185 lines
5.0 KiB
C++
185 lines
5.0 KiB
C++
/*
|
|
SITL handling
|
|
|
|
This emulates the ADS7844 ADC
|
|
|
|
Andrew Tridgell November 2011
|
|
*/
|
|
|
|
#include <AP_HAL.h>
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
|
|
|
|
#include <AP_HAL_AVR.h>
|
|
#include <AP_HAL_AVR_SITL.h>
|
|
#include "AP_HAL_AVR_SITL_Namespace.h"
|
|
#include "HAL_AVR_SITL_Class.h"
|
|
|
|
#include <AP_Math.h>
|
|
#include "../AP_Compass/AP_Compass.h"
|
|
#include "../AP_Declination/AP_Declination.h"
|
|
#include "../AP_RangeFinder/AP_RangeFinder.h"
|
|
#include "../SITL/SITL.h"
|
|
#include "Scheduler.h"
|
|
#include <AP_Math.h>
|
|
#include "../AP_ADC/AP_ADC.h"
|
|
#include <SITL_State.h>
|
|
#include <fenv.h>
|
|
|
|
|
|
using namespace AVR_SITL;
|
|
|
|
/*
|
|
convert airspeed in m/s to an airspeed sensor value
|
|
*/
|
|
uint16_t SITL_State::_airspeed_sensor(float airspeed)
|
|
{
|
|
const float airspeed_ratio = 1.9936;
|
|
const float airspeed_offset = 2013;
|
|
float airspeed_pressure, airspeed_raw;
|
|
|
|
airspeed_pressure = (airspeed*airspeed) / airspeed_ratio;
|
|
airspeed_raw = airspeed_pressure + airspeed_offset;
|
|
if (airspeed_raw/4 > 0xFFFF) {
|
|
return 0xFFFF;
|
|
}
|
|
return airspeed_raw/4;
|
|
}
|
|
|
|
|
|
float SITL_State::_gyro_drift(void)
|
|
{
|
|
if (_sitl->drift_speed == 0.0) {
|
|
return 0;
|
|
}
|
|
double period = _sitl->drift_time * 2;
|
|
double minutes = fmod(_scheduler->_micros() / 60.0e6, period);
|
|
if (minutes < period/2) {
|
|
return minutes * ToRad(_sitl->drift_speed);
|
|
}
|
|
return (period - minutes) * ToRad(_sitl->drift_speed);
|
|
|
|
}
|
|
|
|
uint16_t SITL_State::_ground_sonar(float altitude)
|
|
{
|
|
static float home_alt = -1;
|
|
// TODO Find the current sonar object and load these params from it
|
|
// rather than assuming XL type
|
|
float scaler = AP_RANGEFINDER_MAXSONARXL_SCALER;
|
|
|
|
if (home_alt == -1)
|
|
home_alt = altitude;
|
|
|
|
altitude = altitude - home_alt;
|
|
|
|
altitude += _sitl->sonar_noise * _rand_float();
|
|
|
|
if (_sitl->sonar_glitch >= (_rand_float() + 1.0f)/2.0f)
|
|
altitude = AP_RANGEFINDER_MAXSONARXL_MAX_DISTANCE / 100.0f;
|
|
|
|
altitude = constrain_float(altitude,
|
|
AP_RANGEFINDER_MAXSONARXL_MIN_DISTANCE / 100.0f,
|
|
AP_RANGEFINDER_MAXSONARXL_MAX_DISTANCE / 100.0f);
|
|
|
|
// Altitude in in m, scaler relative to cm
|
|
return (uint16_t)(altitude * 100.0f / scaler);
|
|
}
|
|
|
|
/*
|
|
setup the INS input channels with new input
|
|
|
|
Note that this uses roll, pitch and yaw only as inputs. The
|
|
simulator rollrates are instantaneous, whereas we need to use
|
|
average rates to cope with slow update rates.
|
|
|
|
inputs are in degrees
|
|
|
|
phi - roll
|
|
theta - pitch
|
|
psi - true heading
|
|
alpha - angle of attack
|
|
beta - side slip
|
|
phidot - roll rate
|
|
thetadot - pitch rate
|
|
psidot - yaw rate
|
|
v_north - north velocity in local/body frame
|
|
v_east - east velocity in local/body frame
|
|
v_down - down velocity in local/body frame
|
|
A_X_pilot - X accel in body frame
|
|
A_Y_pilot - Y accel in body frame
|
|
A_Z_pilot - Z accel in body frame
|
|
|
|
Note: doubles on high prec. stuff are preserved until the last moment
|
|
|
|
*/
|
|
void SITL_State::_update_ins(float roll, float pitch, float yaw, // Relative to earth
|
|
double rollRate, double pitchRate,double yawRate, // Local to plane
|
|
double xAccel, double yAccel, double zAccel, // Local to plane
|
|
float airspeed, float altitude)
|
|
{
|
|
double p, q, r;
|
|
|
|
if (_ins == NULL) {
|
|
// no inertial sensor in this sketch
|
|
return;
|
|
}
|
|
|
|
if (_sitl->float_exception) {
|
|
feenableexcept(FE_INVALID | FE_OVERFLOW);
|
|
} else {
|
|
feclearexcept(FE_INVALID | FE_OVERFLOW);
|
|
}
|
|
|
|
SITL::convert_body_frame(roll, pitch,
|
|
rollRate, pitchRate, yawRate,
|
|
&p, &q, &r);
|
|
|
|
// minimum noise levels are 2 bits, but averaged over many
|
|
// samples, giving around 0.01 m/s/s
|
|
float accel_noise = 0.01;
|
|
// minimum gyro noise is also less than 1 bit
|
|
float gyro_noise = ToRad(0.04);
|
|
if (_motors_on) {
|
|
// add extra noise when the motors are on
|
|
accel_noise += _sitl->accel_noise;
|
|
gyro_noise += ToRad(_sitl->gyro_noise);
|
|
}
|
|
float xAccel1 = xAccel + accel_noise * _rand_float();
|
|
float yAccel1 = yAccel + accel_noise * _rand_float();
|
|
float zAccel1 = zAccel + accel_noise * _rand_float();
|
|
|
|
float xAccel2 = xAccel + accel_noise * _rand_float();
|
|
float yAccel2 = yAccel + accel_noise * _rand_float();
|
|
float zAccel2 = zAccel + accel_noise * _rand_float();
|
|
|
|
if (fabs(_sitl->accel_fail) > 1.0e-6) {
|
|
xAccel1 = _sitl->accel_fail;
|
|
yAccel1 = _sitl->accel_fail;
|
|
zAccel1 = _sitl->accel_fail;
|
|
}
|
|
|
|
_ins->set_accel(0, Vector3f(xAccel1, yAccel1, zAccel1) + _ins->get_accel_offsets(0));
|
|
_ins->set_accel(1, Vector3f(xAccel2, yAccel2, zAccel2) + _ins->get_accel_offsets(1));
|
|
|
|
p += _gyro_drift();
|
|
q += _gyro_drift();
|
|
r += _gyro_drift();
|
|
|
|
float p1 = p + gyro_noise * _rand_float();
|
|
float q1 = q + gyro_noise * _rand_float();
|
|
float r1 = r + gyro_noise * _rand_float();
|
|
|
|
float p2 = p + gyro_noise * _rand_float();
|
|
float q2 = q + gyro_noise * _rand_float();
|
|
float r2 = r + gyro_noise * _rand_float();
|
|
|
|
_ins->set_gyro(0, Vector3f(p1, q1, r1) + _ins->get_gyro_offsets(0));
|
|
_ins->set_gyro(1, Vector3f(p2, q2, r2) + _ins->get_gyro_offsets(1));
|
|
|
|
|
|
sonar_pin_value = _ground_sonar(altitude);
|
|
airspeed_pin_value = _airspeed_sensor(airspeed + (_sitl->aspd_noise * _rand_float()));
|
|
}
|
|
|
|
#endif
|