME)packet.coordinate_frame, frame)) {
// unknown coordinate frame
break;
}
const Location loc{
packet.lat_int,
packet.lon_int,
int32_t(packet.alt*100),
frame,
};
if (!loc.get_vector_from_origin_NEU(pos_neu_cm)) {
break;
}
}
if (!pos_ignore && !vel_ignore && acc_ignore) {
sub.guided_set_destination_posvel(pos_neu_cm, Vector3f(packet.vx * 100.0f, packet.vy * 100.0f, -packet.vz * 100.0f));
} else if (pos_ignore && !vel_ignore && acc_ignore) {
sub.guided_set_velocity(Vector3f(packet.vx * 100.0f, packet.vy * 100.0f, -packet.vz * 100.0f));
} else if (!pos_ignore && vel_ignore && acc_ignore) {
sub.guided_set_destination(pos_neu_cm);
}
break;
}
case MAVLINK_MSG_ID_TERRAIN_DATA:
case MAVLINK_MSG_ID_TERRAIN_CHECK:
#if AP_TERRAIN_AVAILABLE
sub.terrain.handle_data(chan, msg);
#endif
break;
// This adds support for leak detectors in a separate enclosure
// connected to a mavlink enabled subsystem
case MAVLINK_MSG_ID_SYS_STATUS: {
uint32_t MAV_SENSOR_WATER = 0x20000000;
mavlink_sys_status_t packet;
mavlink_msg_sys_status_decode(&msg, &packet);
if ((packet.onboard_control_sensors_enabled & MAV_SENSOR_WATER) && !(packet.onboard_control_sensors_health & MAV_SENSOR_WATER)) {
sub.leak_detector.set_detect();
}
}
break;
default:
handle_common_message(msg);
break;
} // end switch
} // end handle mavlink
uint64_t GCS_MAVLINK_Sub::capabilities() const
{
return (MAV_PROTOCOL_CAPABILITY_MISSION_FLOAT |
MAV_PROTOCOL_CAPABILITY_MISSION_INT |
MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_LOCAL_NED |
MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_GLOBAL_INT |
MAV_PROTOCOL_CAPABILITY_FLIGHT_TERMINATION |
#if AP_TERRAIN_AVAILABLE
(sub.terrain.enabled() ? MAV_PROTOCOL_CAPABILITY_TERRAIN : 0) |
#endif
MAV_PROTOCOL_CAPABILITY_SET_ATTITUDE_TARGET |
GCS_MAVLINK::capabilities()
);
}
MAV_RESULT GCS_MAVLINK_Sub::handle_flight_termination(const mavlink_command_long_t &packet) {
if (packet.param1 > 0.5f) {
sub.arming.disarm(AP_Arming::Method::TERMINATION);
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
}
int32_t GCS_MAVLINK_Sub::global_position_int_alt() const {
if (!sub.ap.depth_sensor_present) {
return 0;
}
return GCS_MAVLINK::global_position_int_alt();
}
int32_t GCS_MAVLINK_Sub::global_position_int_relative_alt() const {
if (!sub.ap.depth_sensor_present) {
return 0;
}
return GCS_MAVLINK::global_position_int_relative_alt();
}
#if HAL_HIGH_LATENCY2_ENABLED
int16_t GCS_MAVLINK_Sub::high_latency_target_altitude() const
{
AP_AHRS &ahrs = AP::ahrs();
Location global_position_current;
UNUSED_RESULT(ahrs.get_location(global_position_current));
//return units are m
if (sub.control_mode == AUTO || sub.control_mode == GUIDED) {
return 0.01 * (global_position_current.alt + sub.pos_control.get_pos_error_z_cm());
}
return 0;
}
uint8_t GCS_MAVLINK_Sub::high_latency_tgt_heading() const
{
// return units are deg/2
if (sub.control_mode == AUTO || sub.control_mode == GUIDED) {
// need to convert -18000->18000 to 0->360/2
return wrap_360_cd(sub.wp_nav.get_wp_bearing_to_destination()) / 200;
}
return 0;
}
uint16_t GCS_MAVLINK_Sub::high_latency_tgt_dist() const
{
// return units are dm
if (sub.control_mode == AUTO || sub.control_mode == GUIDED) {
return MIN(sub.wp_nav.get_wp_distance_to_destination() * 0.001, UINT16_MAX);
}
return 0;
}
uint8_t GCS_MAVLINK_Sub::high_latency_tgt_airspeed() const
{
// return units are m/s*5
if (sub.control_mode == AUTO || sub.control_mode == GUIDED) {
return MIN((sub.pos_control.get_vel_desired_cms().length()/100) * 5, UINT8_MAX);
}
return 0;
}
#endif // HAL_HIGH_LATENCY2_ENABLED