Ardupilot2/libraries/AP_OpticalFlow/AP_OpticalFlow_HereFlow.cpp
Thomas Watson 1c08119dd9 AP_OpticalFlow: optimize DroneCAN subscription process
* remove unnecessary nullptr check, these are always called from an
  initialized AP_DroneCAN so if it's nullptr something has gone
  horrifically wrong

* pass in driver index instead of repeatedly calling function to get it

* simplify error handling; knowing exactly which allocation failed is not
  super helpful and one failing likely means subsequent ones will too,
  as it can only fail due to being out of memory
2024-11-18 10:30:29 +11:00

92 lines
3.0 KiB
C++

#include "AP_OpticalFlow_HereFlow.h"
#if AP_OPTICALFLOW_HEREFLOW_ENABLED
#include <AP_HAL/AP_HAL.h>
#include <AP_CANManager/AP_CANManager.h>
#include <AP_DroneCAN/AP_DroneCAN.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
extern const AP_HAL::HAL& hal;
uint8_t AP_OpticalFlow_HereFlow::_node_id = 0;
AP_OpticalFlow_HereFlow* AP_OpticalFlow_HereFlow::_driver = nullptr;
AP_DroneCAN* AP_OpticalFlow_HereFlow::_ap_dronecan = nullptr;
/*
constructor - registers instance at top Flow driver
*/
AP_OpticalFlow_HereFlow::AP_OpticalFlow_HereFlow(AP_OpticalFlow &flow) :
OpticalFlow_backend(flow)
{
if (_driver) {
AP_HAL::panic("Only one instance of Flow supported!");
}
_driver = this;
}
//links the HereFlow messages to the backend
bool AP_OpticalFlow_HereFlow::subscribe_msgs(AP_DroneCAN* ap_dronecan)
{
const auto driver_index = ap_dronecan->get_driver_index();
return (Canard::allocate_sub_arg_callback(ap_dronecan, &handle_measurement, driver_index) != nullptr);
}
//updates driver states based on received HereFlow messages
void AP_OpticalFlow_HereFlow::handle_measurement(AP_DroneCAN *ap_dronecan, const CanardRxTransfer& transfer, const com_hex_equipment_flow_Measurement &msg)
{
if (_driver == nullptr) {
return;
}
//protect from data coming from duplicate sensors,
//as we only handle one Here Flow at a time as of now
if (_ap_dronecan == nullptr) {
_ap_dronecan = ap_dronecan;
_node_id = transfer.source_node_id;
}
if (_ap_dronecan == ap_dronecan && _node_id == transfer.source_node_id) {
WITH_SEMAPHORE(_driver->_sem);
_driver->new_data = true;
_driver->flow_integral = Vector2f(msg.flow_integral[0], msg.flow_integral[1]);
_driver->rate_gyro_integral = Vector2f(msg.rate_gyro_integral[0], msg.rate_gyro_integral[1]);
_driver->integral_time = msg.integration_interval;
_driver->surface_quality = msg.quality;
}
}
void AP_OpticalFlow_HereFlow::update()
{
_push_state();
}
// Read the sensor
void AP_OpticalFlow_HereFlow::_push_state(void)
{
WITH_SEMAPHORE(_sem);
if (!new_data) {
return;
}
struct AP_OpticalFlow::OpticalFlow_state state;
const Vector2f flowScaler = _flowScaler();
//setup scaling based on parameters
float flowScaleFactorX = 1.0f + 0.001f * flowScaler.x;
float flowScaleFactorY = 1.0f + 0.001f * flowScaler.y;
float integralToRate = 1.0f / integral_time;
//Convert to Raw Flow measurement to Flow Rate measurement
state.flowRate = Vector2f{
flow_integral.x * flowScaleFactorX,
flow_integral.y * flowScaleFactorY
} * integralToRate;
state.bodyRate = rate_gyro_integral * integralToRate;
state.surface_quality = surface_quality;
_applyYaw(state.flowRate);
_applyYaw(state.bodyRate);
// hal.console->printf("DRV: %u %f %f\n", state.surface_quality, flowRate.length(), bodyRate.length());
_update_frontend(state);
new_data = false;
}
#endif // AP_OPTICALFLOW_HEREFLOW_ENABLED