Ardupilot2/Tools/Linux_HAL_Essentials/pru/aiopru/RcAioPRUTest.c
dorovl 70f445e7f1 Bone : Faulty PWM output after few flight controller restarts due to wrong IEP Timer configuration
modified:   Makefile
	modified:   RcAioPRU.p
	modified:   RcAioPRUTest.c
	modified:   RcAioPRU_BBBLUE_bin.h
	modified:   RcAioPRU_BBBMINI_bin.h
	modified:   RcAioPRU_POCKET_bin.h
	new file:   start_test
2020-05-11 18:57:55 +10:00

159 lines
6.4 KiB
C

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/mman.h>
//Comment/uncomment the #includes statements depending on your BeagleBone version:
//#include "RcAioPRU_POCKET_bin.h"
//#include "RcAioPRU_BBBMINI_bin.h"
#include "RcAioPRU_BBBLUE_bin.h"
#define NUM_RING_ENTRIES 300
#define RCOUT_PRUSS_RAM_BASE 0x4a302000
#define RCOUT_PRUSS_CTRL_BASE 0x4a324000
#define RCOUT_PRUSS_IRAM_BASE 0x4a338000
#define RCIN_PRUSS_RAM_BASE 0x4a303000
#define ARRAY_SIZE(_arr) (sizeof(_arr) / sizeof(_arr[0]))
#define PWM_FREQ 50
struct ring_buffer {
volatile uint16_t ring_head;
volatile uint16_t ring_tail;
struct {
volatile uint32_t s1;
volatile uint32_t s0;
} buffer[NUM_RING_ENTRIES];
};
struct pwm {
volatile uint32_t enable;
volatile uint32_t ch1_hi_time;
volatile uint32_t ch1_t_time;
volatile uint32_t ch2_hi_time;
volatile uint32_t ch2_t_time;
volatile uint32_t ch3_hi_time;
volatile uint32_t ch3_t_time;
volatile uint32_t ch4_hi_time;
volatile uint32_t ch4_t_time;
volatile uint32_t ch5_hi_time;
volatile uint32_t ch5_t_time;
volatile uint32_t ch6_hi_time;
volatile uint32_t ch6_t_time;
volatile uint32_t ch7_hi_time;
volatile uint32_t ch7_t_time;
volatile uint32_t ch8_hi_time;
volatile uint32_t ch8_t_time;
volatile uint32_t ch9_hi_time;
volatile uint32_t ch9_t_time;
volatile uint32_t ch10_hi_time;
volatile uint32_t ch10_t_time;
volatile uint32_t ch11_hi_time;
volatile uint32_t ch11_t_time;
volatile uint32_t ch12_hi_time;
volatile uint32_t ch12_t_time;
volatile uint32_t time;
volatile uint32_t max_cycle_time;
};
volatile struct ring_buffer *ring_buffer;
volatile struct pwm *pwm;
static const uint32_t TICK_PER_US = 200;
static const uint32_t TICK_PER_S = 200000000;
static const uint32_t TICK_DURATION_NS = 5;
int main (void)
{
unsigned int ret, s0, s1, min_s0 = 0xffffffff, min_s1 = 0xffffffff, max_s0 = 0, max_s1 = 0;
uint32_t mem_fd = open("/dev/mem", O_RDWR|O_SYNC|O_CLOEXEC);
ring_buffer = (struct ring_buffer*) mmap(0, 0x1000, PROT_READ|PROT_WRITE, MAP_SHARED, mem_fd, RCIN_PRUSS_RAM_BASE);
pwm = (struct pwm*) mmap(0, 0x1000, PROT_READ|PROT_WRITE, MAP_SHARED, mem_fd, RCOUT_PRUSS_RAM_BASE);
uint32_t *iram = (uint32_t*)mmap(0, 0x2000, PROT_READ|PROT_WRITE, MAP_SHARED, mem_fd, RCOUT_PRUSS_IRAM_BASE);
uint32_t *ctrl = (uint32_t*)mmap(0, 0x1000, PROT_READ|PROT_WRITE, MAP_SHARED, mem_fd, RCOUT_PRUSS_CTRL_BASE);
uint64_t time_ns;
close(mem_fd);
// This loop checks that the IEP counter is really started. If not, the PRU is reset, the program is reload and PRU restarted
// To report pwm->time and pwm->max_cycle_time, the PRU program must be compiled with -DDEBUG option, for example:
// pasm -V3 -c RcAioPRU.p RcAioPRU_BBBLUE -DBBBLUE -DDEBUG
// This is made for you by 'make debug' followed by 'make test'
do {
printf("The PRU will be reset\n");
// Reset PRU 1
*ctrl = 0;
//You might uncomment this to identify more easily where the program ends in the IRAM
//memset(iram, '\0', sizeof(PRUcode) + 128);
// Load firmware
memcpy(iram, PRUcode, sizeof(PRUcode));
// Start PRU 1
*ctrl |= 2;
pwm->ch1_t_time = TICK_PER_S / PWM_FREQ;
pwm->ch2_t_time = TICK_PER_S / PWM_FREQ;
pwm->ch3_t_time = TICK_PER_S / PWM_FREQ;
pwm->ch4_t_time = TICK_PER_S / PWM_FREQ;
pwm->ch5_t_time = TICK_PER_S / PWM_FREQ;
pwm->ch6_t_time = TICK_PER_S / PWM_FREQ;
pwm->ch7_t_time = TICK_PER_S / PWM_FREQ;
pwm->ch8_t_time = TICK_PER_S / PWM_FREQ;
pwm->ch9_t_time = TICK_PER_S / PWM_FREQ;
pwm->ch10_t_time = TICK_PER_S / PWM_FREQ;
pwm->ch11_t_time = TICK_PER_S / PWM_FREQ;
pwm->ch12_t_time = TICK_PER_S / PWM_FREQ;
pwm->enable=0xffffffff;
printf("IEP counter: 0x%08x\n", pwm->time);
} while (pwm->time == 0xffffffff);
while(1) {
for(unsigned int a = 0; a < NUM_RING_ENTRIES; a++) {
s0 = ring_buffer->buffer[a].s0;
s1 = ring_buffer->buffer[a].s1;
if(s0 > max_s0) {max_s0 = s0;}
if(s1 > max_s1) {max_s1 = s1;}
if(s0 < min_s0) {min_s0 = s0;}
if(s1 < min_s1) {min_s1 = s1;}
}
s0 = ring_buffer->buffer[ring_buffer->ring_tail].s0;
s1 = ring_buffer->buffer[ring_buffer->ring_tail].s1;
time_ns = ((double)pwm->time) * ((double)TICK_DURATION_NS);
printf("max ct: %3u cycles time: %11lluns head: %u tail: %3u s0: %7u s1: %7u s01: %7u jitter_s0: %uns jitter_s1: %uns\n", pwm->max_cycle_time, time_ns, ring_buffer->ring_head, ring_buffer->ring_tail, s0 * TICK_DURATION_NS, s1 * TICK_DURATION_NS, (s0+s1) * TICK_DURATION_NS, ((max_s0-min_s0) * TICK_DURATION_NS), ((max_s1-min_s1) * TICK_DURATION_NS));
// uint32_t value = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US);
// pwm->ch1_hi_time = value;
// pwm->ch2_hi_time = value;
//pwm->ch1_hi_time = 1500 * TICK_PER_US;
pwm->ch1_hi_time = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US);
pwm->ch2_hi_time = 1500 * TICK_PER_US;
pwm->ch3_hi_time = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US);
pwm->ch4_hi_time = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US);
pwm->ch5_hi_time = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US);
pwm->ch6_hi_time = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US);
pwm->ch7_hi_time = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US);
pwm->ch8_hi_time = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US);
pwm->ch9_hi_time = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US);
pwm->ch10_hi_time = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US);
pwm->ch11_hi_time = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US);
pwm->ch12_hi_time = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US);
usleep(1000000);
min_s0 = 0xffffffff;
min_s1 = 0xffffffff;
max_s0 = 0;
max_s1 = 0;
}
return 0;
}