Ardupilot2/libraries/AP_GPS/AP_GPS_SBP2.cpp

525 lines
18 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
//
// Swift Navigation SBP GPS driver for ArduPilot.
// Code by Niels Joubert
//
// Swift Binary Protocol format: http://docs.swift-nav.com/
//
#include "AP_GPS.h"
#include "AP_GPS_SBP2.h"
#include <AP_Logger/AP_Logger.h>
#include <GCS_MAVLink/GCS_MAVLink.h>
#include <GCS_MAVLink/GCS.h>
extern const AP_HAL::HAL& hal;
#define SBP_DEBUGGING 0
#define SBP_INFOREPORTING 1
//INVARIANT: We expect SBP to give us a heartbeat in less than 2 seconds.
// This is more lax than the default Piksi settings,
// and we assume the user hasn't reconfigured their Piksi to longer heartbeat intervals
#define SBP_TIMEOUT_HEARTBEAT 2000
#if SBP_DEBUGGING
# define Debug(fmt, args ...) \
do { \
hal.console->printf("%s:%d: " fmt "\n", \
__FUNCTION__, __LINE__, \
## args); \
hal.scheduler->delay(1); \
} while(0)
#else
# define Debug(fmt, args ...)
#endif
#if SBP_INFOREPORTING
# define Info(fmt, args ...) \
do { \
gcs().send_text(MAV_SEVERITY_INFO, fmt "\n", ## args); \
} while(0)
#else
# define Info(fmt, args ...)
#endif
AP_GPS_SBP2::AP_GPS_SBP2(AP_GPS &_gps, AP_GPS::GPS_State &_state,
AP_HAL::UARTDriver *_port) :
AP_GPS_Backend(_gps, _state, _port)
{
Debug("SBP Driver Initialized");
parser_state.state = sbp_parser_state_t::WAITING;
}
// Process all bytes available from the stream
//
bool
AP_GPS_SBP2::read(void)
{
//Invariant: Calling this function processes *all* data current in the UART buffer.
//
//IMPORTANT NOTICE: This function is NOT CALLED for several seconds
// during arming. That should not cause the driver to die. Process *all* waiting messages
_sbp_process();
return _attempt_state_update();
}
void
AP_GPS_SBP2::inject_data(const uint8_t *data, uint16_t len)
{
if (port->txspace() > len) {
last_injected_data_ms = AP_HAL::millis();
port->write(data, len);
} else {
Debug("PIKSI: Not enough TXSPACE");
}
}
//This attempts to reads all SBP messages from the incoming port.
//Returns true if a new message was read, false if we failed to read a message.
void
AP_GPS_SBP2::_sbp_process()
{
uint32_t nleft = port->available();
while (nleft > 0) {
nleft--;
uint8_t temp = port->read();
uint16_t crc;
//This switch reads one character at a time,
//parsing it into buffers until a full message is dispatched
switch (parser_state.state) {
case sbp_parser_state_t::WAITING:
if (temp == SBP_PREAMBLE) {
parser_state.n_read = 0;
parser_state.state = sbp_parser_state_t::GET_TYPE;
}
break;
case sbp_parser_state_t::GET_TYPE:
*((uint8_t*)&(parser_state.msg_type) + parser_state.n_read) = temp;
parser_state.n_read += 1;
if (parser_state.n_read >= 2) {
parser_state.n_read = 0;
parser_state.state = sbp_parser_state_t::GET_SENDER;
}
break;
case sbp_parser_state_t::GET_SENDER:
*((uint8_t*)&(parser_state.sender_id) + parser_state.n_read) = temp;
parser_state.n_read += 1;
if (parser_state.n_read >= 2) {
parser_state.n_read = 0;
parser_state.state = sbp_parser_state_t::GET_LEN;
}
break;
case sbp_parser_state_t::GET_LEN:
parser_state.msg_len = temp;
parser_state.n_read = 0;
parser_state.state = sbp_parser_state_t::GET_MSG;
break;
case sbp_parser_state_t::GET_MSG:
*((uint8_t*)&(parser_state.msg_buff) + parser_state.n_read) = temp;
parser_state.n_read += 1;
if (parser_state.n_read >= parser_state.msg_len) {
parser_state.n_read = 0;
parser_state.state = sbp_parser_state_t::GET_CRC;
}
break;
case sbp_parser_state_t::GET_CRC:
*((uint8_t*)&(parser_state.crc) + parser_state.n_read) = temp;
parser_state.n_read += 1;
if (parser_state.n_read >= 2) {
parser_state.state = sbp_parser_state_t::WAITING;
crc = crc16_ccitt((uint8_t*)&(parser_state.msg_type), 2, 0);
crc = crc16_ccitt((uint8_t*)&(parser_state.sender_id), 2, crc);
crc = crc16_ccitt(&(parser_state.msg_len), 1, crc);
crc = crc16_ccitt(parser_state.msg_buff, parser_state.msg_len, crc);
if (parser_state.crc == crc) {
_sbp_process_message();
} else {
Debug("CRC Error Occurred!");
crc_error_counter += 1;
}
}
break;
default:
parser_state.state = sbp_parser_state_t::WAITING;
break;
}
}
}
//INVARIANT: A fully received message with correct CRC is currently in parser_state
void
AP_GPS_SBP2::_sbp_process_message() {
//Here, we copy messages into local structs.
switch (parser_state.msg_type) {
case SBP_HEARTBEAT_MSGTYPE:
memcpy(&last_heartbeat, parser_state.msg_buff, sizeof(struct sbp_heartbeat_t));
last_heartbeat_received_ms = AP_HAL::millis();
break;
case SBP_GPS_TIME_MSGTYPE:
memcpy(&last_gps_time, parser_state.msg_buff, sizeof(struct sbp_gps_time_t));
check_new_itow(last_gps_time.tow, parser_state.msg_len);
break;
case SBP_VEL_NED_MSGTYPE:
memcpy(&last_vel_ned, parser_state.msg_buff, sizeof(struct sbp_vel_ned_t));
check_new_itow(last_vel_ned.tow, parser_state.msg_len);
break;
case SBP_POS_LLH_MSGTYPE:
memcpy(&last_pos_llh, parser_state.msg_buff, sizeof(struct sbp_pos_llh_t));
check_new_itow(last_pos_llh.tow, parser_state.msg_len);
break;
case SBP_DOPS_MSGTYPE:
memcpy(&last_dops, parser_state.msg_buff, sizeof(struct sbp_dops_t));
check_new_itow(last_dops.tow, parser_state.msg_len);
break;
case SBP_EXT_EVENT_MSGTYPE:
memcpy(&last_event, parser_state.msg_buff, sizeof(struct sbp_ext_event_t));
check_new_itow(last_event.tow, parser_state.msg_len);
logging_ext_event();
break;
default:
break;
}
// send all messages we receive to log, even if it's an unsupported message,
// so we can do additional post-processing from Dataflash logs.
// The log mask will be used to adjust or suppress logging
logging_log_raw_sbp(parser_state.msg_type, parser_state.sender_id, parser_state.msg_len, parser_state.msg_buff);
}
int32_t
AP_GPS_SBP2::distMod(int32_t tow1_ms, int32_t tow2_ms, int32_t mod) {
return MIN(abs(tow1_ms - tow2_ms), mod - abs(tow1_ms - tow2_ms));
}
bool
AP_GPS_SBP2::_attempt_state_update()
{
if (last_heartbeat_received_ms == 0)
return false;
uint32_t now = AP_HAL::millis();
if (now - last_heartbeat_received_ms > SBP_TIMEOUT_HEARTBEAT) {
state.status = AP_GPS::NO_FIX;
Info("No Heartbeats from Piksi! Status to NO_FIX.");
return false;
} else if (last_heartbeat.protocol_major != 2) {
state.status = AP_GPS::NO_FIX;
Info("Received a heartbeat from non-SBPv2 device. Current driver only supports SBPv2. Status to NO_FIX.");
return false;
} else if (last_heartbeat.nap_error == 1 ||
last_heartbeat.io_error == 1 ||
last_heartbeat.sys_error == 1) {
state.status = AP_GPS::NO_FIX;
Info("Piksi reported an error. Status to NO_FIX.");
Debug(" ext_antenna: %d", last_heartbeat.ext_antenna);
Debug(" res2: %d", last_heartbeat.res2);
Debug(" protocol_major: %d", last_heartbeat.protocol_major);
Debug(" protocol_minor: %d", last_heartbeat.protocol_minor);
Debug(" res: %d", last_heartbeat.res);
Debug(" nap_error: %d", last_heartbeat.nap_error);
Debug(" io_error: %d", last_heartbeat.io_error);
Debug(" sys_error: %d", last_heartbeat.sys_error);
return false;
} else if (last_pos_llh.tow == last_vel_ned.tow
&& (distMod(last_gps_time.tow, last_vel_ned.tow, AP_MSEC_PER_WEEK) < 10000)
&& (distMod(last_dops.tow, last_vel_ned.tow, AP_MSEC_PER_WEEK) < 60000)
&& (last_vel_ned.tow > last_full_update_tow || (last_gps_time.wn > last_full_update_wn && last_vel_ned.tow < last_full_update_tow))) {
//We have an aligned VEL and LLH, and a recent DOPS and TIME.
//
// Check Flags for Valid Messages
//
if (last_gps_time.flags.fix_mode == 0 ||
last_vel_ned.flags.fix_mode == 0 ||
last_pos_llh.flags.fix_mode == 0 ||
last_dops.flags.fix_mode == 0) {
Debug("Message Marked as Invalid. NO FIX! Flags: {GPS_TIME: %d, VEL_NED: %d, POS_LLH: %d, DOPS: %d}",
last_gps_time.flags.fix_mode,
last_vel_ned.flags.fix_mode,
last_pos_llh.flags.fix_mode,
last_dops.flags.fix_mode);
state.status = AP_GPS::NO_FIX;
return false;
}
//
// Update external time and accuracy state
//
state.time_week = last_gps_time.wn;
state.time_week_ms = last_vel_ned.tow;
state.hdop = last_dops.hdop;
state.vdop = last_dops.vdop;
state.last_gps_time_ms = now;
//
// Update velocity state
//
state.velocity[0] = (float)(last_vel_ned.n * 1.0e-3);
state.velocity[1] = (float)(last_vel_ned.e * 1.0e-3);
state.velocity[2] = (float)(last_vel_ned.d * 1.0e-3);
float ground_vector_sq = state.velocity[0]*state.velocity[0] + state.velocity[1]*state.velocity[1];
state.ground_speed = safe_sqrt(ground_vector_sq);
state.ground_course = wrap_360(degrees(atan2f(state.velocity[1], state.velocity[0])));
state.speed_accuracy = safe_sqrt(
powf((float)last_vel_ned.h_accuracy * 1.0e-3f, 2) +
powf((float)last_vel_ned.v_accuracy * 1.0e-3f, 2));
state.horizontal_accuracy = (float) last_pos_llh.h_accuracy * 1.0e-3f;
state.vertical_accuracy = (float) last_pos_llh.v_accuracy * 1.0e-3f;
//
// Set flags appropriately
//
state.have_vertical_velocity = true;
state.have_speed_accuracy = !is_zero(state.speed_accuracy);
state.have_horizontal_accuracy = !is_zero(state.horizontal_accuracy);
state.have_vertical_accuracy = !is_zero(state.vertical_accuracy);
//
// Update position state
//
state.location.lat = (int32_t) (last_pos_llh.lat * (double)1e7);
state.location.lng = (int32_t) (last_pos_llh.lon * (double)1e7);
state.location.alt = (int32_t) (last_pos_llh.height * 100);
state.num_sats = last_pos_llh.n_sats;
switch (last_pos_llh.flags.fix_mode) {
case 1:
state.status = AP_GPS::GPS_OK_FIX_3D;
break;
case 2:
state.status = AP_GPS::GPS_OK_FIX_3D_DGPS;
break;
case 3:
state.status = AP_GPS::GPS_OK_FIX_3D_RTK_FLOAT;
break;
case 4:
state.status = AP_GPS::GPS_OK_FIX_3D_RTK_FIXED;
break;
case 6:
state.status = AP_GPS::GPS_OK_FIX_3D_DGPS;
break;
default:
state.status = AP_GPS::NO_FIX;
break;
}
//
// Update Internal Timing
//
last_full_update_tow = last_vel_ned.tow;
last_full_update_wn = last_gps_time.wn;
return true;
}
return false;
}
bool
AP_GPS_SBP2::_detect(struct SBP2_detect_state &state, uint8_t data)
{
// This switch reads one character at a time, if we find something that
// looks like our preamble we'll try to read the full message length,
// calculating the CRC. If the CRC matches, we have an SBP GPS!
switch (state.state) {
case SBP2_detect_state::WAITING:
if (data == SBP_PREAMBLE) {
state.n_read = 0;
state.crc_so_far = 0;
state.state = SBP2_detect_state::GET_TYPE;
}
break;
case SBP2_detect_state::GET_TYPE:
*((uint8_t*)&(state.msg_type) + state.n_read) = data;
state.crc_so_far = crc16_ccitt(&data, 1, state.crc_so_far);
state.n_read += 1;
if (state.n_read >= 2) {
state.n_read = 0;
state.state = SBP2_detect_state::GET_SENDER;
}
break;
case SBP2_detect_state::GET_SENDER:
state.crc_so_far = crc16_ccitt(&data, 1, state.crc_so_far);
state.n_read += 1;
if (state.n_read >= 2) {
state.n_read = 0;
state.state = SBP2_detect_state::GET_LEN;
}
break;
case SBP2_detect_state::GET_LEN:
state.crc_so_far = crc16_ccitt(&data, 1, state.crc_so_far);
state.msg_len = data;
state.n_read = 0;
state.state = SBP2_detect_state::GET_MSG;
break;
case SBP2_detect_state::GET_MSG:
if (state.msg_type == SBP_HEARTBEAT_MSGTYPE && state.n_read < 4) {
*((uint8_t*)&(state.heartbeat_buff) + state.n_read) = data;
}
state.crc_so_far = crc16_ccitt(&data, 1, state.crc_so_far);
state.n_read += 1;
if (state.n_read >= state.msg_len) {
state.n_read = 0;
state.state = SBP2_detect_state::GET_CRC;
}
break;
case SBP2_detect_state::GET_CRC:
*((uint8_t*)&(state.crc) + state.n_read) = data;
state.n_read += 1;
if (state.n_read >= 2) {
state.state = SBP2_detect_state::WAITING;
if (state.crc == state.crc_so_far
&& state.msg_type == SBP_HEARTBEAT_MSGTYPE) {
struct sbp_heartbeat_t* heartbeat = ((struct sbp_heartbeat_t*)state.heartbeat_buff);
return heartbeat->protocol_major == 2;
}
return false;
}
break;
default:
state.state = SBP2_detect_state::WAITING;
break;
}
return false;
}
void
AP_GPS_SBP2::logging_log_full_update()
{
if (!should_df_log()) {
return;
}
//TODO: Expand with heartbeat info.
//TODO: Get rid of IAR NUM HYPO
struct log_SbpHealth pkt = {
LOG_PACKET_HEADER_INIT(LOG_MSG_SBPHEALTH),
time_us : AP_HAL::micros64(),
crc_error_counter : crc_error_counter,
last_injected_data_ms : last_injected_data_ms,
last_iar_num_hypotheses : 0,
};
AP::logger().WriteBlock(&pkt, sizeof(pkt));
};
void
AP_GPS_SBP2::logging_log_raw_sbp(uint16_t msg_type,
uint16_t sender_id,
uint8_t msg_len,
uint8_t *msg_buff) {
if (!should_df_log()) {
return;
}
//MASK OUT MESSAGES WE DON'T WANT TO LOG
if (( ((uint16_t) gps._sbp_logmask) & msg_type) == 0) {
return;
}
uint64_t time_us = AP_HAL::micros64();
uint8_t pages = 1;
if (msg_len > 48) {
pages += (msg_len - 48) / 104 + 1;
}
struct log_SbpRAWH pkt = {
LOG_PACKET_HEADER_INIT(LOG_MSG_SBPRAWH),
time_us : time_us,
msg_type : msg_type,
sender_id : sender_id,
index : 1,
pages : pages,
msg_len : msg_len,
};
memcpy(pkt.data, msg_buff, MIN(msg_len, 48));
AP::logger().WriteBlock(&pkt, sizeof(pkt));
for (uint8_t i = 0; i < pages - 1; i++) {
struct log_SbpRAWM pkt2 = {
LOG_PACKET_HEADER_INIT(LOG_MSG_SBPRAWM),
time_us : time_us,
msg_type : msg_type,
sender_id : sender_id,
index : uint8_t(i + 2),
pages : pages,
msg_len : msg_len,
};
memcpy(pkt2.data, &msg_buff[48 + i * 104], MIN(msg_len - (48 + i * 104), 104));
AP::logger().WriteBlock(&pkt2, sizeof(pkt2));
}
};
void
AP_GPS_SBP2::logging_ext_event() {
if (!should_df_log()) {
return;
}
struct log_SbpEvent pkt = {
LOG_PACKET_HEADER_INIT(LOG_MSG_SBPEVENT),
time_us : AP_HAL::micros64(),
wn : last_event.wn,
tow : last_event.tow,
ns_residual : last_event.ns_residual,
level : last_event.flags.level,
quality : last_event.flags.quality,
};
AP::logger().WriteBlock(&pkt, sizeof(pkt));
};