Ardupilot2/libraries/AP_Mount/AP_Mount_Backend.cpp

143 lines
6.7 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_Mount_Backend.h>
extern const AP_HAL::HAL& hal;
// set_roi_target - sets target location that mount should attempt to point towards
void AP_Mount_Backend::set_roi_target(const struct Location &target_loc)
{
// set the target gps location
_frontend.state[_instance]._roi_target = target_loc;
// set the mode to GPS tracking mode
_frontend.set_mode(_instance, MAV_MOUNT_MODE_GPS_POINT);
}
// configure_msg - process MOUNT_CONFIGURE messages received from GCS
void AP_Mount_Backend::configure_msg(mavlink_message_t* msg)
{
__mavlink_mount_configure_t packet;
mavlink_msg_mount_configure_decode(msg, &packet);
// set mode
_frontend.set_mode(_instance,(enum MAV_MOUNT_MODE)packet.mount_mode);
// set which axis are stabilized
_frontend.state[_instance]._stab_roll = packet.stab_roll;
_frontend.state[_instance]._stab_tilt = packet.stab_pitch;
_frontend.state[_instance]._stab_pan = packet.stab_yaw;
}
// control_msg - process MOUNT_CONTROL messages received from GCS
void AP_Mount_Backend::control_msg(mavlink_message_t *msg)
{
__mavlink_mount_control_t packet;
mavlink_msg_mount_control_decode(msg, &packet);
// interpret message fields based on mode
switch (_frontend.get_mode(_instance)) {
case MAV_MOUNT_MODE_RETRACT:
case MAV_MOUNT_MODE_NEUTRAL:
// do nothing with request if mount is retracted or in neutral position
break;
// set earth frame target angles from mavlink message
case MAV_MOUNT_MODE_MAVLINK_TARGETING:
_angle_ef_target_rad.x = packet.input_b*0.01f; // convert roll in centi-degrees to degrees
_angle_ef_target_rad.y = packet.input_a*0.01f; // convert tilt in centi-degrees to degrees
_angle_ef_target_rad.z = packet.input_c*0.01f; // convert pan in centi-degrees to degrees
break;
// Load neutral position and start RC Roll,Pitch,Yaw control with stabilization
case MAV_MOUNT_MODE_RC_TARGETING:
// do nothing if pilot is controlling the roll, pitch and yaw
break;
// set lat, lon, alt position targets from mavlink message
case MAV_MOUNT_MODE_GPS_POINT:
Location target_location;
target_location.lat = packet.input_a;
target_location.lng = packet.input_b;
target_location.alt = packet.input_c;
set_roi_target(target_location);
break;
default:
// do nothing
break;
}
}
// update_targets_from_rc - updates angle targets using input from receiver
void AP_Mount_Backend::update_targets_from_rc()
{
#define rc_ch(i) RC_Channel::rc_channel(i-1)
uint8_t roll_rc_in = _frontend.state[_instance]._roll_rc_in;
uint8_t tilt_rc_in = _frontend.state[_instance]._tilt_rc_in;
uint8_t pan_rc_in = _frontend.state[_instance]._pan_rc_in;
// if joystick_speed is defined then pilot input defines a rate of change of the angle
if (_frontend._joystick_speed) {
// allow pilot speed position input to come directly from an RC_Channel
if (roll_rc_in && rc_ch(roll_rc_in)) {
_angle_ef_target_rad.x += rc_ch(roll_rc_in)->norm_input_dz() * 0.0001f * _frontend._joystick_speed;
constrain_float(_angle_ef_target_rad.x, radians(_frontend.state[_instance]._roll_angle_min*0.01f), radians(_frontend.state[_instance]._roll_angle_max*0.01f));
}
if (tilt_rc_in && (rc_ch(tilt_rc_in))) {
_angle_ef_target_rad.y += rc_ch(tilt_rc_in)->norm_input_dz() * 0.0001f * _frontend._joystick_speed;
constrain_float(_angle_ef_target_rad.y, radians(_frontend.state[_instance]._tilt_angle_min*0.01f), radians(_frontend.state[_instance]._tilt_angle_max*0.01f));
}
if (pan_rc_in && (rc_ch(pan_rc_in))) {
_angle_ef_target_rad.z += rc_ch(pan_rc_in)->norm_input_dz() * 0.0001f * _frontend._joystick_speed;
constrain_float(_angle_ef_target_rad.z, radians(_frontend.state[_instance]._pan_angle_min*0.01f), radians(_frontend.state[_instance]._pan_angle_max*0.01f));
}
} else {
// allow pilot position input to come directly from an RC_Channel
if (roll_rc_in && (rc_ch(roll_rc_in))) {
_angle_ef_target_rad.x = angle_input_rad(rc_ch(roll_rc_in), _frontend.state[_instance]._roll_angle_min, _frontend.state[_instance]._roll_angle_max);
}
if (tilt_rc_in && (rc_ch(tilt_rc_in))) {
_angle_ef_target_rad.y = angle_input_rad(rc_ch(tilt_rc_in), _frontend.state[_instance]._tilt_angle_min, _frontend.state[_instance]._tilt_angle_max);
}
if (pan_rc_in && (rc_ch(pan_rc_in))) {
_angle_ef_target_rad.z = angle_input_rad(rc_ch(pan_rc_in), _frontend.state[_instance]._pan_angle_min, _frontend.state[_instance]._pan_angle_max);
}
}
}
// returns the angle (degrees*100) that the RC_Channel input is receiving
int32_t AP_Mount_Backend::angle_input(RC_Channel* rc, int16_t angle_min, int16_t angle_max)
{
return (rc->get_reverse() ? -1 : 1) * (rc->radio_in - rc->radio_min) * (int32_t)(angle_max - angle_min) / (rc->radio_max - rc->radio_min) + (rc->get_reverse() ? angle_max : angle_min);
}
// returns the angle (radians) that the RC_Channel input is receiving
float AP_Mount_Backend::angle_input_rad(RC_Channel* rc, int16_t angle_min, int16_t angle_max)
{
return radians(angle_input(rc, angle_min, angle_max)*0.01f);
}
// calc_angle_to_location - calculates the earth-frame roll, tilt and pan angles (and radians) to point at the given target
void AP_Mount_Backend::calc_angle_to_location(const struct Location &target, Vector3f& angles_to_target_rad, bool calc_tilt, bool calc_pan)
{
float GPS_vector_x = (target.lng-_frontend._current_loc.lng)*cosf(ToRad((_frontend._current_loc.lat+target.lat)*0.00000005f))*0.01113195f;
float GPS_vector_y = (target.lat-_frontend._current_loc.lat)*0.01113195f;
float GPS_vector_z = (target.alt-_frontend._current_loc.alt); // baro altitude(IN CM) should be adjusted to known home elevation before take off (Set altimeter).
float target_distance = 100.0f*pythagorous2(GPS_vector_x, GPS_vector_y); // Careful , centimeters here locally. Baro/alt is in cm, lat/lon is in meters.
// initialise all angles to zero
angles_to_target_rad.zero();
// tilt calcs
if (calc_tilt) {
angles_to_target_rad.y = atan2f(GPS_vector_z, target_distance);
}
// pan calcs
if (calc_pan) {
angles_to_target_rad.z = atan2f(GPS_vector_x, GPS_vector_y);
}
}