371 lines
14 KiB
C++
371 lines
14 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
/*
|
|
24 state EKF based on https://github.com/priseborough/InertialNav
|
|
|
|
Converted from Matlab to C++ by Paul Riseborough
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef AP_NavEKF
|
|
#define AP_NavEKF
|
|
|
|
#include <AP_Math.h>
|
|
#include <AP_AHRS.h>
|
|
#include <AP_InertialSensor.h>
|
|
#include <AP_Baro.h>
|
|
#include <AP_AHRS.h>
|
|
#include <AP_Airspeed.h>
|
|
#include <AP_Compass.h>
|
|
|
|
// #define MATH_CHECK_INDEXES 1
|
|
|
|
#include <vectorN.h>
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
|
|
#include <systemlib/perf_counter.h>
|
|
#endif
|
|
|
|
|
|
class NavEKF
|
|
{
|
|
public:
|
|
#if MATH_CHECK_INDEXES
|
|
typedef VectorN<float,2> Vector2;
|
|
typedef VectorN<float,3> Vector3;
|
|
typedef VectorN<float,6> Vector6;
|
|
typedef VectorN<float,8> Vector8;
|
|
typedef VectorN<float,11> Vector11;
|
|
typedef VectorN<float,13> Vector13;
|
|
typedef VectorN<float,21> Vector21;
|
|
typedef VectorN<float,24> Vector24;
|
|
typedef VectorN<VectorN<float,3>,3> Matrix3;
|
|
typedef VectorN<VectorN<float,24>,24> Matrix24;
|
|
typedef VectorN<VectorN<float,50>,24> Matrix24_50;
|
|
#else
|
|
typedef float Vector2[2];
|
|
typedef float Vector3[3];
|
|
typedef float Vector6[6];
|
|
typedef float Vector8[8];
|
|
typedef float Vector11[11];
|
|
typedef float Vector13[13];
|
|
typedef float Vector21[21];
|
|
typedef float Vector24[24];
|
|
typedef float Matrix3[3][3];
|
|
typedef float Matrix24[24][24];
|
|
typedef float Matrix24_50[24][50];
|
|
#endif
|
|
|
|
// Constructor
|
|
NavEKF(const AP_AHRS &ahrs, AP_Baro &baro);
|
|
|
|
// Initialise the filter states from the AHRS and magnetometer data (if present)
|
|
void InitialiseFilter(void);
|
|
|
|
// Update Filter States - this should be called whenever new IMU data is available
|
|
void UpdateFilter(void);
|
|
|
|
// fill in latitude, longitude and height of the reference point
|
|
void getRefLLH(struct Location &loc);
|
|
|
|
// return the last calculated NED position relative to the
|
|
// reference point (m). Return false if no position is available
|
|
bool getPosNED(Vector3f &pos);
|
|
|
|
// return NED velocity in m/s
|
|
void getVelNED(Vector3f &vel);
|
|
|
|
// return bodyaxis gyro bias estimates in deg/hr
|
|
void getGyroBias(Vector3f &gyroBias);
|
|
|
|
// return body axis accelerometer bias estimates in m/s^2
|
|
void getAccelBias(Vector3f &accelBias);
|
|
|
|
// return the NED wind speed estimates in m/s
|
|
void getWind(Vector3f &wind);
|
|
|
|
// return earth magnetic field estimates in measurement units
|
|
void getMagNED(Vector3f &magNED);
|
|
|
|
// return body magnetic field estimates in measurement units
|
|
void getMagXYZ(Vector3f &magXYZ);
|
|
|
|
// return the last calculated latitude, longitude and height
|
|
bool getLLH(struct Location &loc);
|
|
|
|
// return the Euler roll, pitch and yaw angle in radians
|
|
void getEulerAngles(Vector3f &eulers);
|
|
|
|
// get the transformation matrix from NED to XYD (body) axes
|
|
void getRotationNEDToBody(Matrix3f &mat);
|
|
|
|
// get the transformation matrix from XYZ (body) to NED axes
|
|
void getRotationBodyToNED(Matrix3f &mat);
|
|
|
|
// get the quaternions defining the rotation from NED to XYZ (body) axes
|
|
void getQuaternion(Quaternion &quat);
|
|
|
|
private:
|
|
const AP_AHRS &_ahrs;
|
|
AP_Baro &_baro;
|
|
|
|
void UpdateStrapdownEquationsNED();
|
|
|
|
void CovariancePrediction();
|
|
|
|
void FuseVelPosNED();
|
|
|
|
void FuseMagnetometer();
|
|
|
|
void FuseAirspeed();
|
|
|
|
void zeroRows(Matrix24 &covMat, uint8_t first, uint8_t last);
|
|
|
|
void zeroCols(Matrix24 &covMat, uint8_t first, uint8_t last);
|
|
|
|
void quatNorm(Quaternion &quatOut, const Quaternion &quatIn);
|
|
|
|
// store states along with system time stamp in msces
|
|
void StoreStates(void);
|
|
|
|
// recall state vector stored at closest time to the one specified by msec
|
|
void RecallStates(Vector24 &statesForFusion, uint32_t msec);
|
|
|
|
void quat2Tnb(Matrix3f &Tnb, const Quaternion &quat);
|
|
|
|
void quat2Tbn(Matrix3f &Tbn, const Quaternion &quat);
|
|
|
|
void calcEarthRateNED(Vector3f &omega, float latitude);
|
|
|
|
void eul2quat(Quaternion &quat, const Vector3f &eul);
|
|
|
|
void quat2eul(Vector3f &eul, const Quaternion &quat);
|
|
|
|
void calcvelNED(Vector3f &velNED, float gpsCourse, float gpsGndSpd, float gpsVelD);
|
|
|
|
void calcposNE(float lat, float lon);
|
|
|
|
void calcllh(float &lat, float &lon, float &hgt);
|
|
|
|
void OnGroundCheck();
|
|
|
|
void CovarianceInit();
|
|
|
|
void readIMUData();
|
|
|
|
void readGpsData();
|
|
|
|
void readHgtData();
|
|
|
|
void readMagData();
|
|
|
|
void readAirSpdData();
|
|
|
|
void SelectVelPosFusion();
|
|
|
|
void SelectHgtFusion();
|
|
|
|
void SelectTasFusion();
|
|
|
|
void SelectMagFusion();
|
|
|
|
bool statesInitialised;
|
|
|
|
// Tuning Parameters
|
|
float _gpsHorizVelVar; // GPS horizontal velocity variance (m/s)^2
|
|
float _gpsVertVelVar; // GPS vertical velocity variance (m/s)^2
|
|
float _gpsHorizPosVar; // GPS horizontal position variance m^2
|
|
float _gpsVertPosVar; // GPS vertical position variance m^2
|
|
float _gpsVelVarAccScale; // scale factor applied to velocity variance due to Vdot
|
|
float _gpsPosVarAccScale; // scale factor applied to position variance due to Vdot
|
|
float _magVar; // magnetometer measurement variance Gauss^2
|
|
float _magVarRateScale; // scale factor applied to magnetometer variance due to Vdot
|
|
float _easVar; // equivalent airspeed noise variance (m/s)^2
|
|
float _windStateNoise; // RMS rate of change of wind (m/s^2)
|
|
float _wndVarHgtRateScale; // scale factor applied to wind process noise from height rate
|
|
|
|
Vector24 states; // state matrix - 4 x quaternions, 3 x Vel, 3 x Pos, 3 x gyro bias, 3 x accel bias, 2 x wind vel, 3 x earth mag field, 3 x body mag field
|
|
|
|
Matrix24 KH; // intermediate result used for covariance updates
|
|
Matrix24 KHP; // intermediate result used for covariance updates
|
|
Matrix24 P; // covariance matrix
|
|
Matrix24_50 storedStates; // state vectors stored for the last 50 time steps
|
|
uint32_t statetimeStamp[50]; // time stamp for each state vector stored
|
|
Vector3f correctedDelAng; // delta angles about the xyz body axes corrected for errors (rad)
|
|
Vector3f correctedDelVel; // delta velocities along the XYZ body axes corrected for errors (m/s)
|
|
Vector3f summedDelAng; // corrected & summed delta angles about the xyz body axes (rad)
|
|
Vector3f summedDelVel; // corrected & summed delta velocities along the XYZ body axes (m/s)
|
|
Vector3f prevDelAng; // previous delta angle use for INS coning error compensation
|
|
Matrix3f prevTnb; // previous nav to body transformation used for INS earth rotation compensation
|
|
float accNavMag; // magnitude of navigation accel - used to adjust GPS obs variance (m/s^2)
|
|
Vector3f earthRateNED; // earths angular rate vector in NED (rad/s)
|
|
Vector3f dVelIMU; // delta velocity vector in XYZ body axes measured by the IMU (m/s)
|
|
Vector3f dAngIMU; // delta angle vector in XYZ body axes measured by the IMU (rad)
|
|
float dtIMU; // time lapsed since the last IMU measurement (sec)
|
|
float dt; // time lapsed since the last covariance prediction (sec)
|
|
float hgtRate; // state for rate of change of height filter
|
|
bool onGround; // boolean true when the flight vehicle is on the ground (not flying)
|
|
const bool useAirspeed; // boolean true if airspeed data is being used
|
|
const bool useCompass; // boolean true if magnetometer data is being used
|
|
const uint8_t fusionModeGPS; // 0 = GPS outputs 3D velocity, 1 = GPS outputs 2D velocity, 2 = GPS outputs no velocity
|
|
Vector6 innovVelPos; // innovation output for a group of measurements
|
|
Vector6 varInnovVelPos; // innovation variance output for a group of measurements
|
|
bool fuseVelData; // this boolean causes the velNED measurements to be fused
|
|
bool fusePosData; // this boolean causes the posNE measurements to be fused
|
|
bool fuseHgtData; // this boolean causes the hgtMea measurements to be fused
|
|
Vector3f velNED; // North, East, Down velocity measurements (m/s)
|
|
Vector2 posNE; // North, East position measurements (m)
|
|
float hgtMea; // height measurement relative to reference point (m)
|
|
Vector24 statesAtVelTime; // States at the effective time of velNED measurements
|
|
Vector24 statesAtPosTime; // States at the effective time of posNE measurements
|
|
Vector24 statesAtHgtTime; // States at the effective time of hgtMea measurement
|
|
Vector3f innovMag; // innovation output from fusion of X,Y,Z compass measurements
|
|
Vector3f varInnovMag; // innovation variance output from fusion of X,Y,Z compass measurements
|
|
bool fuseMagData; // boolean true when magnetometer data is to be fused
|
|
Vector3f magData; // magnetometer flux readings in X,Y,Z body axes
|
|
Vector24 statesAtMagMeasTime; // filter states at the effective time of compass measurements
|
|
float innovVtas; // innovation output from fusion of airspeed measurements
|
|
float varInnovVtas; // innovation variance output from fusion of airspeed measurements
|
|
bool fuseVtasData; // boolean true when airspeed data is to be fused
|
|
float VtasMeas; // true airspeed measurement (m/s)
|
|
Vector24 statesAtVtasMeasTime; // filter states at the effective measurement time
|
|
float latRef; // WGS-84 latitude of reference point (rad)
|
|
float lonRef; // WGS-84 longitude of reference point (rad)
|
|
float hgtRef; // WGS-84 height of reference point (m)
|
|
Vector3f magBias; // magnetometer bias vector in XYZ body axes
|
|
Vector3f eulerEst; // Euler angles calculated from filter states
|
|
Vector3f eulerDif; // difference between Euler angle estimated by EKF and the AHRS solution
|
|
const float covTimeStepMax; // maximum time allowed between covariance predictions
|
|
const float covDelAngMax; // maximum delta angle between covariance predictions
|
|
bool covPredStep; // boolean set to true when a covariance prediction step has been performed
|
|
const float yawVarScale; // scale factor applied to yaw gyro errors when on ground
|
|
bool magFusePerformed; // boolean set to true when magnetometer fusion has been perfomred in that time step
|
|
bool magFuseRequired; // boolean set to true when magnetometer fusion will be perfomred in the next time step
|
|
bool posVelFuseStep; // boolean set to true when position and velocity fusion is being performed
|
|
bool tasFuseStep; // boolean set to true when airspeed fusion is being performed
|
|
uint32_t TASmsecPrev; // time stamp of last TAS fusion step
|
|
const uint32_t TASmsecMax; // maximum allowed interval between TAS fusion steps
|
|
uint32_t MAGmsecPrev; // time stamp of last compass fusion step
|
|
const uint32_t MAGmsecMax; // maximum allowed interval between compass fusion steps
|
|
uint32_t HGTmsecPrev; // time stamp of last height measurement fusion step
|
|
const uint32_t HGTmsecMax; // maximum allowed interval between height measurement fusion steps
|
|
const bool fuseMeNow; // boolean to force fusion whenever data arrives
|
|
|
|
// last time compass was updated
|
|
uint32_t lastMagUpdate;
|
|
|
|
// last time airspeed was updated
|
|
uint32_t lastAirspeedUpdate;
|
|
|
|
// Estimated time delays (msec) for different measurements relative to IMU
|
|
const uint32_t msecVelDelay;
|
|
const uint32_t msecPosDelay;
|
|
const uint32_t msecHgtDelay;
|
|
const uint32_t msecMagDelay;
|
|
const uint32_t msecTasDelay;
|
|
|
|
// IMU input data variables
|
|
const float dtIMUAvg;
|
|
float dtIMUAvgInv;
|
|
float imuIn;
|
|
Vector8 tempImu;
|
|
uint32_t IMUmsec;
|
|
|
|
// GPS input data variables
|
|
float gpsCourse;
|
|
float gpsGndSpd;
|
|
float gpsLat;
|
|
float gpsLon;
|
|
float gpsHgt;
|
|
bool newDataGps;
|
|
|
|
// Magnetometer input data variables
|
|
float magIn;
|
|
Vector8 tempMag;
|
|
Vector8 tempMagPrev;
|
|
uint32_t MAGframe;
|
|
uint32_t MAGtime;
|
|
uint32_t lastMAGtime;
|
|
bool newDataMag;
|
|
|
|
// TAS input variables
|
|
bool newDataTas;
|
|
|
|
// AHRS input data variables
|
|
Vector3f ahrsEul;
|
|
|
|
// Time stamp when vel, pos or height measurements last failed checks
|
|
uint32_t velFailTime;
|
|
uint32_t posFailTime;
|
|
uint32_t hgtFailTime;
|
|
|
|
// states held by magnetomter fusion across time steps
|
|
// magnetometer X,Y,Z measurements are fused across three time steps
|
|
// to
|
|
struct {
|
|
float q0;
|
|
float q1;
|
|
float q2;
|
|
float q3;
|
|
float magN;
|
|
float magE;
|
|
float magD;
|
|
float magXbias;
|
|
float magYbias;
|
|
float magZbias;
|
|
uint8_t obsIndex;
|
|
Matrix3f DCM;
|
|
Vector3f MagPred;
|
|
float R_MAG;
|
|
float SH_MAG[9];
|
|
} mag_state;
|
|
|
|
// State vector storage index
|
|
uint8_t storeIndex;
|
|
|
|
// high precision time stamp for previous IMU data processing
|
|
uint32_t lastIMUusec;
|
|
|
|
// time of alst GPS fix used to determine if new data has arrived
|
|
uint32_t lastFixTime;
|
|
|
|
Vector3f lastAngRate;
|
|
Vector3f lastAccel;
|
|
|
|
// CovariancePrediction variables
|
|
Matrix24 nextP;
|
|
Vector24 processNoise;
|
|
Vector21 SF;
|
|
Vector8 SG;
|
|
Vector11 SQ;
|
|
Vector13 SPP;
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
|
|
// performance counters
|
|
perf_counter_t _perf_UpdateFilter;
|
|
perf_counter_t _perf_CovariancePrediction;
|
|
perf_counter_t _perf_FuseVelPosNED;
|
|
perf_counter_t _perf_FuseMagnetometer;
|
|
perf_counter_t _perf_FuseAirspeed;
|
|
#endif
|
|
};
|
|
|
|
#if CONFIG_HAL_BOARD != HAL_BOARD_PX4
|
|
#define perf_begin(x)
|
|
#define perf_end(x)
|
|
#endif
|
|
|
|
#endif // AP_NavEKF
|
|
|