Ardupilot2/APMrover2/GCS_Mavlink.pde
2013-10-03 11:16:29 +09:00

2022 lines
60 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
// use this to prevent recursion during sensor init
static bool in_mavlink_delay;
// true when we have received at least 1 MAVLink packet
static bool mavlink_active;
// check if a message will fit in the payload space available
#define CHECK_PAYLOAD_SIZE(id) if (payload_space < MAVLINK_MSG_ID_## id ##_LEN) return false
/*
* !!NOTE!!
*
* the use of NOINLINE separate functions for each message type avoids
* a compiler bug in gcc that would cause it to use far more stack
* space than is needed. Without the NOINLINE we use the sum of the
* stack needed for each message type. Please be careful to follow the
* pattern below when adding any new messages
*/
static NOINLINE void send_heartbeat(mavlink_channel_t chan)
{
uint8_t base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
uint8_t system_status = MAV_STATE_ACTIVE;
uint32_t custom_mode = control_mode;
if (failsafe.triggered != 0) {
system_status = MAV_STATE_CRITICAL;
}
// work out the base_mode. This value is not very useful
// for APM, but we calculate it as best we can so a generic
// MAVLink enabled ground station can work out something about
// what the MAV is up to. The actual bit values are highly
// ambiguous for most of the APM flight modes. In practice, you
// only get useful information from the custom_mode, which maps to
// the APM flight mode and has a well defined meaning in the
// ArduPlane documentation
switch (control_mode) {
case MANUAL:
case LEARNING:
case STEERING:
base_mode = MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
break;
case AUTO:
case RTL:
case GUIDED:
base_mode = MAV_MODE_FLAG_GUIDED_ENABLED;
// note that MAV_MODE_FLAG_AUTO_ENABLED does not match what
// APM does in any mode, as that is defined as "system finds its own goal
// positions", which APM does not currently do
break;
case INITIALISING:
system_status = MAV_STATE_CALIBRATING;
break;
case HOLD:
system_status = 0;
break;
}
#if ENABLE_STICK_MIXING==ENABLED
if (control_mode != INITIALISING) {
// all modes except INITIALISING have some form of manual
// override if stick mixing is enabled
base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
}
#endif
#if HIL_MODE != HIL_MODE_DISABLED
base_mode |= MAV_MODE_FLAG_HIL_ENABLED;
#endif
// we are armed if we are not initialising
if (control_mode != INITIALISING) {
base_mode |= MAV_MODE_FLAG_SAFETY_ARMED;
}
// indicate we have set a custom mode
base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
mavlink_msg_heartbeat_send(
chan,
MAV_TYPE_GROUND_ROVER,
MAV_AUTOPILOT_ARDUPILOTMEGA,
base_mode,
custom_mode,
system_status);
}
static NOINLINE void send_attitude(mavlink_channel_t chan)
{
Vector3f omega = ahrs.get_gyro();
mavlink_msg_attitude_send(
chan,
millis(),
ahrs.roll,
ahrs.pitch,
ahrs.yaw,
omega.x,
omega.y,
omega.z);
}
static NOINLINE void send_extended_status1(mavlink_channel_t chan, uint16_t packet_drops)
{
uint32_t control_sensors_present = 0;
uint32_t control_sensors_enabled;
uint32_t control_sensors_health;
// first what sensors/controllers we have
control_sensors_present |= (1<<0); // 3D gyro present
control_sensors_present |= (1<<1); // 3D accelerometer present
if (g.compass_enabled) {
control_sensors_present |= (1<<2); // compass present
}
control_sensors_present |= (1<<3); // absolute pressure sensor present
if (g_gps != NULL && g_gps->status() >= GPS::NO_FIX) {
control_sensors_present |= (1<<5); // GPS present
}
control_sensors_present |= (1<<10); // 3D angular rate control
control_sensors_present |= (1<<11); // attitude stabilisation
control_sensors_present |= (1<<12); // yaw position
control_sensors_present |= (1<<13); // altitude control
control_sensors_present |= (1<<14); // X/Y position control
control_sensors_present |= (1<<15); // motor control
// now what sensors/controllers are enabled
// first the sensors
control_sensors_enabled = control_sensors_present & 0x1FF;
// now the controllers
control_sensors_enabled = control_sensors_present & 0x1FF;
switch (control_mode) {
case MANUAL:
case HOLD:
break;
case LEARNING:
case STEERING:
control_sensors_enabled |= (1<<10); // 3D angular rate control
control_sensors_enabled |= (1<<11); // attitude stabilisation
break;
case AUTO:
case RTL:
case GUIDED:
control_sensors_enabled |= (1<<10); // 3D angular rate control
control_sensors_enabled |= (1<<11); // attitude stabilisation
control_sensors_enabled |= (1<<12); // yaw position
control_sensors_enabled |= (1<<13); // altitude control
control_sensors_enabled |= (1<<14); // X/Y position control
control_sensors_enabled |= (1<<15); // motor control
break;
case INITIALISING:
break;
}
// at the moment all sensors/controllers are assumed healthy
control_sensors_health = control_sensors_present;
if (!compass.healthy) {
control_sensors_health &= ~(1<<2); // compass
}
if (!compass.use_for_yaw()) {
control_sensors_enabled &= ~(1<<2); // compass
}
int16_t battery_current = -1;
int8_t battery_remaining = -1;
if (battery.monitoring() == AP_BATT_MONITOR_VOLTAGE_AND_CURRENT) {
battery_remaining = battery.capacity_remaining_pct();
battery_current = battery.current_amps() * 100;
}
mavlink_msg_sys_status_send(
chan,
control_sensors_present,
control_sensors_enabled,
control_sensors_health,
(uint16_t)(scheduler.load_average(20000) * 1000),
battery.voltage() * 1000, // mV
battery_current, // in 10mA units
battery_remaining, // in %
0, // comm drops %,
0, // comm drops in pkts,
0, 0, 0, 0);
}
static void NOINLINE send_meminfo(mavlink_channel_t chan)
{
#if CONFIG_HAL_BOARD == HAL_BOARD_APM1 || CONFIG_HAL_BOARD == HAL_BOARD_APM2
extern unsigned __brkval;
mavlink_msg_meminfo_send(chan, __brkval, memcheck_available_memory());
#endif
}
static void NOINLINE send_location(mavlink_channel_t chan)
{
uint32_t fix_time;
// if we have a GPS fix, take the time as the last fix time. That
// allows us to correctly calculate velocities and extrapolate
// positions.
// If we don't have a GPS fix then we are dead reckoning, and will
// use the current boot time as the fix time.
if (g_gps->status() >= GPS::GPS_OK_FIX_2D) {
fix_time = g_gps->last_fix_time;
} else {
fix_time = millis();
}
mavlink_msg_global_position_int_send(
chan,
fix_time,
current_loc.lat, // in 1E7 degrees
current_loc.lng, // in 1E7 degrees
g_gps->altitude_cm * 10, // millimeters above sea level
(current_loc.alt - home.alt) * 10, // millimeters above ground
g_gps->velocity_north() * 100, // X speed cm/s (+ve North)
g_gps->velocity_east() * 100, // Y speed cm/s (+ve East)
g_gps->velocity_down() * -100, // Z speed cm/s (+ve up)
ahrs.yaw_sensor);
}
static void NOINLINE send_nav_controller_output(mavlink_channel_t chan)
{
mavlink_msg_nav_controller_output_send(
chan,
lateral_acceleration, // use nav_roll to hold demanded Y accel
g_gps->ground_speed_cm * 0.01f * ins.get_gyro().z, // use nav_pitch to hold actual Y accel
nav_controller->nav_bearing_cd() * 0.01f,
nav_controller->target_bearing_cd() * 0.01f,
wp_distance,
0,
groundspeed_error,
nav_controller->crosstrack_error());
}
static void NOINLINE send_gps_raw(mavlink_channel_t chan)
{
mavlink_msg_gps_raw_int_send(
chan,
g_gps->last_fix_time*(uint64_t)1000,
g_gps->status(),
g_gps->latitude, // in 1E7 degrees
g_gps->longitude, // in 1E7 degrees
g_gps->altitude_cm * 10, // in mm
g_gps->hdop,
65535,
g_gps->ground_speed_cm, // cm/s
g_gps->ground_course_cd, // 1/100 degrees,
g_gps->num_sats);
}
#if HIL_MODE != HIL_MODE_DISABLED
static void NOINLINE send_servo_out(mavlink_channel_t chan)
{
// normalized values scaled to -10000 to 10000
// This is used for HIL. Do not change without discussing with
// HIL maintainers
mavlink_msg_rc_channels_scaled_send(
chan,
millis(),
0, // port 0
10000 * channel_steer->norm_output(),
0,
10000 * channel_throttle->norm_output(),
0,
0,
0,
0,
0,
receiver_rssi);
}
#endif
static void NOINLINE send_radio_in(mavlink_channel_t chan)
{
mavlink_msg_rc_channels_raw_send(
chan,
millis(),
0, // port
hal.rcin->read(CH_1),
hal.rcin->read(CH_2),
hal.rcin->read(CH_3),
hal.rcin->read(CH_4),
hal.rcin->read(CH_5),
hal.rcin->read(CH_6),
hal.rcin->read(CH_7),
hal.rcin->read(CH_8),
receiver_rssi);
}
static void NOINLINE send_radio_out(mavlink_channel_t chan)
{
#if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS
mavlink_msg_servo_output_raw_send(
chan,
micros(),
0, // port
hal.rcout->read(0),
hal.rcout->read(1),
hal.rcout->read(2),
hal.rcout->read(3),
hal.rcout->read(4),
hal.rcout->read(5),
hal.rcout->read(6),
hal.rcout->read(7));
#else
mavlink_msg_servo_output_raw_send(
chan,
micros(),
0, // port
RC_Channel::rc_channel(0)->radio_out,
RC_Channel::rc_channel(1)->radio_out,
RC_Channel::rc_channel(2)->radio_out,
RC_Channel::rc_channel(3)->radio_out,
RC_Channel::rc_channel(4)->radio_out,
RC_Channel::rc_channel(5)->radio_out,
RC_Channel::rc_channel(6)->radio_out,
RC_Channel::rc_channel(7)->radio_out);
#endif
}
static void NOINLINE send_vfr_hud(mavlink_channel_t chan)
{
mavlink_msg_vfr_hud_send(
chan,
(float)g_gps->ground_speed_cm / 100.0,
(float)g_gps->ground_speed_cm / 100.0,
(ahrs.yaw_sensor / 100) % 360,
(uint16_t)(100 * channel_throttle->norm_output()),
current_loc.alt / 100.0,
0);
}
static void NOINLINE send_raw_imu1(mavlink_channel_t chan)
{
Vector3f accel = ins.get_accel();
Vector3f gyro = ins.get_gyro();
mavlink_msg_raw_imu_send(
chan,
micros(),
accel.x * 1000.0 / GRAVITY_MSS,
accel.y * 1000.0 / GRAVITY_MSS,
accel.z * 1000.0 / GRAVITY_MSS,
gyro.x * 1000.0,
gyro.y * 1000.0,
gyro.z * 1000.0,
compass.mag_x,
compass.mag_y,
compass.mag_z);
}
static void NOINLINE send_raw_imu3(mavlink_channel_t chan)
{
Vector3f mag_offsets = compass.get_offsets();
Vector3f accel_offsets = ins.get_accel_offsets();
Vector3f gyro_offsets = ins.get_gyro_offsets();
mavlink_msg_sensor_offsets_send(chan,
mag_offsets.x,
mag_offsets.y,
mag_offsets.z,
compass.get_declination(),
0, 0,
gyro_offsets.x,
gyro_offsets.y,
gyro_offsets.z,
accel_offsets.x,
accel_offsets.y,
accel_offsets.z);
}
static void NOINLINE send_ahrs(mavlink_channel_t chan)
{
Vector3f omega_I = ahrs.get_gyro_drift();
mavlink_msg_ahrs_send(
chan,
omega_I.x,
omega_I.y,
omega_I.z,
0,
0,
ahrs.get_error_rp(),
ahrs.get_error_yaw());
}
// report simulator state
static void NOINLINE send_simstate(mavlink_channel_t chan)
{
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
sitl.simstate_send(chan);
#endif
}
static void NOINLINE send_hwstatus(mavlink_channel_t chan)
{
mavlink_msg_hwstatus_send(
chan,
board_voltage(),
hal.i2c->lockup_count());
}
static void NOINLINE send_rangefinder(mavlink_channel_t chan)
{
if (!sonar.enabled()) {
// no sonar to report
return;
}
/*
report smaller distance of two sonars if more than one enabled
*/
float distance_cm, voltage;
if (!sonar2.enabled()) {
distance_cm = sonar.distance_cm();
voltage = sonar.voltage();
} else {
float dist1 = sonar.distance_cm();
float dist2 = sonar2.distance_cm();
if (dist1 <= dist2) {
distance_cm = dist1;
voltage = sonar.voltage();
} else {
distance_cm = dist2;
voltage = sonar2.voltage();
}
}
mavlink_msg_rangefinder_send(
chan,
distance_cm * 0.01f,
voltage);
}
static void NOINLINE send_current_waypoint(mavlink_channel_t chan)
{
mavlink_msg_mission_current_send(
chan,
g.command_index);
}
static void NOINLINE send_statustext(mavlink_channel_t chan)
{
mavlink_statustext_t *s = (chan == MAVLINK_COMM_0?&gcs0.pending_status:&gcs3.pending_status);
mavlink_msg_statustext_send(
chan,
s->severity,
s->text);
}
// are we still delaying telemetry to try to avoid Xbee bricking?
static bool telemetry_delayed(mavlink_channel_t chan)
{
uint32_t tnow = millis() >> 10;
if (tnow > (uint32_t)g.telem_delay) {
return false;
}
if (chan == MAVLINK_COMM_0 && hal.gpio->usb_connected()) {
// this is USB telemetry, so won't be an Xbee
return false;
}
// we're either on the 2nd UART, or no USB cable is connected
// we need to delay telemetry by the TELEM_DELAY time
return true;
}
// try to send a message, return false if it won't fit in the serial tx buffer
static bool mavlink_try_send_message(mavlink_channel_t chan, enum ap_message id, uint16_t packet_drops)
{
int16_t payload_space = comm_get_txspace(chan) - MAVLINK_NUM_NON_PAYLOAD_BYTES;
if (telemetry_delayed(chan)) {
return false;
}
switch (id) {
case MSG_HEARTBEAT:
CHECK_PAYLOAD_SIZE(HEARTBEAT);
send_heartbeat(chan);
return true;
case MSG_EXTENDED_STATUS1:
CHECK_PAYLOAD_SIZE(SYS_STATUS);
send_extended_status1(chan, packet_drops);
break;
case MSG_EXTENDED_STATUS2:
CHECK_PAYLOAD_SIZE(MEMINFO);
send_meminfo(chan);
break;
case MSG_ATTITUDE:
CHECK_PAYLOAD_SIZE(ATTITUDE);
send_attitude(chan);
break;
case MSG_LOCATION:
CHECK_PAYLOAD_SIZE(GLOBAL_POSITION_INT);
send_location(chan);
break;
case MSG_NAV_CONTROLLER_OUTPUT:
if (control_mode != MANUAL) {
CHECK_PAYLOAD_SIZE(NAV_CONTROLLER_OUTPUT);
send_nav_controller_output(chan);
}
break;
case MSG_GPS_RAW:
CHECK_PAYLOAD_SIZE(GPS_RAW_INT);
send_gps_raw(chan);
break;
case MSG_SERVO_OUT:
#if HIL_MODE != HIL_MODE_DISABLED
CHECK_PAYLOAD_SIZE(RC_CHANNELS_SCALED);
send_servo_out(chan);
#endif
break;
case MSG_RADIO_IN:
CHECK_PAYLOAD_SIZE(RC_CHANNELS_RAW);
send_radio_in(chan);
break;
case MSG_RADIO_OUT:
CHECK_PAYLOAD_SIZE(SERVO_OUTPUT_RAW);
send_radio_out(chan);
break;
case MSG_VFR_HUD:
CHECK_PAYLOAD_SIZE(VFR_HUD);
send_vfr_hud(chan);
break;
case MSG_RAW_IMU1:
CHECK_PAYLOAD_SIZE(RAW_IMU);
send_raw_imu1(chan);
break;
case MSG_RAW_IMU3:
CHECK_PAYLOAD_SIZE(SENSOR_OFFSETS);
send_raw_imu3(chan);
break;
case MSG_CURRENT_WAYPOINT:
CHECK_PAYLOAD_SIZE(MISSION_CURRENT);
send_current_waypoint(chan);
break;
case MSG_NEXT_PARAM:
CHECK_PAYLOAD_SIZE(PARAM_VALUE);
if (chan == MAVLINK_COMM_0) {
gcs0.queued_param_send();
} else if (gcs3.initialised) {
gcs3.queued_param_send();
}
break;
case MSG_NEXT_WAYPOINT:
CHECK_PAYLOAD_SIZE(MISSION_REQUEST);
if (chan == MAVLINK_COMM_0) {
gcs0.queued_waypoint_send();
} else if (gcs3.initialised) {
gcs3.queued_waypoint_send();
}
break;
case MSG_STATUSTEXT:
CHECK_PAYLOAD_SIZE(STATUSTEXT);
send_statustext(chan);
break;
case MSG_AHRS:
CHECK_PAYLOAD_SIZE(AHRS);
send_ahrs(chan);
break;
case MSG_SIMSTATE:
CHECK_PAYLOAD_SIZE(SIMSTATE);
send_simstate(chan);
break;
case MSG_HWSTATUS:
CHECK_PAYLOAD_SIZE(HWSTATUS);
send_hwstatus(chan);
break;
case MSG_RANGEFINDER:
CHECK_PAYLOAD_SIZE(RANGEFINDER);
send_rangefinder(chan);
break;
case MSG_RETRY_DEFERRED:
break; // just here to prevent a warning
}
return true;
}
#define MAX_DEFERRED_MESSAGES MSG_RETRY_DEFERRED
static struct mavlink_queue {
enum ap_message deferred_messages[MAX_DEFERRED_MESSAGES];
uint8_t next_deferred_message;
uint8_t num_deferred_messages;
} mavlink_queue[2];
// send a message using mavlink
static void mavlink_send_message(mavlink_channel_t chan, enum ap_message id, uint16_t packet_drops)
{
uint8_t i, nextid;
struct mavlink_queue *q = &mavlink_queue[(uint8_t)chan];
// see if we can send the deferred messages, if any
while (q->num_deferred_messages != 0) {
if (!mavlink_try_send_message(chan,
q->deferred_messages[q->next_deferred_message],
packet_drops)) {
break;
}
q->next_deferred_message++;
if (q->next_deferred_message == MAX_DEFERRED_MESSAGES) {
q->next_deferred_message = 0;
}
q->num_deferred_messages--;
}
if (id == MSG_RETRY_DEFERRED) {
return;
}
// this message id might already be deferred
for (i=0, nextid = q->next_deferred_message; i < q->num_deferred_messages; i++) {
if (q->deferred_messages[nextid] == id) {
// its already deferred, discard
return;
}
nextid++;
if (nextid == MAX_DEFERRED_MESSAGES) {
nextid = 0;
}
}
if (q->num_deferred_messages != 0 ||
!mavlink_try_send_message(chan, id, packet_drops)) {
// can't send it now, so defer it
if (q->num_deferred_messages == MAX_DEFERRED_MESSAGES) {
// the defer buffer is full, discard
return;
}
nextid = q->next_deferred_message + q->num_deferred_messages;
if (nextid >= MAX_DEFERRED_MESSAGES) {
nextid -= MAX_DEFERRED_MESSAGES;
}
q->deferred_messages[nextid] = id;
q->num_deferred_messages++;
}
}
void mavlink_send_text(mavlink_channel_t chan, gcs_severity severity, const char *str)
{
if (telemetry_delayed(chan)) {
return;
}
if (severity == SEVERITY_LOW) {
// send via the deferred queuing system
mavlink_statustext_t *s = (chan == MAVLINK_COMM_0?&gcs0.pending_status:&gcs3.pending_status);
s->severity = (uint8_t)severity;
strncpy((char *)s->text, str, sizeof(s->text));
mavlink_send_message(chan, MSG_STATUSTEXT, 0);
} else {
// send immediately
mavlink_msg_statustext_send(chan, severity, str);
}
}
const AP_Param::GroupInfo GCS_MAVLINK::var_info[] PROGMEM = {
// @Param: RAW_SENS
// @DisplayName: Raw sensors
// @Description: Raw sensors stream rate. This is the MAVLink target stream rate in Hz.
// @Units: Hz
// @Range: 0 20
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK, streamRateRawSensors, 0),
// @Param: EXT_STAT
// @DisplayName: Extended status
// @Description: Extended status stream rate. This is the MAVLink target stream rate in Hz.
// @Units: Hz
// @Range: 0 20
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK, streamRateExtendedStatus, 0),
// @Param: RC_CHAN
// @DisplayName: RC Channel
// @Description: RC Channel stream rate. This is the MAVLink target stream rate in Hz.
// @Units: Hz
// @Range: 0 20
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK, streamRateRCChannels, 0),
// @Param: RAW_CTRL
// @DisplayName: Raw controllers
// @Description: Raw controllers stream rate. This is the MAVLink target stream rate in Hz.
// @Units: Hz
// @Range: 0 20
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK, streamRateRawController, 0),
// @Param: POSITION
// @DisplayName: Position
// @Description: vehicle position stream rate. This is the MAVLink target stream rate in Hz.
// @Units: Hz
// @Range: 0 20
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("POSITION", 4, GCS_MAVLINK, streamRatePosition, 0),
// @Param: EXTRA1
// @DisplayName: Extra1
// @Description: Extra1 stream rate. This is the MAVLink target stream rate in Hz.
// @Units: Hz
// @Range: 0 20
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK, streamRateExtra1, 0),
// @Param: EXTRA2
// @DisplayName: Extra2
// @Description: Extra1 stream rate. This is the MAVLink target stream rate in Hz.
// @Units: Hz
// @Range: 0 20
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK, streamRateExtra2, 0),
// @Param: EXTRA3
// @DisplayName: Extra3
// @Description: Extra3 stream rate. This is the MAVLink target stream rate in Hz.
// @Units: Hz
// @Range: 0 20
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK, streamRateExtra3, 0),
// @Param: PARAMS
// @DisplayName: Parameters
// @Description: Parameters stream rate. This is the MAVLink target stream rate in Hz.
// @Units: Hz
// @Range: 0 20
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK, streamRateParams, 0),
AP_GROUPEND
};
GCS_MAVLINK::GCS_MAVLINK() :
packet_drops(0),
waypoint_send_timeout(1000), // 1 second
waypoint_receive_timeout(1000) // 1 second
{
}
void
GCS_MAVLINK::init(AP_HAL::UARTDriver *port)
{
GCS_Class::init(port);
if (port == (AP_HAL::BetterStream*)hal.uartA) {
mavlink_comm_0_port = port;
chan = MAVLINK_COMM_0;
}else{
mavlink_comm_1_port = port;
chan = MAVLINK_COMM_1;
}
_queued_parameter = NULL;
reset_cli_timeout();
}
void
GCS_MAVLINK::update(void)
{
// receive new packets
mavlink_message_t msg;
mavlink_status_t status;
status.packet_rx_drop_count = 0;
// process received bytes
while (comm_get_available(chan))
{
uint8_t c = comm_receive_ch(chan);
#if CLI_ENABLED == ENABLED
/* allow CLI to be started by hitting enter 3 times, if no
* heartbeat packets have been received */
if (mavlink_active == 0 && (millis() - _cli_timeout) < 20000 &&
comm_is_idle(chan)) {
if (c == '\n' || c == '\r') {
crlf_count++;
} else {
crlf_count = 0;
}
if (crlf_count == 3) {
run_cli(_port);
}
}
#endif
// Try to get a new message
if (mavlink_parse_char(chan, c, &msg, &status)) {
// we exclude radio packets to make it possible to use the
// CLI over the radio
if (msg.msgid != MAVLINK_MSG_ID_RADIO && msg.msgid != MAVLINK_MSG_ID_RADIO_STATUS) {
mavlink_active = true;
}
handleMessage(&msg);
}
}
// Update packet drops counter
packet_drops += status.packet_rx_drop_count;
if (!waypoint_receiving) {
return;
}
uint32_t tnow = millis();
if (waypoint_receiving &&
waypoint_request_i <= waypoint_request_last &&
tnow > waypoint_timelast_request + 500 + (stream_slowdown*20)) {
waypoint_timelast_request = tnow;
send_message(MSG_NEXT_WAYPOINT);
}
// stop waypoint receiving if timeout
if (waypoint_receiving && (millis() - waypoint_timelast_receive) > waypoint_receive_timeout){
waypoint_receiving = false;
}
}
// see if we should send a stream now. Called at 50Hz
bool GCS_MAVLINK::stream_trigger(enum streams stream_num)
{
AP_Int16 *stream_rates = &streamRateRawSensors;
float rate = (uint8_t)stream_rates[stream_num].get();
// send at a much lower rate while handling waypoints and
// parameter sends
if (waypoint_receiving || _queued_parameter != NULL) {
rate *= 0.25;
}
if (rate <= 0) {
return false;
}
if (stream_ticks[stream_num] == 0) {
// we're triggering now, setup the next trigger point
if (rate > 50) {
rate = 50;
}
stream_ticks[stream_num] = (50 / rate) + stream_slowdown;
return true;
}
// count down at 50Hz
stream_ticks[stream_num]--;
return false;
}
void
GCS_MAVLINK::data_stream_send(void)
{
if (_queued_parameter != NULL) {
if (streamRateParams.get() <= 0) {
streamRateParams.set(50);
}
if (stream_trigger(STREAM_PARAMS)) {
send_message(MSG_NEXT_PARAM);
}
}
if (in_mavlink_delay) {
#if HIL_MODE != HIL_MODE_DISABLED
// in HIL we need to keep sending servo values to ensure
// the simulator doesn't pause, otherwise our sensor
// calibration could stall
if (stream_trigger(STREAM_RAW_CONTROLLER)) {
send_message(MSG_SERVO_OUT);
}
if (stream_trigger(STREAM_RC_CHANNELS)) {
send_message(MSG_RADIO_OUT);
}
#endif
// don't send any other stream types while in the delay callback
return;
}
if (stream_trigger(STREAM_RAW_SENSORS)) {
send_message(MSG_RAW_IMU1);
send_message(MSG_RAW_IMU3);
}
if (stream_trigger(STREAM_EXTENDED_STATUS)) {
send_message(MSG_EXTENDED_STATUS1);
send_message(MSG_EXTENDED_STATUS2);
send_message(MSG_CURRENT_WAYPOINT);
send_message(MSG_GPS_RAW); // TODO - remove this message after location message is working
send_message(MSG_NAV_CONTROLLER_OUTPUT);
}
if (stream_trigger(STREAM_POSITION)) {
// sent with GPS read
send_message(MSG_LOCATION);
}
if (stream_trigger(STREAM_RAW_CONTROLLER)) {
send_message(MSG_SERVO_OUT);
}
if (stream_trigger(STREAM_RC_CHANNELS)) {
send_message(MSG_RADIO_OUT);
send_message(MSG_RADIO_IN);
}
if (stream_trigger(STREAM_EXTRA1)) {
send_message(MSG_ATTITUDE);
send_message(MSG_SIMSTATE);
}
if (stream_trigger(STREAM_EXTRA2)) {
send_message(MSG_VFR_HUD);
}
if (stream_trigger(STREAM_EXTRA3)) {
send_message(MSG_AHRS);
send_message(MSG_HWSTATUS);
send_message(MSG_RANGEFINDER);
}
}
void
GCS_MAVLINK::send_message(enum ap_message id)
{
mavlink_send_message(chan,id, packet_drops);
}
void
GCS_MAVLINK::send_text_P(gcs_severity severity, const prog_char_t *str)
{
mavlink_statustext_t m;
uint8_t i;
for (i=0; i<sizeof(m.text); i++) {
m.text[i] = pgm_read_byte((const prog_char *)(str++));
if (m.text[i] == '\0') {
break;
}
}
if (i < sizeof(m.text)) m.text[i] = 0;
mavlink_send_text(chan, severity, (const char *)m.text);
}
void GCS_MAVLINK::handleMessage(mavlink_message_t* msg)
{
struct Location tell_command = {}; // command for telemetry
switch (msg->msgid) {
case MAVLINK_MSG_ID_REQUEST_DATA_STREAM:
{
// decode
mavlink_request_data_stream_t packet;
mavlink_msg_request_data_stream_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component))
break;
int16_t freq = 0; // packet frequency
if (packet.start_stop == 0)
freq = 0; // stop sending
else if (packet.start_stop == 1)
freq = packet.req_message_rate; // start sending
else
break;
switch(packet.req_stream_id){
case MAV_DATA_STREAM_ALL:
streamRateRawSensors.set_and_save_ifchanged(freq);
streamRateExtendedStatus.set_and_save_ifchanged(freq);
streamRateRCChannels.set_and_save_ifchanged(freq);
streamRateRawController.set_and_save_ifchanged(freq);
streamRatePosition.set_and_save_ifchanged(freq);
streamRateExtra1.set_and_save_ifchanged(freq);
streamRateExtra2.set_and_save_ifchanged(freq);
streamRateExtra3.set_and_save_ifchanged(freq);
break;
case MAV_DATA_STREAM_RAW_SENSORS:
if (freq <= 5) {
streamRateRawSensors.set_and_save_ifchanged(freq);
} else {
// We do not set and save this one so that if HIL is shut down incorrectly
// we will not continue to broadcast raw sensor data at 50Hz.
streamRateRawSensors = freq;
}
break;
case MAV_DATA_STREAM_EXTENDED_STATUS:
streamRateExtendedStatus.set_and_save_ifchanged(freq);
break;
case MAV_DATA_STREAM_RC_CHANNELS:
streamRateRCChannels.set_and_save_ifchanged(freq);
break;
case MAV_DATA_STREAM_RAW_CONTROLLER:
streamRateRawController.set_and_save_ifchanged(freq);
break;
case MAV_DATA_STREAM_POSITION:
streamRatePosition.set_and_save_ifchanged(freq);
break;
case MAV_DATA_STREAM_EXTRA1:
streamRateExtra1.set_and_save_ifchanged(freq);
break;
case MAV_DATA_STREAM_EXTRA2:
streamRateExtra2.set_and_save_ifchanged(freq);
break;
case MAV_DATA_STREAM_EXTRA3:
streamRateExtra3.set_and_save_ifchanged(freq);
break;
default:
break;
}
break;
}
case MAVLINK_MSG_ID_COMMAND_LONG:
{
// decode
mavlink_command_long_t packet;
mavlink_msg_command_long_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component)) break;
uint8_t result = MAV_RESULT_UNSUPPORTED;
// do command
send_text_P(SEVERITY_LOW,PSTR("command received: "));
switch(packet.command) {
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
set_mode(RTL);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_MISSION_START:
set_mode(AUTO);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_PREFLIGHT_CALIBRATION:
if (packet.param1 == 1 ||
packet.param2 == 1 ||
packet.param3 == 1) {
startup_INS_ground(true);
}
if (packet.param4 == 1) {
trim_radio();
}
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_DO_SET_MODE:
switch ((uint16_t)packet.param1) {
case MAV_MODE_MANUAL_ARMED:
case MAV_MODE_MANUAL_DISARMED:
set_mode(MANUAL);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_MODE_AUTO_ARMED:
case MAV_MODE_AUTO_DISARMED:
set_mode(AUTO);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_MODE_STABILIZE_DISARMED:
case MAV_MODE_STABILIZE_ARMED:
set_mode(LEARNING);
result = MAV_RESULT_ACCEPTED;
break;
default:
result = MAV_RESULT_UNSUPPORTED;
}
break;
case MAV_CMD_DO_SET_SERVO:
hal.rcout->enable_ch(packet.param1 - 1);
hal.rcout->write(packet.param1 - 1, packet.param2);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN:
if (packet.param1 == 1 || packet.param1 == 3) {
// when packet.param1 == 3 we reboot to hold in bootloader
hal.scheduler->reboot(packet.param1 == 3);
result = MAV_RESULT_ACCEPTED;
}
break;
default:
break;
}
mavlink_msg_command_ack_send(
chan,
packet.command,
result);
break;
}
case MAVLINK_MSG_ID_SET_MODE:
{
// decode
mavlink_set_mode_t packet;
mavlink_msg_set_mode_decode(msg, &packet);
if (!(packet.base_mode & MAV_MODE_FLAG_CUSTOM_MODE_ENABLED)) {
// we ignore base_mode as there is no sane way to map
// from that bitmap to a APM flight mode. We rely on
// custom_mode instead.
break;
}
switch (packet.custom_mode) {
case MANUAL:
case HOLD:
case LEARNING:
case STEERING:
case AUTO:
case RTL:
set_mode((enum mode)packet.custom_mode);
break;
}
break;
}
case MAVLINK_MSG_ID_MISSION_REQUEST_LIST:
{
// decode
mavlink_mission_request_list_t packet;
mavlink_msg_mission_request_list_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component))
break;
// Start sending waypoints
mavlink_msg_mission_count_send(
chan,msg->sysid,
msg->compid,
g.command_total + 1); // + home
waypoint_timelast_send = millis();
waypoint_receiving = false;
waypoint_dest_sysid = msg->sysid;
waypoint_dest_compid = msg->compid;
break;
}
// XXX read a WP from EEPROM and send it to the GCS
case MAVLINK_MSG_ID_MISSION_REQUEST:
{
// decode
mavlink_mission_request_t packet;
mavlink_msg_mission_request_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component))
break;
// send waypoint
tell_command = get_cmd_with_index(packet.seq);
// set frame of waypoint
uint8_t frame;
if (tell_command.options & MASK_OPTIONS_RELATIVE_ALT) {
frame = MAV_FRAME_GLOBAL_RELATIVE_ALT; // reference frame
} else {
frame = MAV_FRAME_GLOBAL; // reference frame
}
float param1 = 0, param2 = 0 , param3 = 0, param4 = 0;
// time that the mav should loiter in milliseconds
uint8_t current = 0; // 1 (true), 0 (false)
if (packet.seq == (uint16_t)g.command_index)
current = 1;
uint8_t autocontinue = 1; // 1 (true), 0 (false)
float x = 0, y = 0, z = 0;
if (tell_command.id < MAV_CMD_NAV_LAST || tell_command.id == MAV_CMD_CONDITION_CHANGE_ALT) {
// command needs scaling
x = tell_command.lat/1.0e7; // local (x), global (latitude)
y = tell_command.lng/1.0e7; // local (y), global (longitude)
z = tell_command.alt/1.0e2;
}
switch (tell_command.id) { // Switch to map APM command fields inot MAVLink command fields
case MAV_CMD_NAV_TAKEOFF:
case MAV_CMD_DO_SET_HOME:
param1 = tell_command.p1;
break;
case MAV_CMD_CONDITION_CHANGE_ALT:
x=0; // Clear fields loaded above that we don't want sent for this command
y=0;
case MAV_CMD_CONDITION_DELAY:
case MAV_CMD_CONDITION_DISTANCE:
param1 = tell_command.lat;
break;
case MAV_CMD_DO_JUMP:
param2 = tell_command.lat;
param1 = tell_command.p1;
break;
case MAV_CMD_DO_REPEAT_SERVO:
param4 = tell_command.lng;
case MAV_CMD_DO_REPEAT_RELAY:
case MAV_CMD_DO_CHANGE_SPEED:
param3 = tell_command.lat;
param2 = tell_command.alt;
param1 = tell_command.p1;
break;
case MAV_CMD_DO_SET_PARAMETER:
case MAV_CMD_DO_SET_RELAY:
case MAV_CMD_DO_SET_SERVO:
param2 = tell_command.alt;
param1 = tell_command.p1;
break;
}
mavlink_msg_mission_item_send(chan,msg->sysid,
msg->compid,
packet.seq,
frame,
tell_command.id,
current,
autocontinue,
param1,
param2,
param3,
param4,
x,
y,
z);
// update last waypoint comm stamp
waypoint_timelast_send = millis();
break;
}
case MAVLINK_MSG_ID_MISSION_ACK:
{
// decode
mavlink_mission_ack_t packet;
mavlink_msg_mission_ack_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
break;
}
case MAVLINK_MSG_ID_PARAM_REQUEST_LIST:
{
// decode
mavlink_param_request_list_t packet;
mavlink_msg_param_request_list_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
// Start sending parameters - next call to ::update will kick the first one out
_queued_parameter = AP_Param::first(&_queued_parameter_token, &_queued_parameter_type);
_queued_parameter_index = 0;
_queued_parameter_count = _count_parameters();
break;
}
case MAVLINK_MSG_ID_PARAM_REQUEST_READ:
{
// decode
mavlink_param_request_read_t packet;
mavlink_msg_param_request_read_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
enum ap_var_type p_type;
AP_Param *vp;
char param_name[AP_MAX_NAME_SIZE+1];
if (packet.param_index != -1) {
AP_Param::ParamToken token;
vp = AP_Param::find_by_index(packet.param_index, &p_type, &token);
if (vp == NULL) {
gcs_send_text_fmt(PSTR("Unknown parameter index %d"), packet.param_index);
break;
}
vp->copy_name_token(token, param_name, AP_MAX_NAME_SIZE, true);
param_name[AP_MAX_NAME_SIZE] = 0;
} else {
strncpy(param_name, packet.param_id, AP_MAX_NAME_SIZE);
param_name[AP_MAX_NAME_SIZE] = 0;
vp = AP_Param::find(param_name, &p_type);
if (vp == NULL) {
gcs_send_text_fmt(PSTR("Unknown parameter %.16s"), packet.param_id);
break;
}
}
float value = vp->cast_to_float(p_type);
mavlink_msg_param_value_send(
chan,
param_name,
value,
mav_var_type(p_type),
_count_parameters(),
packet.param_index);
break;
}
case MAVLINK_MSG_ID_MISSION_CLEAR_ALL:
{
// decode
mavlink_mission_clear_all_t packet;
mavlink_msg_mission_clear_all_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component)) break;
// clear all commands
g.command_total.set_and_save(0);
// note that we don't send multiple acks, as otherwise a
// GCS that is doing a clear followed by a set may see
// the additional ACKs as ACKs of the set operations
mavlink_msg_mission_ack_send(chan, msg->sysid, msg->compid, MAV_MISSION_ACCEPTED);
break;
}
case MAVLINK_MSG_ID_MISSION_SET_CURRENT:
{
// decode
mavlink_mission_set_current_t packet;
mavlink_msg_mission_set_current_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
// set current command
change_command(packet.seq);
mavlink_msg_mission_current_send(chan, g.command_index);
break;
}
case MAVLINK_MSG_ID_MISSION_COUNT:
{
// decode
mavlink_mission_count_t packet;
mavlink_msg_mission_count_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
// start waypoint receiving
if (packet.count > MAX_WAYPOINTS) {
packet.count = MAX_WAYPOINTS;
}
g.command_total.set_and_save(packet.count - 1);
waypoint_timelast_receive = millis();
waypoint_timelast_request = 0;
waypoint_receiving = true;
waypoint_request_i = 0;
waypoint_request_last= g.command_total;
break;
}
case MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST:
{
// decode
mavlink_mission_write_partial_list_t packet;
mavlink_msg_mission_write_partial_list_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
// start waypoint receiving
if (packet.start_index > g.command_total ||
packet.end_index > g.command_total ||
packet.end_index < packet.start_index) {
send_text_P(SEVERITY_LOW,PSTR("flight plan update rejected"));
break;
}
waypoint_timelast_receive = millis();
waypoint_timelast_request = 0;
waypoint_receiving = true;
waypoint_request_i = packet.start_index;
waypoint_request_last= packet.end_index;
break;
}
#ifdef MAVLINK_MSG_ID_SET_MAG_OFFSETS
case MAVLINK_MSG_ID_SET_MAG_OFFSETS:
{
mavlink_set_mag_offsets_t packet;
mavlink_msg_set_mag_offsets_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
compass.set_offsets(Vector3f(packet.mag_ofs_x, packet.mag_ofs_y, packet.mag_ofs_z));
break;
}
#endif
// XXX receive a WP from GCS and store in EEPROM
case MAVLINK_MSG_ID_MISSION_ITEM:
{
// decode
mavlink_mission_item_t packet;
uint8_t result = MAV_MISSION_ACCEPTED;
mavlink_msg_mission_item_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
// defaults
tell_command.id = packet.command;
switch (packet.frame)
{
case MAV_FRAME_MISSION:
case MAV_FRAME_GLOBAL:
{
tell_command.lat = 1.0e7f*packet.x; // in as DD converted to * t7
tell_command.lng = 1.0e7f*packet.y; // in as DD converted to * t7
tell_command.alt = packet.z*1.0e2f; // in as m converted to cm
tell_command.options = 0; // absolute altitude
break;
}
#ifdef MAV_FRAME_LOCAL_NED
case MAV_FRAME_LOCAL_NED: // local (relative to home position)
{
tell_command.lat = 1.0e7f*ToDeg(packet.x/
(radius_of_earth*cosf(ToRad(home.lat/1.0e7f)))) + home.lat;
tell_command.lng = 1.0e7f*ToDeg(packet.y/radius_of_earth) + home.lng;
tell_command.alt = -packet.z*1.0e2f;
tell_command.options = MASK_OPTIONS_RELATIVE_ALT;
break;
}
#endif
#ifdef MAV_FRAME_LOCAL
case MAV_FRAME_LOCAL: // local (relative to home position)
{
tell_command.lat = 1.0e7f*ToDeg(packet.x/
(radius_of_earth*cosf(ToRad(home.lat/1.0e7f)))) + home.lat;
tell_command.lng = 1.0e7f*ToDeg(packet.y/radius_of_earth) + home.lng;
tell_command.alt = packet.z*1.0e2f;
tell_command.options = MASK_OPTIONS_RELATIVE_ALT;
break;
}
#endif
case MAV_FRAME_GLOBAL_RELATIVE_ALT: // absolute lat/lng, relative altitude
{
tell_command.lat = 1.0e7f * packet.x; // in as DD converted to * t7
tell_command.lng = 1.0e7f * packet.y; // in as DD converted to * t7
tell_command.alt = packet.z * 1.0e2f;
tell_command.options = MASK_OPTIONS_RELATIVE_ALT; // store altitude relative!! Always!!
break;
}
default:
result = MAV_MISSION_UNSUPPORTED_FRAME;
break;
}
if (result != MAV_MISSION_ACCEPTED) goto mission_failed;
switch (tell_command.id) { // Switch to map APM command fields inot MAVLink command fields
case MAV_CMD_NAV_WAYPOINT:
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
break;
case MAV_CMD_NAV_TAKEOFF:
case MAV_CMD_DO_SET_HOME:
tell_command.p1 = packet.param1;
break;
case MAV_CMD_CONDITION_CHANGE_ALT:
tell_command.lat = packet.param1;
break;
case MAV_CMD_CONDITION_DELAY:
case MAV_CMD_CONDITION_DISTANCE:
tell_command.lat = packet.param1;
break;
case MAV_CMD_DO_JUMP:
tell_command.lat = packet.param2;
tell_command.p1 = packet.param1;
break;
case MAV_CMD_DO_REPEAT_SERVO:
tell_command.lng = packet.param4;
case MAV_CMD_DO_REPEAT_RELAY:
case MAV_CMD_DO_CHANGE_SPEED:
tell_command.lat = packet.param3;
tell_command.alt = packet.param2;
tell_command.p1 = packet.param1;
break;
case MAV_CMD_DO_SET_PARAMETER:
case MAV_CMD_DO_SET_RELAY:
case MAV_CMD_DO_SET_SERVO:
tell_command.alt = packet.param2;
tell_command.p1 = packet.param1;
break;
default:
result = MAV_MISSION_UNSUPPORTED;
break;
}
if (result != MAV_MISSION_ACCEPTED) goto mission_failed;
if(packet.current == 2){ //current = 2 is a flag to tell us this is a "guided mode" waypoint and not for the mission
guided_WP = tell_command;
// add home alt if needed
if (guided_WP.options & MASK_OPTIONS_RELATIVE_ALT){
guided_WP.alt += home.alt;
}
set_mode(GUIDED);
// make any new wp uploaded instant (in case we are already in Guided mode)
set_guided_WP();
// verify we recevied the command
mavlink_msg_mission_ack_send(
chan,
msg->sysid,
msg->compid,
0);
} else {
// Check if receiving waypoints (mission upload expected)
if (!waypoint_receiving) {
result = MAV_MISSION_ERROR;
goto mission_failed;
}
// check if this is the requested waypoint
if (packet.seq != waypoint_request_i) {
result = MAV_MISSION_INVALID_SEQUENCE;
goto mission_failed;
}
set_cmd_with_index(tell_command, packet.seq);
// update waypoint receiving state machine
waypoint_timelast_receive = millis();
waypoint_timelast_request = 0;
waypoint_request_i++;
if (waypoint_request_i > waypoint_request_last) {
mavlink_msg_mission_ack_send(
chan,
msg->sysid,
msg->compid,
result);
send_text_P(SEVERITY_LOW,PSTR("flight plan received"));
waypoint_receiving = false;
// XXX ignores waypoint radius for individual waypoints, can
// only set WP_RADIUS parameter
}
}
break;
mission_failed:
// we are rejecting the mission/waypoint
mavlink_msg_mission_ack_send(
chan,
msg->sysid,
msg->compid,
result);
break;
}
case MAVLINK_MSG_ID_PARAM_SET:
{
AP_Param *vp;
enum ap_var_type var_type;
// decode
mavlink_param_set_t packet;
mavlink_msg_param_set_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component))
break;
// set parameter
char key[AP_MAX_NAME_SIZE+1];
strncpy(key, (char *)packet.param_id, AP_MAX_NAME_SIZE);
key[AP_MAX_NAME_SIZE] = 0;
// find the requested parameter
vp = AP_Param::find(key, &var_type);
if ((NULL != vp) && // exists
!isnan(packet.param_value) && // not nan
!isinf(packet.param_value)) { // not inf
// add a small amount before casting parameter values
// from float to integer to avoid truncating to the
// next lower integer value.
float rounding_addition = 0.01;
// handle variables with standard type IDs
if (var_type == AP_PARAM_FLOAT) {
((AP_Float *)vp)->set_and_save(packet.param_value);
} else if (var_type == AP_PARAM_INT32) {
if (packet.param_value < 0) rounding_addition = -rounding_addition;
float v = packet.param_value+rounding_addition;
v = constrain_float(v, -2147483648.0f, 2147483647.0f);
((AP_Int32 *)vp)->set_and_save(v);
} else if (var_type == AP_PARAM_INT16) {
if (packet.param_value < 0) rounding_addition = -rounding_addition;
float v = packet.param_value+rounding_addition;
v = constrain_float(v, -32768, 32767);
((AP_Int16 *)vp)->set_and_save(v);
} else if (var_type == AP_PARAM_INT8) {
if (packet.param_value < 0) rounding_addition = -rounding_addition;
float v = packet.param_value+rounding_addition;
v = constrain_float(v, -128, 127);
((AP_Int8 *)vp)->set_and_save(v);
} else {
// we don't support mavlink set on this parameter
break;
}
// Report back the new value if we accepted the change
// we send the value we actually set, which could be
// different from the value sent, in case someone sent
// a fractional value to an integer type
mavlink_msg_param_value_send(
chan,
key,
vp->cast_to_float(var_type),
mav_var_type(var_type),
_count_parameters(),
-1); // XXX we don't actually know what its index is...
DataFlash.Log_Write_Parameter(key, vp->cast_to_float(var_type));
}
break;
} // end case
case MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE:
{
// allow override of RC channel values for HIL
// or for complete GCS control of switch position
// and RC PWM values.
if(msg->sysid != g.sysid_my_gcs) break; // Only accept control from our gcs
mavlink_rc_channels_override_t packet;
int16_t v[8];
mavlink_msg_rc_channels_override_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component))
break;
v[0] = packet.chan1_raw;
v[1] = packet.chan2_raw;
v[2] = packet.chan3_raw;
v[3] = packet.chan4_raw;
v[4] = packet.chan5_raw;
v[5] = packet.chan6_raw;
v[6] = packet.chan7_raw;
v[7] = packet.chan8_raw;
hal.rcin->set_overrides(v, 8);
failsafe.rc_override_timer = millis();
failsafe_trigger(FAILSAFE_EVENT_RC, false);
break;
}
case MAVLINK_MSG_ID_HEARTBEAT:
{
// We keep track of the last time we received a heartbeat from our GCS for failsafe purposes
if(msg->sysid != g.sysid_my_gcs) break;
last_heartbeat_ms = failsafe.rc_override_timer = millis();
failsafe_trigger(FAILSAFE_EVENT_GCS, false);
pmTest1++;
break;
}
#if HIL_MODE != HIL_MODE_DISABLED
case MAVLINK_MSG_ID_HIL_STATE:
{
mavlink_hil_state_t packet;
mavlink_msg_hil_state_decode(msg, &packet);
float vel = pythagorous2(packet.vx, packet.vy);
float cog = wrap_360_cd(ToDeg(atan2f(packet.vy, packet.vx)) * 100);
// set gps hil sensor
g_gps->setHIL(packet.time_usec/1000,
packet.lat*1.0e-7f, packet.lon*1.0e-7f, packet.alt*1.0e-3f,
vel*1.0e-2f, cog*1.0e-2f, 0, 10);
// rad/sec
Vector3f gyros;
gyros.x = packet.rollspeed;
gyros.y = packet.pitchspeed;
gyros.z = packet.yawspeed;
// m/s/s
Vector3f accels;
accels.x = packet.xacc * (GRAVITY_MSS/1000.0f);
accels.y = packet.yacc * (GRAVITY_MSS/1000.0f);
accels.z = packet.zacc * (GRAVITY_MSS/1000.0f);
ins.set_gyro(gyros);
ins.set_accel(accels);
compass.setHIL(packet.roll, packet.pitch, packet.yaw);
break;
}
#endif // HIL_MODE
#if CAMERA == ENABLED
case MAVLINK_MSG_ID_DIGICAM_CONFIGURE:
{
camera.configure_msg(msg);
break;
}
case MAVLINK_MSG_ID_DIGICAM_CONTROL:
{
camera.control_msg(msg);
break;
}
#endif // CAMERA == ENABLED
#if MOUNT == ENABLED
case MAVLINK_MSG_ID_MOUNT_CONFIGURE:
{
camera_mount.configure_msg(msg);
break;
}
case MAVLINK_MSG_ID_MOUNT_CONTROL:
{
camera_mount.control_msg(msg);
break;
}
case MAVLINK_MSG_ID_MOUNT_STATUS:
{
camera_mount.status_msg(msg);
break;
}
#endif // MOUNT == ENABLED
case MAVLINK_MSG_ID_RADIO:
case MAVLINK_MSG_ID_RADIO_STATUS:
{
mavlink_radio_t packet;
mavlink_msg_radio_decode(msg, &packet);
// use the state of the transmit buffer in the radio to
// control the stream rate, giving us adaptive software
// flow control
if (packet.txbuf < 20 && stream_slowdown < 100) {
// we are very low on space - slow down a lot
stream_slowdown += 3;
} else if (packet.txbuf < 50 && stream_slowdown < 100) {
// we are a bit low on space, slow down slightly
stream_slowdown += 1;
} else if (packet.txbuf > 95 && stream_slowdown > 10) {
// the buffer has plenty of space, speed up a lot
stream_slowdown -= 2;
} else if (packet.txbuf > 90 && stream_slowdown != 0) {
// the buffer has enough space, speed up a bit
stream_slowdown--;
}
break;
}
default:
// forward unknown messages to the other link if there is one
if ((chan == MAVLINK_COMM_1 && gcs0.initialised) ||
(chan == MAVLINK_COMM_0 && gcs3.initialised)) {
mavlink_channel_t out_chan = (mavlink_channel_t)(((uint8_t)chan)^1);
// only forward if it would fit in our transmit buffer
if (comm_get_txspace(out_chan) > ((uint16_t)msg->len) + MAVLINK_NUM_NON_PAYLOAD_BYTES) {
_mavlink_resend_uart(out_chan, msg);
}
}
break;
} // end switch
} // end handle mavlink
uint16_t
GCS_MAVLINK::_count_parameters()
{
// if we haven't cached the parameter count yet...
if (0 == _parameter_count) {
AP_Param *vp;
AP_Param::ParamToken token;
vp = AP_Param::first(&token, NULL);
do {
_parameter_count++;
} while (NULL != (vp = AP_Param::next_scalar(&token, NULL)));
}
return _parameter_count;
}
/**
* @brief Send the next pending parameter, called from deferred message
* handling code
*/
void
GCS_MAVLINK::queued_param_send()
{
if (_queued_parameter == NULL) {
return;
}
uint16_t bytes_allowed;
uint8_t count;
uint32_t tnow = millis();
// use at most 30% of bandwidth on parameters. The constant 26 is
// 1/(1000 * 1/8 * 0.001 * 0.3)
bytes_allowed = g.serial3_baud * (tnow - _queued_parameter_send_time_ms) * 26;
if (bytes_allowed > comm_get_txspace(chan)) {
bytes_allowed = comm_get_txspace(chan);
}
count = bytes_allowed / (MAVLINK_MSG_ID_PARAM_VALUE_LEN + MAVLINK_NUM_NON_PAYLOAD_BYTES);
while (_queued_parameter != NULL && count--) {
AP_Param *vp;
float value;
// copy the current parameter and prepare to move to the next
vp = _queued_parameter;
// if the parameter can be cast to float, report it here and break out of the loop
value = vp->cast_to_float(_queued_parameter_type);
char param_name[AP_MAX_NAME_SIZE];
vp->copy_name_token(_queued_parameter_token, param_name, sizeof(param_name), true);
mavlink_msg_param_value_send(
chan,
param_name,
value,
mav_var_type(_queued_parameter_type),
_queued_parameter_count,
_queued_parameter_index);
_queued_parameter = AP_Param::next_scalar(&_queued_parameter_token, &_queued_parameter_type);
_queued_parameter_index++;
}
_queued_parameter_send_time_ms = tnow;
}
/**
* @brief Send the next pending waypoint, called from deferred message
* handling code
*/
void
GCS_MAVLINK::queued_waypoint_send()
{
if (waypoint_receiving &&
waypoint_request_i <= waypoint_request_last) {
mavlink_msg_mission_request_send(
chan,
waypoint_dest_sysid,
waypoint_dest_compid,
waypoint_request_i);
}
}
void GCS_MAVLINK::reset_cli_timeout() {
_cli_timeout = millis();
}
/*
* a delay() callback that processes MAVLink packets. We set this as the
* callback in long running library initialisation routines to allow
* MAVLink to process packets while waiting for the initialisation to
* complete
*/
static void mavlink_delay_cb()
{
static uint32_t last_1hz, last_50hz, last_5s;
if (!gcs0.initialised) return;
in_mavlink_delay = true;
uint32_t tnow = millis();
if (tnow - last_1hz > 1000) {
last_1hz = tnow;
gcs_send_message(MSG_HEARTBEAT);
gcs_send_message(MSG_EXTENDED_STATUS1);
}
if (tnow - last_50hz > 20) {
last_50hz = tnow;
gcs_update();
gcs_data_stream_send();
notify.update();
}
if (tnow - last_5s > 5000) {
last_5s = tnow;
gcs_send_text_P(SEVERITY_LOW, PSTR("Initialising APM..."));
}
check_usb_mux();
in_mavlink_delay = false;
}
/*
* send a message on both GCS links
*/
static void gcs_send_message(enum ap_message id)
{
gcs0.send_message(id);
if (gcs3.initialised) {
gcs3.send_message(id);
}
}
/*
* send data streams in the given rate range on both links
*/
static void gcs_data_stream_send(void)
{
gcs0.data_stream_send();
if (gcs3.initialised) {
gcs3.data_stream_send();
}
}
/*
* look for incoming commands on the GCS links
*/
static void gcs_update(void)
{
gcs0.update();
if (gcs3.initialised) {
gcs3.update();
}
}
static void gcs_send_text_P(gcs_severity severity, const prog_char_t *str)
{
gcs0.send_text_P(severity, str);
if (gcs3.initialised) {
gcs3.send_text_P(severity, str);
}
DataFlash.Log_Write_Message_P(str);
}
/*
* send a low priority formatted message to the GCS
* only one fits in the queue, so if you send more than one before the
* last one gets into the serial buffer then the old one will be lost
*/
void gcs_send_text_fmt(const prog_char_t *fmt, ...)
{
va_list arg_list;
gcs0.pending_status.severity = (uint8_t)SEVERITY_LOW;
va_start(arg_list, fmt);
hal.util->vsnprintf_P((char *)gcs0.pending_status.text,
sizeof(gcs0.pending_status.text), fmt, arg_list);
va_end(arg_list);
DataFlash.Log_Write_Message(gcs0.pending_status.text);
gcs3.pending_status = gcs0.pending_status;
mavlink_send_message(MAVLINK_COMM_0, MSG_STATUSTEXT, 0);
if (gcs3.initialised) {
mavlink_send_message(MAVLINK_COMM_1, MSG_STATUSTEXT, 0);
}
}