Ardupilot2/ArduPlane/Parameters.pde
priseborough 70a186464b Plane: added LEVEL_ROLL_LIMIT parameter
this replaces both TKOFF_HEAD_HOLD and RUDDER_STEER, allowing users to
instead select a roll limit for takeoff and landing
2013-04-12 21:59:52 +10:00

758 lines
32 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
/*
* ArduPlane parameter definitions
*
* This firmware is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*/
#define GSCALAR(v, name, def) { g.v.vtype, name, Parameters::k_param_ ## v, &g.v, {def_value : def} }
#define GGROUP(v, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## v, &g.v, {group_info : class::var_info} }
#define GOBJECT(v, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## v, &v, {group_info : class::var_info} }
const AP_Param::Info var_info[] PROGMEM = {
GSCALAR(format_version, "FORMAT_VERSION", 0),
GSCALAR(software_type, "SYSID_SW_TYPE", Parameters::k_software_type),
GSCALAR(sysid_this_mav, "SYSID_THISMAV", MAV_SYSTEM_ID),
GSCALAR(sysid_my_gcs, "SYSID_MYGCS", 255),
// @Param: SERIAL0_BAUD
// @DisplayName: USB Console Baud Rate
// @Description: The baud rate used on the main uart
// @Values: 1:1200,2:2400,4:4800,9:9600,19:19200,38:38400,57:57600,111:111100,115:115200
// @User: Standard
GSCALAR(serial0_baud, "SERIAL0_BAUD", SERIAL0_BAUD/1000),
// @Param: SERIAL3_BAUD
// @DisplayName: Telemetry Baud Rate
// @Description: The baud rate used on the telemetry port
// @Values: 1:1200,2:2400,4:4800,9:9600,19:19200,38:38400,57:57600,111:111100,115:115200
// @User: Standard
GSCALAR(serial3_baud, "SERIAL3_BAUD", SERIAL3_BAUD/1000),
// @Param: TELEM_DELAY
// @DisplayName: Telemetry startup delay
// @Description: The amount of time (in seconds) to delay radio telemetry to prevent an Xbee bricking on power up
// @User: Standard
// @Units: seconds
// @Range: 0 10
// @Increment: 1
GSCALAR(telem_delay, "TELEM_DELAY", 0),
// @Param: KFF_PTCHCOMP
// @DisplayName: Pitch Compensation
// @Description: Adds pitch input to compensate for the loss of lift due to roll control. 0 = 0 %, 1 = 100%
// @Range: 0 1
// @Increment: 0.01
// @User: Advanced
GSCALAR(kff_pitch_compensation, "KFF_PTCHCOMP", PITCH_COMP),
// @Param: KFF_RDDRMIX
// @DisplayName: Rudder Mix
// @Description: The amount of rudder mix to apply during aileron movement 0 = 0 %, 1 = 100%
// @Range: 0 1
// @Increment: 0.01
// @User: Standard
GSCALAR(kff_rudder_mix, "KFF_RDDRMIX", RUDDER_MIX),
// @Param: KFF_PTCH2THR
// @DisplayName: Pitch to Throttle Mix
// @Description: Pitch to throttle feed-forward gain.
// @Range: 0 5
// @Increment: 0.01
// @User: Advanced
GSCALAR(kff_pitch_to_throttle, "KFF_PTCH2THR", P_TO_T),
// @Param: KFF_THR2PTCH
// @DisplayName: Throttle to Pitch Mix
// @Description: Throttle to pitch feed-forward gain.
// @Range: 0 5
// @Increment: 0.01
// @User: Advanced
GSCALAR(kff_throttle_to_pitch, "KFF_THR2PTCH", T_TO_P),
// @Param: MANUAL_LEVEL
// @DisplayName: Manual Level
// @Description: Setting this to Disabled(0) will enable autolevel on every boot. Setting it to Enabled(1) will do a calibration only when you tell it to
// @Values: 0:Disabled,1:Enabled
// @User: Advanced
GSCALAR(manual_level, "MANUAL_LEVEL", MANUAL_LEVEL),
// @Param: STICK_MIXING
// @DisplayName: Stick Mixing
// @Description: When enabled, this adds user stick input to the control surfaces in auto modes, allowing the user to have some degree of flight control without changing modes. There are two types of stick mixing available. If you set STICK_MIXING to 1 then it will use "fly by wire" mixing, which controls the roll and pitch in the same way that the FBWA mode does. This is the safest option if you usually fly ArduPlane in FBWA or FBWB mode. If you set STICK_MIXING to 2 then it will enable direct mixing mode, which is what the STABILIZE mode uses. That will allow for much more extreme maneuvers while in AUTO mode.
// @Values: 0:Disabled,1:FBWMixing,2:DirectMixing
// @User: Advanced
GSCALAR(stick_mixing, "STICK_MIXING", STICK_MIXING_FBW),
// @Param: TKOFF_THR_MINSPD
// @DisplayName: Takeoff throttle min speed
// @Description: Minimum GPS ground speed in m/s before un-suppressing throttle in auto-takeoff. This is meant to be used for catapult launches where you want the motor to engage only after the plane leaves the catapult. Note that the GPS velocity will lag the real velocity by about 0.5seconds.
// @Units: m/s
// @Range: 0 30
// @Increment: 0.1
// @User: User
GSCALAR(takeoff_throttle_min_speed, "TKOFF_THR_MINSPD", 0),
// @Param: TKOFF_THR_MINACC
// @DisplayName: Takeoff throttle min acceleration
// @Description: Minimum forward acceleration in m/s/s before un-suppressing throttle in auto-takeoff. This is meant to be used for hand launches with a tractor style (front engine) plane. If this is set then the auto takeoff will only trigger if the pitch of the plane is between -30 and +45 degrees, and the roll is less than 30 degrees. This makes it less likely it will trigger due to carrying the plane with the nose down.
// @Units: m/s/s
// @Range: 0 30
// @Increment: 0.1
// @User: User
GSCALAR(takeoff_throttle_min_accel, "TKOFF_THR_MINACC", 0),
// @Param: LEVEL_ROLL_LIMIT
// @DisplayName: Level flight roll limit
// @Description: This controls the maximum bank angle in degrees during flight modes where level flight is desired, such as in the final stages of landing, and during auto takeoff. This should be a small angle (such as 5 degrees) to prevent a wing hitting the runway during takeoff or landing. Setting this to zero will completely disable heading hold on auto takeoff and final landing approach.
// @Units: degrees
// @Range: 0 45
// @Increment: 1
// @User: User
GSCALAR(level_roll_limit, "LEVEL_ROLL_LIMIT", 5),
// @Param: land_pitch_cd
// @DisplayName: Landing Pitch
// @Description: Used in autoland for planes without airspeed sensors in hundredths of a degree
// @Units: centi-Degrees
// @User: Advanced
GSCALAR(land_pitch_cd, "LAND_PITCH_CD", 0),
// @Param: land_flare_alt
// @DisplayName: Landing flare altitude
// @Description: Altitude in autoland at which to lock heading and flare to the LAND_PITCH_CD pitch
// @Units: meters
// @Increment: 0.1
// @User: Advanced
GSCALAR(land_flare_alt, "LAND_FLARE_ALT", 3.0),
// @Param: land_flare_sec
// @DisplayName: Landing flare time
// @Description: Time before landing point at which to lock heading and flare to the LAND_PITCH_CD pitch
// @Units: seconds
// @Increment: 0.1
// @User: Advanced
GSCALAR(land_flare_sec, "LAND_FLARE_SEC", 2.0),
// @Param: NAV_CONTROLLER
// @DisplayName: Navigation controller selection
// @Description: Which navigation controller to enable
// @Values: 0:Legacy,1:L1Controller
// @User: Standard
GSCALAR(nav_controller, "NAV_CONTROLLER", AP_Navigation::CONTROLLER_L1),
// @Param: ALT_MIX
// @DisplayName: Gps to Baro Mix
// @Description: The percent of mixing between gps altitude and baro altitude. 0 = 100% gps, 1 = 100% baro
// @Units: Percent
// @Range: 0 1
// @Increment: 0.1
// @User: Advanced
GSCALAR(altitude_mix, "ALT_MIX", ALTITUDE_MIX),
// @Param: ALT_CTRL_ALG
// @DisplayName: Altitude control algorithm
// @Description: This sets what algorithm will be used for altitude control. The default is to select the algorithm based on whether airspeed is enabled. If you set it to 1, then the airspeed based algorithm won't be used for altitude control, but airspeed can be used for other flight control functions
// @Values: 0:Default Method,1:non-airspeed
// @User: Advanced
GSCALAR(alt_control_algorithm, "ALT_CTRL_ALG", ALT_CONTROL_DEFAULT),
// @Param: ALT_OFFSET
// @DisplayName: Altitude offset
// @Description: This is added to the target altitude in automatic flight. It can be used to add a global altitude offset to a mission, or to adjust for barometric pressure changes
// @Units: Meters
// @Range: -32767 32767
// @Increment: 1
// @User: Advanced
GSCALAR(alt_offset, "ALT_OFFSET", 0),
GSCALAR(command_total, "CMD_TOTAL", 0),
GSCALAR(command_index, "CMD_INDEX", 0),
// @Param: WP_RADIUS
// @DisplayName: Waypoint Radius
// @Description: Defines the distance from a waypoint, that when crossed indicates the wp has been hit.
// @Units: Meters
// @Range: 1 32767
// @Increment: 1
// @User: Standard
GSCALAR(waypoint_radius, "WP_RADIUS", WP_RADIUS_DEFAULT),
// @Param: WP_LOITER_RAD
// @DisplayName: Waypoint Loiter Radius
// @Description: Defines the distance from the waypoint center, the plane will maintain during a loiter
// @Units: Meters
// @Range: 1 32767
// @Increment: 1
// @User: Standard
GSCALAR(loiter_radius, "WP_LOITER_RAD", LOITER_RADIUS_DEFAULT),
#if GEOFENCE_ENABLED == ENABLED
// @Param: FENCE_ACTION
// @DisplayName: Action on geofence breach
// @Description: What to do on fence breach
// @Values: 0:None,1:GuidedMode,2:ReportOnly
// @User: Standard
GSCALAR(fence_action, "FENCE_ACTION", 0),
// @Param: FENCE_TOTAL
// @DisplayName: Fence Total
// @Description: Number of geofence points currently loaded
// @User: Standard
GSCALAR(fence_total, "FENCE_TOTAL", 0),
// @Param: FENCE_CHANNEL
// @DisplayName: Fence Channel
// @Description: RC Channel to use to enable geofence. PWM input above 1750 enables the geofence
// @User: Standard
GSCALAR(fence_channel, "FENCE_CHANNEL", 0),
// @Param: FENCE_MINALT
// @DisplayName: Fence Minimum Altitude
// @Description: Minimum altitude allowed before geofence triggers
// @Units: meters
// @Range: 0 32767
// @Increment: 1
// @User: Standard
GSCALAR(fence_minalt, "FENCE_MINALT", 0),
// @Param: FENCE_MAXALT
// @DisplayName: Fence Maximum Altitude
// @Description: Maximum altitude allowed before geofence triggers
// @Units: meters
// @Range: 0 32767
// @Increment: 1
// @User: Standard
GSCALAR(fence_maxalt, "FENCE_MAXALT", 0),
#endif
// @Param: ARSPD_FBW_MIN
// @DisplayName: Fly By Wire Minimum Airspeed
// @Description: Airspeed corresponding to minimum throttle in Fly By Wire B mode.
// @Units: m/s
// @Range: 5 50
// @Increment: 1
// @User: Standard
GSCALAR(flybywire_airspeed_min, "ARSPD_FBW_MIN", AIRSPEED_FBW_MIN),
// @Param: ARSPD_FBW_MAX
// @DisplayName: Fly By Wire Maximum Airspeed
// @Description: Airspeed corresponding to maximum throttle in Fly By Wire B mode.
// @Units: m/s
// @Range: 5 50
// @Increment: 1
// @User: Standard
GSCALAR(flybywire_airspeed_max, "ARSPD_FBW_MAX", AIRSPEED_FBW_MAX),
// @Param: FBWB_ELEV_REV
// @DisplayName: Fly By Wire elevator reverse
// @Description: Reverse sense of elevator in FBWB. When set to 0 up elevator (pulling back on the stick) means to lower altitude. When set to 1, up elevator means to raise altitude.
// @Values: 0:Disabled,1:Enabled
// @User: Standard
GSCALAR(flybywire_elev_reverse, "FBWB_ELEV_REV", 0),
// @Param: FBWB_CLIMB_RATE
// @DisplayName: Fly By Wire B altitude change rate
// @Description: This sets the rate in m/s at which FBWB will change its target altitude for full elevator deflection. Note that the actual climb rate of the aircraft can be lower than this, depending on your airspeed and throttle control settings. If you have this parameter set to the default value of 2.0, then holding the elevator at maximum deflection for 10 seconds would change the target altitude by 20 meters.
// @Range: 1-10
// @Increment: 0.1
// @User: Standard
GSCALAR(flybywire_climb_rate, "FBWB_CLIMB_RATE", 2.0f),
// @Param: THR_MIN
// @DisplayName: Minimum Throttle
// @Description: The minimum throttle setting to which the autopilot will apply.
// @Units: Percent
// @Range: 0 100
// @Increment: 1
// @User: Standard
GSCALAR(throttle_min, "THR_MIN", THROTTLE_MIN),
// @Param: THR_MAX
// @DisplayName: Maximum Throttle
// @Description: The maximum throttle setting to which the autopilot will apply.
// @Units: Percent
// @Range: 0 100
// @Increment: 1
// @User: Standard
GSCALAR(throttle_max, "THR_MAX", THROTTLE_MAX),
// @Param: THR_SLEWRATE
// @DisplayName: Throttle slew rate
// @Description: maximum percentage change in throttle per second. A setting of 10 means to not change the throttle by more than 10% of the full throttle range in one second
// @Units: Percent
// @Range: 0 100
// @Increment: 1
// @User: Standard
GSCALAR(throttle_slewrate, "THR_SLEWRATE", THROTTLE_SLEW_LIMIT),
// @Param: THR_SUPP_MAN
// @DisplayName: Throttle suppress manual passthru
// @Description: When throttle is supressed in auto mode it is normally forced to zero. If you enable this option, then while suppressed it will be manual throttle. This is useful on petrol engines to hold the idle throttle manually while waiting for takeoff
// @Values: 0:Disabled,1:Enabled
// @User: Advanced
GSCALAR(throttle_suppress_manual,"THR_SUPP_MAN", 0),
// @Param: THR_PASS_STAB
// @DisplayName: Throttle passthru in stabilize
// @Description: If this is set then when in STABILIZE or FBWA mode the throttle is a direct passthru from the transmitter. This means the THR_MIN and THR_MAX settings are not used in these modes. This is useful for petrol engines where you setup a throttle cut switch that suppresses the throttle below the normal minimum.
// @Values: 0:Disabled,1:Enabled
// @User: Advanced
GSCALAR(throttle_passthru_stabilize,"THR_PASS_STAB", 0),
// @Param: THR_FAILSAFE
// @DisplayName: Throttle Failsafe Enable
// @Description: The throttle failsafe allows you to configure a software failsafe activated by a setting on the throttle input channel
// @Values: 0:Disabled,1:Enabled
// @User: Standard
GSCALAR(throttle_fs_enabled, "THR_FAILSAFE", THROTTLE_FAILSAFE),
// @Param: THR_FS_VALUE
// @DisplayName: Throttle Failsafe Value
// @Description: The PWM level on channel 3 below which throttle sailsafe triggers
// @User: Standard
GSCALAR(throttle_fs_value, "THR_FS_VALUE", THROTTLE_FS_VALUE),
// @Param: TRIM_THROTTLE
// @DisplayName: Throttle cruise percentage
// @Description: The target percentage of throttle to apply for normal flight
// @Units: Percent
// @Range: 0 100
// @Increment: 1
// @User: Standard
GSCALAR(throttle_cruise, "TRIM_THROTTLE", THROTTLE_CRUISE),
// @Param: THROTTLE_NUDGE
// @DisplayName: Throttle nudge enable
// @Description: When enabled, this uses the throttle input in auto-throttle modes to 'nudge' the throttle to higher or lower values
// @Values: 0:Disabled,1:Enabled
// @User: Standard
// @User: Standard
GSCALAR(throttle_nudge, "THROTTLE_NUDGE", 1),
// @Param: FS_SHORT_ACTN
// @DisplayName: Short failsafe action
// @Description: The action to take on a short (1 second) failsafe event
// @Values: 0:None,1:ReturnToLaunch
// @User: Standard
GSCALAR(short_fs_action, "FS_SHORT_ACTN", SHORT_FAILSAFE_ACTION),
// @Param: FS_LONG_ACTN
// @DisplayName: Long failsafe action
// @Description: The action to take on a long (20 second) failsafe event
// @Values: 0:None,1:ReturnToLaunch
// @User: Standard
GSCALAR(long_fs_action, "FS_LONG_ACTN", LONG_FAILSAFE_ACTION),
// @Param: FS_GCS_ENABL
// @DisplayName: GCS failsafe enable
// @Description: Enable ground control station telemetry failsafe. Failsafe will trigger after 20 seconds of no MAVLink heartbeat messages. WARNING: Enabling this option opens up the possibility of your plane going into failsafe mode and running the motor on the ground it it loses contact with your ground station. If this option is enabled on an electric plane then either use a separate motor arming switch or remove the propeller in any ground testing.
// @Values: 0:Disabled,1:Enabled
// @User: Standard
GSCALAR(gcs_heartbeat_fs_enabled, "FS_GCS_ENABL", GCS_HEARTBEAT_FAILSAFE),
// @Param: FLTMODE_CH
// @DisplayName: Flightmode channel
// @Description: RC Channel to use for flight mode control
// @User: Advanced
GSCALAR(flight_mode_channel, "FLTMODE_CH", FLIGHT_MODE_CHANNEL),
// @Param: FLTMODE1
// @DisplayName: FlightMode1
// @Values: 0:Manual,1:CIRCLE,2:STABILIZE,3:TRAINING,5:FBWA,6:FBWB,10:Auto,11:RTL,12:Loiter,15:Guided
// @User: Standard
// @Description: Flight mode for switch position 1 (910 to 1230 and above 2049)
GSCALAR(flight_mode1, "FLTMODE1", FLIGHT_MODE_1),
// @Param: FLTMODE2
// @DisplayName: FlightMode2
// @Description: Flight mode for switch position 2 (1231 to 1360)
// @Values: 0:Manual,1:CIRCLE,2:STABILIZE,3:TRAINING,5:FBWA,6:FBWB,10:Auto,11:RTL,12:Loiter,15:Guided
// @User: Standard
GSCALAR(flight_mode2, "FLTMODE2", FLIGHT_MODE_2),
// @Param: FLTMODE3
// @DisplayName: FlightMode3
// @Description: Flight mode for switch position 3 (1361 to 1490)
// @Values: 0:Manual,1:CIRCLE,2:STABILIZE,3:TRAINING,5:FBWA,6:FBWB,10:Auto,11:RTL,12:Loiter,15:Guided
// @User: Standard
GSCALAR(flight_mode3, "FLTMODE3", FLIGHT_MODE_3),
// @Param: FLTMODE4
// @DisplayName: FlightMode4
// @Description: Flight mode for switch position 4 (1491 to 1620)
// @Values: 0:Manual,1:CIRCLE,2:STABILIZE,3:TRAINING,5:FBWA,6:FBWB,10:Auto,11:RTL,12:Loiter,15:Guided
// @User: Standard
GSCALAR(flight_mode4, "FLTMODE4", FLIGHT_MODE_4),
// @Param: FLTMODE5
// @DisplayName: FlightMode5
// @Description: Flight mode for switch position 5 (1621 to 1749)
// @Values: 0:Manual,1:CIRCLE,2:STABILIZE,3:TRAINING,5:FBWA,6:FBWB,10:Auto,11:RTL,12:Loiter,15:Guided
// @User: Standard
GSCALAR(flight_mode5, "FLTMODE5", FLIGHT_MODE_5),
// @Param: FLTMODE6
// @DisplayName: FlightMode6
// @Description: Flight mode for switch position 6 (1750 to 2049)
// @Values: 0:Manual,1:CIRCLE,2:STABILIZE,3:TRAINING,5:FBWA,6:FBWB,10:Auto,11:RTL,12:Loiter,15:Guided
// @User: Standard
GSCALAR(flight_mode6, "FLTMODE6", FLIGHT_MODE_6),
// @Param: LIM_ROLL_CD
// @DisplayName: Maximum Bank Angle
// @Description: The maximum commanded bank angle in either direction
// @Units: centi-Degrees
// @Range: 0 9000
// @Increment: 1
// @User: Standard
GSCALAR(roll_limit_cd, "LIM_ROLL_CD", HEAD_MAX_CENTIDEGREE),
// @Param: LIM_PITCH_MAX
// @DisplayName: Maximum Pitch Angle
// @Description: The maximum commanded pitch up angle
// @Units: centi-Degrees
// @Range: 0 9000
// @Increment: 1
// @User: Standard
GSCALAR(pitch_limit_max_cd, "LIM_PITCH_MAX", PITCH_MAX_CENTIDEGREE),
// @Param: LIM_PITCH_MIN
// @DisplayName: Minimum Pitch Angle
// @Description: The minimum commanded pitch down angle
// @Units: centi-Degrees
// @Range: -9000 0
// @Increment: 1
// @User: Standard
GSCALAR(pitch_limit_min_cd, "LIM_PITCH_MIN", PITCH_MIN_CENTIDEGREE),
// @Param: AUTO_TRIM
// @DisplayName: Auto trim
// @Description: Set RC trim PWM levels to current levels when switching away from manual mode
// @Values: 0:Disabled,1:Enabled
// @User: Standard
GSCALAR(auto_trim, "TRIM_AUTO", AUTO_TRIM),
// @Param: ELEVON_MIXING
// @DisplayName: Elevon mixing
// @Description: Enable elevon mixing on both input and output
// @Values: 0:Disabled,1:Enabled
// @User: User
GSCALAR(mix_mode, "ELEVON_MIXING", ELEVON_MIXING),
// @Param: ELEVON_REVERSE
// @DisplayName: Elevon reverse
// @Description: Reverse elevon mixing
// @Values: 0:Disabled,1:Enabled
// @User: User
GSCALAR(reverse_elevons, "ELEVON_REVERSE", ELEVON_REVERSE),
// @Param: ELEVON_CH1_REV
// @DisplayName: Elevon reverse
// @Description: Reverse elevon channel 1
// @Values: -1:Disabled,1:Enabled
// @User: User
GSCALAR(reverse_ch1_elevon, "ELEVON_CH1_REV", ELEVON_CH1_REVERSE),
// @Param: ELEVON_CH2_REV
// @DisplayName: Elevon reverse
// @Description: Reverse elevon channel 2
// @Values: -1:Disabled,1:Enabled
// @User: User
GSCALAR(reverse_ch2_elevon, "ELEVON_CH2_REV", ELEVON_CH2_REVERSE),
// @Param: VTAIL_OUTPUT
// @DisplayName: VTail output
// @Description: Enable VTail output in software. If enabled then the APM will provide software VTail mixing on the elevator and rudder channels. There are 4 different mixing modes available, which refer to the 4 ways the elevator can be mapped to the two VTail servos. Note that you must not use VTail output mixing with hardware pass-through of RC values, such as with channel 8 manual control on an APM1. So if you use an APM1 then set FLTMODE_CH to something other than 8 before you enable VTAIL_OUTPUT.
// @Values: 0:Disabled,1:UpUp,2:UpDown,3:DownUp,4:DownDown
// @User: User
GSCALAR(vtail_output, "VTAIL_OUTPUT", 0),
// @Param: SYS_NUM_RESETS
// @DisplayName: Num Resets
// @Description: Number of APM board resets
// @User: Advanced
GSCALAR(num_resets, "SYS_NUM_RESETS", 0),
// @Param: LOG_BITMASK
// @DisplayName: Log bitmask
// @Description: bitmap of log fields to enable
// @User: Advanced
GSCALAR(log_bitmask, "LOG_BITMASK", DEFAULT_LOG_BITMASK),
// @Param: RST_SWITCH_CH
// @DisplayName: Reset Switch Channel
// @Description: RC channel to use to reset to last flight mode after geofence takeover.
// @User: Advanced
GSCALAR(reset_switch_chan, "RST_SWITCH_CH", 0),
// @Param: RST_MISSION_CH
// @DisplayName: Reset Mission Channel
// @Description: RC channel to use to reset the mission to the first waypoint. When this channel goes above 1750 the mission is reset. Set RST_MISSION_CH to 0 to disable.
// @User: Advanced
GSCALAR(reset_mission_chan, "RST_MISSION_CH", 0),
// @Param: TRIM_ARSPD_CM
// @DisplayName: Target airspeed
// @Description: Airspeed in cm/s to aim for when airspeed is enabled in auto mode
// @Units: cm/s
// @User: User
GSCALAR(airspeed_cruise_cm, "TRIM_ARSPD_CM", AIRSPEED_CRUISE_CM),
// @Param: SCALING_SPEED
// @DisplayName: speed used for speed scaling calculations
// @Description: Airspeed in m/s to use when calculating surface speed scaling. Note that changing this value will affect all PID values
// @Units: m/s
// @User: Advanced
GSCALAR(scaling_speed, "SCALING_SPEED", SCALING_SPEED),
// @Param: MIN_GNDSPD_CM
// @DisplayName: Minimum ground speed
// @Description: Minimum ground speed in cm/s when under airspeed control
// @Units: cm/s
// @User: Advanced
GSCALAR(min_gndspeed_cm, "MIN_GNDSPD_CM", MIN_GNDSPEED_CM),
// @Param: TRIM_PITCH_CD
// @DisplayName: Pitch angle offset
// @Description: offset to add to pitch - used for trimming tail draggers
// @Units: centi-Degrees
// @User: Advanced
GSCALAR(pitch_trim_cd, "TRIM_PITCH_CD", 0),
// @Param: ALT_HOLD_RTL
// @DisplayName: RTL altitude
// @Description: Return to launch target altitude
// @Units: centimeters
// @User: User
GSCALAR(RTL_altitude_cm, "ALT_HOLD_RTL", ALT_HOLD_HOME_CM),
// @Param: ALT_HOLD_FBWCM
// @DisplayName: Minimum altitude for FBWB mode
// @Description: This is the minimum altitude in centimeters that FBWB will allow. If you attempt to descend below this altitude then the plane will level off. A value of zero means no limit.
// @Units: centimeters
// @User: User
GSCALAR(FBWB_min_altitude_cm, "ALT_HOLD_FBWCM", ALT_HOLD_FBW_CM),
// @Param: MAG_ENABLE
// @DisplayName: Enable Compass
// @Description: Setting this to Enabled(1) will enable the compass. Setting this to Disabled(0) will disable the compass
// @Values: 0:Disabled,1:Enabled
// @User: Standard
GSCALAR(compass_enabled, "MAG_ENABLE", MAGNETOMETER),
GSCALAR(flap_1_percent, "FLAP_1_PERCNT", FLAP_1_PERCENT),
GSCALAR(flap_1_speed, "FLAP_1_SPEED", FLAP_1_SPEED),
GSCALAR(flap_2_percent, "FLAP_2_PERCNT", FLAP_2_PERCENT),
GSCALAR(flap_2_speed, "FLAP_2_SPEED", FLAP_2_SPEED),
GSCALAR(battery_monitoring, "BATT_MONITOR", 0),
GSCALAR(volt_div_ratio, "VOLT_DIVIDER", VOLT_DIV_RATIO),
// @Param: APM_PER_VOLT
// @DisplayName: Apms per volt
// @Description: Number of amps that a 1V reading on the current sensor corresponds to
// @Units: A/V
// @User: Standard
GSCALAR(curr_amp_per_volt, "AMP_PER_VOLT", CURR_AMP_PER_VOLT),
// @Param: AMP_OFFSET
// @DisplayName: AMP offset
// @Description: Voltage offset at zero current on current sensor
// @Units: Volts
// @User: Standard
GSCALAR(curr_amp_offset, "AMP_OFFSET", 0),
// @Param: BATT_CAPACITY
// @DisplayName: Battery capacity
// @Description: Capacity of the battery in mAh when full
// @Units: mAh
// @User: Standard
GSCALAR(pack_capacity, "BATT_CAPACITY", 1760),
// @Param: BATT_VOLT_PIN
// @DisplayName: Battery Voltage sensing pin
// @Description: Setting this to 0 ~ 13 will enable battery current sensing on pins A0 ~ A13.
// @Values: -1:Disabled, 0:A0, 1:A1, 13:A13
// @User: Standard
GSCALAR(battery_volt_pin, "BATT_VOLT_PIN", BATTERY_VOLT_PIN),
// @Param: BATT_CURR_PIN
// @DisplayName: Battery Current sensing pin
// @Description: Setting this to 0 ~ 13 will enable battery current sensing on pins A0 ~ A13.
// @Values: -1:Disabled, 1:A1, 2:A2, 12:A12
// @User: Standard
GSCALAR(battery_curr_pin, "BATT_CURR_PIN", BATTERY_CURR_PIN),
// @Param: RSSI_PIN
// @DisplayName: Receiver RSSI sensing pin
// @Description: This selects an analog pin for the receiver RSSI voltage. It assumes the voltage is 5V for max rssi, 0V for minimum
// @Values: -1:Disabled, 0:A0, 1:A1, 13:A13
// @User: Standard
GSCALAR(rssi_pin, "RSSI_PIN", -1),
// @Param: INVERTEDFLT_CH
// @DisplayName: Inverted flight channel
// @Description: A RC input channel number to enable inverted flight. If this is non-zero then the APM will monitor the correcponding RC input channel and will enable inverted flight when the channel goes above 1750.
// @Values: 0:Disabled,1:Channel1,2:Channel2,3:Channel3,4:Channel4,5:Channel5,6:Channel6,7:Channel7,8:Channel8
// @User: Standard
GSCALAR(inverted_flight_ch, "INVERTEDFLT_CH", 0),
#if HIL_MODE != HIL_MODE_DISABLED
// @Param: HIL_SERVOS
// @DisplayName: HIL Servos enable
// @Description: This controls whether real servo controls are used in HIL mode. If you enable this then the APM will control the real servos in HIL mode. If disabled it will report servo values, but will not output to the real servos. Be careful that your motor and propeller are not connected if you enable this option.
// @Values: 0:Disabled,1:Enabled
// @User: Advanced
GSCALAR(hil_servos, "HIL_SERVOS", 0),
#endif
// barometer ground calibration. The GND_ prefix is chosen for
// compatibility with previous releases of ArduPlane
GOBJECT(barometer, "GND_", AP_Baro),
#if CAMERA == ENABLED
// @Group: CAM_
// @Path: ../libraries/AP_Camera/AP_Camera.cpp
GOBJECT(camera, "CAM_", AP_Camera),
#endif
// RC channel
//-----------
// @Group: RC1_
// @Path: ../libraries/RC_Channel/RC_Channel.cpp
GGROUP(channel_roll, "RC1_", RC_Channel),
// @Group: RC2_
// @Path: ../libraries/RC_Channel/RC_Channel.cpp
GGROUP(channel_pitch, "RC2_", RC_Channel),
// @Group: RC3_
// @Path: ../libraries/RC_Channel/RC_Channel.cpp
GGROUP(channel_throttle, "RC3_", RC_Channel),
// @Group: RC4_
// @Path: ../libraries/RC_Channel/RC_Channel.cpp
GGROUP(channel_rudder, "RC4_", RC_Channel),
// @Group: RC5_
// @Path: ../libraries/RC_Channel/RC_Channel_aux.cpp, ../libraries/RC_Channel/RC_Channel.cpp
GGROUP(rc_5, "RC5_", RC_Channel_aux),
// @Group: RC6_
// @Path: ../libraries/RC_Channel/RC_Channel_aux.cpp, ../libraries/RC_Channel/RC_Channel.cpp
GGROUP(rc_6, "RC6_", RC_Channel_aux),
// @Group: RC7_
// @Path: ../libraries/RC_Channel/RC_Channel_aux.cpp, ../libraries/RC_Channel/RC_Channel.cpp
GGROUP(rc_7, "RC7_", RC_Channel_aux),
// @Group: RC8_
// @Path: ../libraries/RC_Channel/RC_Channel_aux.cpp, ../libraries/RC_Channel/RC_Channel.cpp
GGROUP(rc_8, "RC8_", RC_Channel_aux),
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2
// @Group: RC9_
// @Path: ../libraries/RC_Channel/RC_Channel_aux.cpp, ../libraries/RC_Channel/RC_Channel.cpp
GGROUP(rc_9, "RC9_", RC_Channel_aux),
// @Group: RC10_
// @Path: ../libraries/RC_Channel/RC_Channel_aux.cpp, ../libraries/RC_Channel/RC_Channel.cpp
GGROUP(rc_10, "RC10_", RC_Channel_aux),
// @Group: RC11_
// @Path: ../libraries/RC_Channel/RC_Channel_aux.cpp, ../libraries/RC_Channel/RC_Channel.cpp
GGROUP(rc_11, "RC11_", RC_Channel_aux),
#endif
GGROUP(pidNavRoll, "HDNG2RLL_", PID),
GGROUP(pidNavPitchAirspeed, "ARSP2PTCH_", PID),
GGROUP(pidTeThrottle, "ENRGY2THR_", PID),
GGROUP(pidNavPitchAltitude, "ALT2PTCH_", PID),
GGROUP(pidWheelSteer, "WHEELSTEER_",PID),
#if APM_CONTROL == DISABLED
GGROUP(pidServoRoll, "RLL2SRV_", PID),
GGROUP(pidServoPitch, "PTCH2SRV_", PID),
GGROUP(pidServoRudder, "YW2SRV_", PID),
#else
GGROUP(rollController, "RLL_", AP_RollController),
GGROUP(pitchController, "PTCH_", AP_PitchController),
GGROUP(yawController, "YWCTL_", AP_YawController),
#endif
// variables not in the g class which contain EEPROM saved variables
// @Group: COMPASS_
// @Path: ../libraries/AP_Compass/Compass.cpp
GOBJECT(compass, "COMPASS_", Compass),
GOBJECT(gcs0, "SR0_", GCS_MAVLINK),
GOBJECT(gcs3, "SR3_", GCS_MAVLINK),
// @Group: INS_
// @Path: ../libraries/AP_InertialSensor/AP_InertialSensor.cpp
GOBJECT(ins, "INS_", AP_InertialSensor),
// @Group: AHRS_
// @Path: ../libraries/AP_AHRS/AP_AHRS.cpp
GOBJECT(ahrs, "AHRS_", AP_AHRS),
// @Group: ARSPD_
// @Path: ../libraries/AP_Airspeed/AP_Airspeed.cpp
GOBJECT(airspeed, "ARSPD_", AP_Airspeed),
// @Group: NAVL1_
// @Path: ../libraries/AP_L1_Control/AP_L1_Control.cpp
GOBJECT(L1_controller, "NAVL1_", AP_L1_Control),
#if MOUNT == ENABLED
// @Group: MNT_
// @Path: ../libraries/AP_Mount/AP_Mount.cpp
GOBJECT(camera_mount, "MNT_", AP_Mount),
#endif
#if MOUNT2 == ENABLED
// @Group: MNT2_
// @Path: ../libraries/AP_Mount/AP_Mount.cpp
GOBJECT(camera_mount2, "MNT2_", AP_Mount),
#endif
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
// @Group: SIM_
// @Path: ../libraries/SITL/SITL.cpp
GOBJECT(sitl, "SIM_", SITL),
#endif
#if OBC_FAILSAFE == ENABLED
GOBJECT(obc, "FS_", APM_OBC),
#endif
AP_VAREND
};
static void load_parameters(void)
{
if (!g.format_version.load() ||
g.format_version != Parameters::k_format_version) {
// erase all parameters
cliSerial->printf_P(PSTR("Firmware change: erasing EEPROM...\n"));
AP_Param::erase_all();
// save the current format version
g.format_version.set_and_save(Parameters::k_format_version);
cliSerial->println_P(PSTR("done."));
} else {
uint32_t before = micros();
// Load all auto-loaded EEPROM variables
AP_Param::load_all();
cliSerial->printf_P(PSTR("load_all took %luus\n"), micros() - before);
}
}