Ardupilot2/libraries/AP_Baro/AP_Baro_atmosphere.cpp
Andrew Tridgell a02cd4b432 AP_Baro: fixed link with clang for shared library
avoid unused symbols
2024-07-11 09:27:09 +10:00

359 lines
14 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include "AP_Baro.h"
#include <AP_InternalError/AP_InternalError.h>
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* 1976 U.S. Standard Atmosphere: https://ntrs.nasa.gov/api/citations/19770009539/downloads/19770009539.pdf?attachment=true
The US Standard Atmosphere defines the atmopshere in terms of whether the temperature is an iso-thermal or gradient layer.
Ideal gas laws apply thus P = rho * R_specific * T : P = pressure, rho = density, R_specific = air gas constant, T = temperature
Note: the 1976 model is the same as the 1962 US Standard Atomsphere up to 51km.
R_universal: the universal gas constant is slightly off in the 1976 model and thus R_specific is different than today's value
*/
/* Model Constants
R_universal = 8.31432e-3; // Universal gas constant (J/(kmol-K)) incorrect to the redefined 2019 value of 8.31446261815324 J⋅K1⋅mol1
M_air = (0.78084 * 28.0134 + 0.209476 * 31.9988 + 9.34e-3 * 39.948 + 3.14e-4 * 44.00995 + 1.818e-5 * 20.183 + 5.24E-6 * 4.0026 + 1.14E-6 * 83.8 + 8.7E-7 * 131.30 + 2E-6 * 16.04303 + 5E-7 * 2.01594) * 1E-3; (kg/mol)
M_air = 28.9644 // Molecular weight of air (kg/kmol) see page 3
R_specific = 287.053072 // air specifc gas constant (J⋅kg1⋅K1), R_universal / M_air;
gama = 1.4; // specific heat ratio of air used to determine the speed of sound
R0 = 6356.766E3; // Earth's radius (in m)
g0 = 9.80665; // gravity (m/s^2)
Sea-Level Constants
H_asml = 0 meters
T0 = 288.150 K
P0 = 101325 Pa
rho0 = 1.2250 kg/m^3
T0_slope = -6.5E-3 (K/m')
The tables list altitudes -5 km to 0 km using the same equations as 0 km to 11 km.
*/
/*
return altitude difference in meters between current pressure and a
given base_pressure in Pascal. This is a simple atmospheric model
good to about 11km AMSL.
*/
float AP_Baro::get_altitude_difference_simple(float base_pressure, float pressure) const
{
float ret;
float temp_K = C_TO_KELVIN(get_ground_temperature());
float scaling = pressure / base_pressure;
// This is an exact calculation that is within +-2.5m of the standard
// atmosphere tables in the troposphere (up to 11,000 m amsl).
ret = 153.8462f * temp_K * (1.0f - expf(0.190259f * logf(scaling)));
return ret;
}
#if AP_BARO_1976_STANDARD_ATMOSPHERE_ENABLED || AP_SIM_ENABLED
/*
Note parameters are as defined in the 1976 model.
These are slightly different from the ones in definitions.h
*/
static const float radius_earth = 6356.766E3; // Earth's radius (in m)
static const float R_specific = 287.053072; // air specifc gas constant (J⋅kg1⋅K1) in 1976 model, R_universal / M_air;
static const struct {
float amsl_m; // geopotential height above mean sea-level (km')
float temp_K; // Temperature (K)
float pressure_Pa; // Pressure (Pa)
float density; // Density (Pa/kg)
float temp_lapse; // Temperature gradients rates (K/m'), see page 3
} atmospheric_1976_consts[] = {
{ -5000, 320.650, 177687, 1.930467, -6.5E-3 },
{ 11000, 216.650, 22632.1, 0.363918, 0 },
{ 20000, 216.650, 5474.89, 8.80349E-2, 1E-3 },
{ 32000, 228.650, 868.019, 1.32250E-2, 2.8E-3 },
{ 47000, 270.650, 110.906, 1.42753E-3, 0 },
{ 51000, 270.650, 66.9389, 8.61606E-4, -2.8E-3 },
{ 71000, 214.650, 3.95642, 6.42110E-5, -2.0E-3 },
{ 84852, 186.946, 0.37338, 6.95788E-6, 0 },
};
/*
find table entry given geopotential altitude in meters. This returns at least 1
*/
static uint8_t find_atmosphere_layer_by_altitude(float alt_m)
{
for (uint8_t idx = 1; idx < ARRAY_SIZE(atmospheric_1976_consts); idx++) {
if(alt_m < atmospheric_1976_consts[idx].amsl_m) {
return idx - 1;
}
}
// Over the largest altitude return the last index
return ARRAY_SIZE(atmospheric_1976_consts) - 1;
}
/*
find table entry given pressure (Pa). This returns at least 1
*/
static uint8_t find_atmosphere_layer_by_pressure(float pressure)
{
for (uint8_t idx = 1; idx < ARRAY_SIZE(atmospheric_1976_consts); idx++) {
if (atmospheric_1976_consts[idx].pressure_Pa < pressure) {
return idx - 1;
}
}
// pressure is less than the smallest pressure return the last index
return ARRAY_SIZE(atmospheric_1976_consts) - 1;
}
// Convert geopotential altitude to geometric altitude
//
float AP_Baro::geopotential_alt_to_geometric(float alt)
{
return (radius_earth * alt) / (radius_earth - alt);
}
float AP_Baro::geometric_alt_to_geopotential(float alt)
{
return (radius_earth * alt) / (radius_earth + alt);
}
/*
Compute expected temperature for a given geometric altitude and altitude layer.
*/
float AP_Baro::get_temperature_from_altitude(float alt) const
{
alt = geometric_alt_to_geopotential(alt);
const uint8_t idx = find_atmosphere_layer_by_altitude(alt);
return get_temperature_by_altitude_layer(alt, idx);
}
/*
Compute expected temperature for a given geopotential altitude and altitude layer.
*/
float AP_Baro::get_temperature_by_altitude_layer(float alt, int8_t idx)
{
if (is_zero(atmospheric_1976_consts[idx].temp_lapse)) {
return atmospheric_1976_consts[idx].temp_K;
}
return atmospheric_1976_consts[idx].temp_K + atmospheric_1976_consts[idx].temp_lapse * (alt - atmospheric_1976_consts[idx].amsl_m);
}
/*
return geometric altitude (m) given a pressure (Pa)
*/
float AP_Baro::get_altitude_from_pressure(float pressure) const
{
const uint8_t idx = find_atmosphere_layer_by_pressure(pressure);
const float pressure_ratio = pressure / atmospheric_1976_consts[idx].pressure_Pa;
// Pressure ratio is nonsensical return an error??
if (!is_positive(pressure_ratio)) {
INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control);
return get_altitude_AMSL();
}
float alt;
const float temp_slope = atmospheric_1976_consts[idx].temp_lapse;
if (is_zero(temp_slope)) { // Iso-thermal layer
const float fac = -(atmospheric_1976_consts[idx].temp_K * R_specific) / GRAVITY_MSS;
alt = atmospheric_1976_consts[idx].amsl_m + fac * logf(pressure_ratio);
} else { // Gradient temperature layer
const float fac = -(temp_slope * R_specific) / GRAVITY_MSS;
alt = atmospheric_1976_consts[idx].amsl_m + (atmospheric_1976_consts[idx].temp_K / atmospheric_1976_consts[idx].temp_lapse) * (powf(pressure_ratio, fac) - 1);
}
return geopotential_alt_to_geometric(alt);
}
/*
Compute expected pressure and temperature for a given geometric altitude. Used for SITL
*/
void AP_Baro::get_pressure_temperature_for_alt_amsl(float alt_amsl, float &pressure, float &temperature_K)
{
alt_amsl = geometric_alt_to_geopotential(alt_amsl);
const uint8_t idx = find_atmosphere_layer_by_altitude(alt_amsl);
const float temp_slope = atmospheric_1976_consts[idx].temp_lapse;
temperature_K = get_temperature_by_altitude_layer(alt_amsl, idx);
// Previous versions used the current baro temperature instead of an estimate we could try to incorporate this??? non-standard atmosphere
// const float temp = get_temperature();
if (is_zero(temp_slope)) { // Iso-thermal layer
const float fac = expf(-GRAVITY_MSS / (temperature_K * R_specific) * (alt_amsl - atmospheric_1976_consts[idx].amsl_m));
pressure = atmospheric_1976_consts[idx].pressure_Pa * fac;
} else { // Gradient temperature layer
const float fac = GRAVITY_MSS / (temp_slope * R_specific);
const float temp_ratio = temperature_K / atmospheric_1976_consts[idx].temp_K; // temperature ratio [unitless]
pressure = atmospheric_1976_consts[idx].pressure_Pa * powf(temp_ratio, -fac);
}
}
/*
return air density (kg/m^3), given geometric altitude (m)
*/
float AP_Baro::get_air_density_for_alt_amsl(float alt_amsl)
{
alt_amsl = geometric_alt_to_geopotential(alt_amsl);
const uint8_t idx = find_atmosphere_layer_by_altitude(alt_amsl);
const float temp_slope = atmospheric_1976_consts[idx].temp_lapse;
const float temp = get_temperature_by_altitude_layer(alt_amsl, idx);
// const float temp = get_temperature();
float rho;
if (is_zero(temp_slope)) { // Iso-thermal layer
const float fac = expf(-GRAVITY_MSS / (temp * R_specific) * (alt_amsl - atmospheric_1976_consts[idx].amsl_m));
rho = atmospheric_1976_consts[idx].density * fac;
} else { // Gradient temperature layer
const float fac = GRAVITY_MSS / (temp_slope * R_specific);
const float temp_ratio = temp / atmospheric_1976_consts[idx].temp_K; // temperature ratio [unitless]
rho = atmospheric_1976_consts[idx].density * powf(temp_ratio, -(fac + 1));
}
return rho;
}
/*
return current scale factor that converts from equivalent to true airspeed
*/
float AP_Baro::get_EAS2TAS_extended(float altitude) const
{
float density = get_air_density_for_alt_amsl(altitude);
if (!is_positive(density)) {
// above this height we are getting closer to spacecraft territory...
const uint8_t table_size = ARRAY_SIZE(atmospheric_1976_consts);
density = atmospheric_1976_consts[table_size-1].density;
}
return sqrtf(SSL_AIR_DENSITY / density);
}
/*
Given the geometric altitude (m)
return scale factor that converts from equivalent to true airspeed
used by SITL only
*/
float AP_Baro::get_EAS2TAS_for_alt_amsl(float alt_amsl)
{
const float density = get_air_density_for_alt_amsl(alt_amsl);
return sqrtf(SSL_AIR_DENSITY / MAX(0.00001,density));
}
#endif // AP_BARO_1976_STANDARD_ATMOSPHERE_ENABLED || AP_SIM_ENABLED
/*
return geometric altitude difference in meters between current pressure and a
given base_pressure in Pascal.
*/
float AP_Baro::get_altitude_difference(float base_pressure, float pressure) const
{
#if AP_BARO_1976_STANDARD_ATMOSPHERE_ENABLED
const float alt1 = get_altitude_from_pressure(base_pressure);
const float alt2 = get_altitude_from_pressure(pressure);
return alt2 - alt1;
#else
return get_altitude_difference_simple(base_pressure, pressure);
#endif
}
/*
return current scale factor that converts from equivalent to true airspeed
valid for altitudes up to 11km AMSL
assumes USA 1976 standard atmosphere lapse rate
*/
float AP_Baro::get_EAS2TAS_simple(float altitude, float pressure) const
{
if (is_zero(pressure)) {
return 1.0f;
}
// only estimate lapse rate for the difference from the ground location
// provides a more consistent reading then trying to estimate a complete
// ISA model atmosphere
float tempK = C_TO_KELVIN(get_ground_temperature()) - ISA_LAPSE_RATE * altitude;
const float eas2tas_squared = SSL_AIR_DENSITY / (pressure / (ISA_GAS_CONSTANT * tempK));
if (!is_positive(eas2tas_squared)) {
return 1.0f;
}
return sqrtf(eas2tas_squared);
}
/*
return current scale factor that converts from equivalent to true airspeed
*/
float AP_Baro::_get_EAS2TAS(void) const
{
const float altitude = get_altitude_AMSL();
#if AP_BARO_1976_STANDARD_ATMOSPHERE_ENABLED
return get_EAS2TAS_extended(altitude);
#else
// otherwise use function
return get_EAS2TAS_simple(altitude, get_pressure());
#endif
}
#if AP_BARO_1976_STANDARD_ATMOSPHERE_ENABLED || AP_SIM_ENABLED
// lookup expected temperature in degrees C for a given altitude. Used for SITL backend
float AP_Baro::get_temperatureC_for_alt_amsl(const float alt_amsl)
{
float pressure, temp_K;
get_pressure_temperature_for_alt_amsl(alt_amsl, pressure, temp_K);
return KELVIN_TO_C(temp_K);
}
// lookup expected pressure in Pa for a given altitude. Used for SITL backend
float AP_Baro::get_pressure_for_alt_amsl(const float alt_amsl)
{
float pressure, temp_K;
get_pressure_temperature_for_alt_amsl(alt_amsl, pressure, temp_K);
return pressure;
}
#endif // AP_BARO_1976_STANDARD_ATMOSPHERE_ENABLED
/*
return sea level pressure given a current altitude and pressure reading
this is the pressure p0 such that
get_altitude_difference(p0, pressure) == altitude
this function is used during calibration
*/
float AP_Baro::get_sealevel_pressure(float pressure, float altitude) const
{
const float min_pressure = 0.01;
const float max_pressure = 1e6;
float p0 = pressure;
/*
use a simple numerical gradient descent method so we don't need
the inverse function. This typically converges in about 5 steps,
we limit it to 20 steps to prevent possible high CPU usage
*/
uint16_t count = 20;
while (count--) {
const float delta = 0.1;
const float err1 = get_altitude_difference(p0, pressure) - altitude;
const float err2 = get_altitude_difference(p0+delta, pressure) - altitude;
const float dalt = err2 - err1;
if (fabsf(err1) < 0.01) {
break;
}
p0 -= err1 * delta / dalt;
p0 = constrain_float(p0, min_pressure, max_pressure);
}
return p0;
}