253 lines
8.5 KiB
C++
253 lines
8.5 KiB
C++
#include "Rover.h"
|
|
|
|
#include <AP_RangeFinder/RangeFinder_Backend.h>
|
|
#include <AP_VisualOdom/AP_VisualOdom.h>
|
|
|
|
// initialise compass
|
|
void Rover::init_compass()
|
|
{
|
|
if (!g.compass_enabled) {
|
|
return;
|
|
}
|
|
|
|
compass.init();
|
|
if (!compass.read()) {
|
|
hal.console->printf("Compass initialisation failed!\n");
|
|
g.compass_enabled = false;
|
|
} else {
|
|
ahrs.set_compass(&compass);
|
|
}
|
|
}
|
|
|
|
/*
|
|
initialise compass's location used for declination
|
|
*/
|
|
void Rover::init_compass_location(void)
|
|
{
|
|
// update initial location used for declination
|
|
if (!compass_init_location) {
|
|
Location loc;
|
|
if (ahrs.get_position(loc)) {
|
|
compass.set_initial_location(loc.lat, loc.lng);
|
|
compass_init_location = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// check for new compass data - 10Hz
|
|
void Rover::update_compass(void)
|
|
{
|
|
if (g.compass_enabled && compass.read()) {
|
|
ahrs.set_compass(&compass);
|
|
// update offsets
|
|
if (should_log(MASK_LOG_COMPASS)) {
|
|
logger.Write_Compass();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Calibrate compass
|
|
void Rover::compass_cal_update() {
|
|
if (!hal.util->get_soft_armed()) {
|
|
compass.compass_cal_update();
|
|
}
|
|
}
|
|
|
|
// Save compass offsets
|
|
void Rover::compass_save() {
|
|
if (g.compass_enabled &&
|
|
compass.get_learn_type() >= Compass::LEARN_INTERNAL &&
|
|
!arming.is_armed()) {
|
|
compass.save_offsets();
|
|
}
|
|
}
|
|
|
|
// init beacons used for non-gps position estimates
|
|
void Rover::init_beacon()
|
|
{
|
|
g2.beacon.init();
|
|
}
|
|
|
|
// init visual odometry sensor
|
|
void Rover::init_visual_odom()
|
|
{
|
|
g2.visual_odom.init();
|
|
}
|
|
|
|
// update wheel encoders
|
|
void Rover::update_wheel_encoder()
|
|
{
|
|
// exit immediately if not enabled
|
|
if (g2.wheel_encoder.num_sensors() == 0) {
|
|
return;
|
|
}
|
|
|
|
// update encoders
|
|
g2.wheel_encoder.update();
|
|
|
|
// initialise on first iteration
|
|
const uint32_t now = AP_HAL::millis();
|
|
if (wheel_encoder_last_ekf_update_ms == 0) {
|
|
wheel_encoder_last_ekf_update_ms = now;
|
|
for (uint8_t i = 0; i < g2.wheel_encoder.num_sensors(); i++) {
|
|
wheel_encoder_last_angle_rad[i] = g2.wheel_encoder.get_delta_angle(i);
|
|
wheel_encoder_last_update_ms[i] = g2.wheel_encoder.get_last_reading_ms(i);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// calculate delta angle and delta time and send to EKF
|
|
// use time of last ping from wheel encoder
|
|
// send delta time (time between this wheel encoder time and previous wheel encoder time)
|
|
// in case where wheel hasn't moved, count = 0 (cap the delta time at 50ms - or system time)
|
|
// use system clock of last update instead of time of last ping
|
|
const float system_dt = (now - wheel_encoder_last_ekf_update_ms) / 1000.0f;
|
|
for (uint8_t i = 0; i < g2.wheel_encoder.num_sensors(); i++) {
|
|
// calculate angular change (in radians)
|
|
const float curr_angle_rad = g2.wheel_encoder.get_delta_angle(i);
|
|
const float delta_angle = curr_angle_rad - wheel_encoder_last_angle_rad[i];
|
|
wheel_encoder_last_angle_rad[i] = curr_angle_rad;
|
|
|
|
// save cumulative distances at current time (in meters)
|
|
wheel_encoder_last_distance_m[i] = g2.wheel_encoder.get_distance(i);
|
|
|
|
// calculate delta time
|
|
float delta_time;
|
|
const uint32_t latest_sensor_update_ms = g2.wheel_encoder.get_last_reading_ms(i);
|
|
const uint32_t sensor_diff_ms = latest_sensor_update_ms - wheel_encoder_last_update_ms[i];
|
|
|
|
// if we have not received any sensor updates, or time difference is too high then use time since last update to the ekf
|
|
// check for old or insane sensor update times
|
|
if (sensor_diff_ms == 0 || sensor_diff_ms > 100) {
|
|
delta_time = system_dt;
|
|
wheel_encoder_last_update_ms[i] = wheel_encoder_last_ekf_update_ms;
|
|
} else {
|
|
delta_time = sensor_diff_ms / 1000.0f;
|
|
wheel_encoder_last_update_ms[i] = latest_sensor_update_ms;
|
|
}
|
|
|
|
/* delAng is the measured change in angular position from the previous measurement where a positive rotation is produced by forward motion of the vehicle (rad)
|
|
* delTime is the time interval for the measurement of delAng (sec)
|
|
* timeStamp_ms is the time when the rotation was last measured (msec)
|
|
* posOffset is the XYZ body frame position of the wheel hub (m)
|
|
*/
|
|
EKF3.writeWheelOdom(delta_angle, delta_time, wheel_encoder_last_update_ms[i], g2.wheel_encoder.get_pos_offset(i), g2.wheel_encoder.get_wheel_radius(i));
|
|
}
|
|
|
|
// record system time update for next iteration
|
|
wheel_encoder_last_ekf_update_ms = now;
|
|
}
|
|
|
|
// Accel calibration
|
|
|
|
void Rover::accel_cal_update() {
|
|
if (hal.util->get_soft_armed()) {
|
|
return;
|
|
}
|
|
ins.acal_update();
|
|
// check if new trim values, and set them float trim_roll, trim_pitch;
|
|
float trim_roll, trim_pitch;
|
|
if (ins.get_new_trim(trim_roll, trim_pitch)) {
|
|
ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0));
|
|
}
|
|
}
|
|
|
|
// read the rangefinders
|
|
void Rover::read_rangefinders(void)
|
|
{
|
|
rangefinder.update();
|
|
|
|
AP_RangeFinder_Backend *s0 = rangefinder.get_backend(0);
|
|
AP_RangeFinder_Backend *s1 = rangefinder.get_backend(1);
|
|
|
|
if (s0 == nullptr || s0->status() == RangeFinder::RangeFinder_NotConnected) {
|
|
// this makes it possible to disable rangefinder at runtime
|
|
return;
|
|
}
|
|
|
|
if (s1 != nullptr && s1->has_data()) {
|
|
// we have two rangefinders
|
|
obstacle.rangefinder1_distance_cm = s0->distance_cm();
|
|
obstacle.rangefinder2_distance_cm = s1->distance_cm();
|
|
if (obstacle.rangefinder1_distance_cm < static_cast<uint16_t>(g.rangefinder_trigger_cm) &&
|
|
obstacle.rangefinder1_distance_cm < static_cast<uint16_t>(obstacle.rangefinder2_distance_cm)) {
|
|
// we have an object on the left
|
|
if (obstacle.detected_count < 127) {
|
|
obstacle.detected_count++;
|
|
}
|
|
if (obstacle.detected_count == g.rangefinder_debounce) {
|
|
gcs().send_text(MAV_SEVERITY_INFO, "Rangefinder1 obstacle %u cm",
|
|
static_cast<uint32_t>(obstacle.rangefinder1_distance_cm));
|
|
}
|
|
obstacle.detected_time_ms = AP_HAL::millis();
|
|
obstacle.turn_angle = g.rangefinder_turn_angle;
|
|
} else if (obstacle.rangefinder2_distance_cm < static_cast<uint16_t>(g.rangefinder_trigger_cm)) {
|
|
// we have an object on the right
|
|
if (obstacle.detected_count < 127) {
|
|
obstacle.detected_count++;
|
|
}
|
|
if (obstacle.detected_count == g.rangefinder_debounce) {
|
|
gcs().send_text(MAV_SEVERITY_INFO, "Rangefinder2 obstacle %u cm",
|
|
static_cast<uint32_t>(obstacle.rangefinder2_distance_cm));
|
|
}
|
|
obstacle.detected_time_ms = AP_HAL::millis();
|
|
obstacle.turn_angle = -g.rangefinder_turn_angle;
|
|
}
|
|
} else {
|
|
// we have a single rangefinder
|
|
obstacle.rangefinder1_distance_cm = s0->distance_cm();
|
|
obstacle.rangefinder2_distance_cm = 0;
|
|
if (obstacle.rangefinder1_distance_cm < static_cast<uint16_t>(g.rangefinder_trigger_cm)) {
|
|
// obstacle detected in front
|
|
if (obstacle.detected_count < 127) {
|
|
obstacle.detected_count++;
|
|
}
|
|
if (obstacle.detected_count == g.rangefinder_debounce) {
|
|
gcs().send_text(MAV_SEVERITY_INFO, "Rangefinder obstacle %u cm",
|
|
static_cast<uint32_t>(obstacle.rangefinder1_distance_cm));
|
|
}
|
|
obstacle.detected_time_ms = AP_HAL::millis();
|
|
obstacle.turn_angle = g.rangefinder_turn_angle;
|
|
}
|
|
}
|
|
|
|
Log_Write_Rangefinder();
|
|
Log_Write_Depth();
|
|
|
|
// no object detected - reset after the turn time
|
|
if (obstacle.detected_count >= g.rangefinder_debounce &&
|
|
AP_HAL::millis() > obstacle.detected_time_ms + g.rangefinder_turn_time*1000) {
|
|
gcs().send_text(MAV_SEVERITY_INFO, "Obstacle passed");
|
|
obstacle.detected_count = 0;
|
|
obstacle.turn_angle = 0;
|
|
}
|
|
}
|
|
|
|
// initialise proximity sensor
|
|
void Rover::init_proximity(void)
|
|
{
|
|
g2.proximity.init();
|
|
g2.proximity.set_rangefinder(&rangefinder);
|
|
}
|
|
|
|
/*
|
|
ask airspeed sensor for a new value, duplicated from plane
|
|
*/
|
|
void Rover::read_airspeed(void)
|
|
{
|
|
g2.airspeed.update(should_log(MASK_LOG_IMU));
|
|
}
|
|
|
|
/*
|
|
update RPM sensors
|
|
*/
|
|
void Rover::rpm_update(void)
|
|
{
|
|
rpm_sensor.update();
|
|
if (rpm_sensor.enabled(0) || rpm_sensor.enabled(1)) {
|
|
if (should_log(MASK_LOG_RC)) {
|
|
logger.Write_RPM(rpm_sensor);
|
|
}
|
|
}
|
|
}
|