Ardupilot2/libraries/AP_Soaring/AP_Soaring.cpp
Peter Barker 69093aa7b1 AP_Soaring: stop taking AHRS as constructor argument
... use singleton instead
2020-05-05 17:35:14 +10:00

479 lines
17 KiB
C++

#include "AP_Soaring.h"
#include <AP_Logger/AP_Logger.h>
#include <GCS_MAVLink/GCS.h>
#include <stdint.h>
extern const AP_HAL::HAL& hal;
// ArduSoar parameters
const AP_Param::GroupInfo SoaringController::var_info[] = {
// @Param: ENABLE
// @DisplayName: Is the soaring mode enabled or not
// @Description: Toggles the soaring mode on and off
// @Values: 0:Disable,1:Enable
// @User: Advanced
AP_GROUPINFO_FLAGS("ENABLE", 1, SoaringController, soar_active, 0, AP_PARAM_FLAG_ENABLE),
// @Param: VSPEED
// @DisplayName: Vertical v-speed
// @Description: Rate of climb to trigger themalling speed
// @Units: m/s
// @Range: 0 10
// @User: Advanced
AP_GROUPINFO("VSPEED", 2, SoaringController, thermal_vspeed, 0.7f),
// @Param: Q1
// @DisplayName: Process noise
// @Description: Standard deviation of noise in process for strength
// @Range: 0 10
// @User: Advanced
AP_GROUPINFO("Q1", 3, SoaringController, thermal_q1, 0.001f),
// @Param: Q2
// @DisplayName: Process noise
// @Description: Standard deviation of noise in process for position and radius
// @Range: 0 10
// @User: Advanced
AP_GROUPINFO("Q2", 4, SoaringController, thermal_q2, 0.03f),
// @Param: R
// @DisplayName: Measurement noise
// @Description: Standard deviation of noise in measurement
// @Range: 0 10
// @User: Advanced
AP_GROUPINFO("R", 5, SoaringController, thermal_r, 0.45f),
// @Param: DIST_AHEAD
// @DisplayName: Distance to thermal center
// @Description: Initial guess of the distance to the thermal center
// @Units: m
// @Range: 0 100
// @User: Advanced
AP_GROUPINFO("DIST_AHEAD", 6, SoaringController, thermal_distance_ahead, 5.0f),
// @Param: MIN_THML_S
// @DisplayName: Minimum thermalling time
// @Description: Minimum number of seconds to spend thermalling
// @Units: s
// @Range: 0 32768
// @User: Advanced
AP_GROUPINFO("MIN_THML_S", 7, SoaringController, min_thermal_s, 20),
// @Param: MIN_CRSE_S
// @DisplayName: Minimum cruising time
// @Description: Minimum number of seconds to spend cruising
// @Units: s
// @Range: 0 32768
// @User: Advanced
AP_GROUPINFO("MIN_CRSE_S", 8, SoaringController, min_cruise_s, 30),
// @Param: POLAR_CD0
// @DisplayName: Zero lift drag coef.
// @Description: Zero lift drag coefficient
// @Range: 0 0.5
// @User: Advanced
AP_GROUPINFO("POLAR_CD0", 9, SoaringController, polar_CD0, 0.027),
// @Param: POLAR_B
// @DisplayName: Induced drag coeffient
// @Description: Induced drag coeffient
// @Range: 0 0.5
// @User: Advanced
AP_GROUPINFO("POLAR_B", 10, SoaringController, polar_B, 0.031),
// @Param: POLAR_K
// @DisplayName: Cl factor
// @Description: Cl factor 2*m*g/(rho*S)
// @Units: m.m/s/s
// @Range: 0 0.5
// @User: Advanced
AP_GROUPINFO("POLAR_K", 11, SoaringController, polar_K, 25.6),
// @Param: ALT_MAX
// @DisplayName: Maximum soaring altitude, relative to the home location
// @Description: Don't thermal any higher than this.
// @Units: m
// @Range: 0 1000.0
// @User: Advanced
AP_GROUPINFO("ALT_MAX", 12, SoaringController, alt_max, 350.0),
// @Param: ALT_MIN
// @DisplayName: Minimum soaring altitude, relative to the home location
// @Description: Don't get any lower than this.
// @Units: m
// @Range: 0 1000.0
// @User: Advanced
AP_GROUPINFO("ALT_MIN", 13, SoaringController, alt_min, 50.0),
// @Param: ALT_CUTOFF
// @DisplayName: Maximum power altitude, relative to the home location
// @Description: Cut off throttle at this alt.
// @Units: m
// @Range: 0 1000.0
// @User: Advanced
AP_GROUPINFO("ALT_CUTOFF", 14, SoaringController, alt_cutoff, 250.0),
// @Param: ENABLE_CH
// @DisplayName: (Optional) RC channel that toggles the soaring controller on and off
// @Description: Toggles the soaring controller on and off. This parameter has any effect only if SOAR_ENABLE is set to 1 and this parameter is set to a valid non-zero channel number. When set, soaring will be activated when RC input to the specified channel is greater than or equal to 1700.
// @Range: 0 16
// @User: Advanced
AP_GROUPINFO("ENABLE_CH", 15, SoaringController, soar_active_ch, 0),
// @Param: MAX_DRIFT
// @DisplayName: (Optional) Maximum drift distance to allow when thermalling.
// @Description: The previous mode will be restored if the horizontal distance to the thermalling start location exceeds this value. 0 to disable.
// @Range: 0 1000
// @User: Advanced
AP_GROUPINFO("MAX_DRIFT", 16, SoaringController, max_drift, -1),
// @Param: MAX_RADIUS
// @DisplayName: (Optional) Maximum distance from home
// @Description: RTL will be entered when a thermal is exited and the plane is more than this distance from home. -1 to disable.
// @Range: 0 1000
// @User: Advanced
AP_GROUPINFO("MAX_RADIUS", 17, SoaringController, max_radius, -1),
AP_GROUPEND
};
SoaringController::SoaringController(AP_SpdHgtControl &spdHgt, const AP_Vehicle::FixedWing &parms) :
_spdHgt(spdHgt),
_vario(parms),
_aparm(parms),
_throttle_suppressed(true)
{
AP_Param::setup_object_defaults(this, var_info);
_position_x_filter = LowPassFilter<float>(1.0/60.0);
_position_y_filter = LowPassFilter<float>(1.0/60.0);
}
void SoaringController::get_target(Location &wp)
{
wp = AP::ahrs().get_home();
wp.offset(_position_x_filter.get(), _position_y_filter.get());
}
bool SoaringController::suppress_throttle()
{
float alt = _vario.alt;
if (_throttle_suppressed && (alt < alt_min)) {
// Time to throttle up
set_throttle_suppressed(false);
} else if ((!_throttle_suppressed) && (alt > alt_cutoff)) {
// Start glide
set_throttle_suppressed(true);
// Zero the pitch integrator - the nose is currently raised to climb, we need to go back to glide.
_spdHgt.reset_pitch_I();
_cruise_start_time_us = AP_HAL::micros64();
// Reset the filtered vario rate - it is currently elevated due to the climb rate and would otherwise take a while to fall again,
// leading to false positives.
_vario.filtered_reading = 0;
}
return _throttle_suppressed;
}
bool SoaringController::check_thermal_criteria()
{
ActiveStatus status = active_state();
return (status == ActiveStatus::AUTO_MODE_CHANGE
&& ((AP_HAL::micros64() - _cruise_start_time_us) > ((unsigned)min_cruise_s * 1e6))
&& (_vario.filtered_reading - _vario.get_exp_thermalling_sink()) > thermal_vspeed
&& _vario.alt < alt_max
&& _vario.alt > alt_min);
}
SoaringController::LoiterStatus SoaringController::check_cruise_criteria(Vector2f prev_wp, Vector2f next_wp)
{
ActiveStatus status = active_state();
if (status != ActiveStatus::AUTO_MODE_CHANGE) {
_cruise_criteria_msg_last = LoiterStatus::DISABLED;
return LoiterStatus::DISABLED;
}
LoiterStatus result = LoiterStatus::GOOD_TO_KEEP_LOITERING;
const float alt = _vario.alt;
if (alt > alt_max) {
result = LoiterStatus::ALT_TOO_HIGH;
if (result != _cruise_criteria_msg_last) {
gcs().send_text(MAV_SEVERITY_ALERT, "Reached upper alt = %dm", (int16_t)alt);
}
} else if (alt < alt_min) {
result = LoiterStatus::ALT_TOO_LOW;
if (result != _cruise_criteria_msg_last) {
gcs().send_text(MAV_SEVERITY_ALERT, "Reached lower alt = %dm", (int16_t)alt);
}
} else if ((AP_HAL::micros64() - _thermal_start_time_us) > ((unsigned)min_thermal_s * 1e6)) {
const float mcCreadyAlt = McCready(alt);
if (_thermalability < mcCreadyAlt) {
result = LoiterStatus::THERMAL_WEAK;
if (result != _cruise_criteria_msg_last) {
gcs().send_text(MAV_SEVERITY_INFO, "Thermal weak: th %3.1fm/s alt %3.1fm Mc %3.1fm/s", (double)_thermalability, (double)alt, (double)mcCreadyAlt);
}
} else if (alt < (-_thermal_start_pos.z) || _vario.smoothed_climb_rate < 0.0) {
result = LoiterStatus::ALT_LOST;
if (result != _cruise_criteria_msg_last) {
gcs().send_text(MAV_SEVERITY_INFO, "Not climbing");
}
} else if (check_drift(prev_wp, next_wp)) {
result = LoiterStatus::DRIFT_EXCEEDED;
if (result != _cruise_criteria_msg_last) {
gcs().send_text(MAV_SEVERITY_INFO, "Drifted too far");
}
}
}
_cruise_criteria_msg_last = result;
return result;
}
void SoaringController::init_thermalling()
{
// Calc filter matrices - so that changes to parameters can be updated by switching in and out of thermal mode
float r = powf(thermal_r, 2); // Measurement noise
float cov_q1 = powf(thermal_q1, 2); // Process noise for strength
float cov_q2 = powf(thermal_q2, 2); // Process noise for position and radius
const float init_q[4] = {cov_q1,
cov_q2,
cov_q2,
cov_q2};
const MatrixN<float,4> q{init_q};
const float init_p[4] = {INITIAL_STRENGTH_COVARIANCE,
INITIAL_RADIUS_COVARIANCE,
INITIAL_POSITION_COVARIANCE,
INITIAL_POSITION_COVARIANCE};
const MatrixN<float,4> p{init_p};
Vector3f position;
const AP_AHRS &_ahrs = AP::ahrs();
if (!_ahrs.get_relative_position_NED_home(position)) {
return;
}
// New state vector filter will be reset. Thermal location is placed in front of a/c
const float init_xr[4] = {INITIAL_THERMAL_STRENGTH,
INITIAL_THERMAL_RADIUS,
position.x + thermal_distance_ahead * cosf(_ahrs.yaw),
position.y + thermal_distance_ahead * sinf(_ahrs.yaw)};
const VectorN<float,4> xr{init_xr};
// Also reset covariance matrix p so filter is not affected by previous data
_ekf.reset(xr, p, q, r);
_prev_update_time = AP_HAL::micros64();
_thermal_start_time_us = AP_HAL::micros64();
_thermal_start_pos = position;
_vario.reset_filter(0.0);
_position_x_filter.reset(_ekf.X[2]);
_position_y_filter.reset(_ekf.X[3]);
}
void SoaringController::init_cruising()
{
if (active_state()>=ActiveStatus::MANUAL_MODE_CHANGE) {
_cruise_start_time_us = AP_HAL::micros64();
// Start glide. Will be updated on the next loop.
set_throttle_suppressed(true);
}
}
void SoaringController::update_thermalling()
{
float deltaT = (AP_HAL::micros64() - _prev_update_time) * 1e-6;
Vector3f current_position;
const AP_AHRS &_ahrs = AP::ahrs();
if (!_ahrs.get_relative_position_NED_home(current_position)) {
return;
}
Vector3f wind_drift = _ahrs.wind_estimate()*deltaT*_vario.smoothed_climb_rate/_ekf.X[0];
// update the filter
_ekf.update(_vario.reading, current_position.x, current_position.y, wind_drift.x, wind_drift.y);
_thermalability = (_ekf.X[0]*expf(-powf(_aparm.loiter_radius / _ekf.X[1], 2))) - _vario.get_exp_thermalling_sink();
_prev_update_time = AP_HAL::micros64();
// Compute smoothed estimate of position
_position_x_filter.set_cutoff_frequency(1/(3*_vario.tau));
_position_y_filter.set_cutoff_frequency(1/(3*_vario.tau));
_position_x_filter.apply(_ekf.X[2], deltaT);
_position_y_filter.apply(_ekf.X[3], deltaT);
// write log - save the data.
// @LoggerMessage: SOAR
// @Vehicles: Plane
// @Description: Logged data from soaring feature
// @URL: https://ardupilot.org/plane/docs/soaring.html
// @Field: TimeUS: microseconds since system startup
// @Field: nettorate: Estimate of vertical speed of surrounding airmass
// @Field: x0: Thermal strength estimate
// @Field: x1: Thermal radius estimate
// @Field: x2: Thermal position estimate north from home
// @Field: x3: Thermal position estimate east from home
// @Field: north: Aircraft position north from home
// @Field: east: Aircraft position east from home
// @Field: alt: Aircraft altitude
// @Field: dx_w: Wind speed north
// @Field: dy_w: Wind speed east
// @Field: th: Estimate of achievable climbrate in thermal
AP::logger().Write("SOAR", "TimeUS,nettorate,x0,x1,x2,x3,north,east,alt,dx_w,dy_w,th", "Qfffffffffff",
AP_HAL::micros64(),
(double)_vario.reading,
(double)_ekf.X[0],
(double)_ekf.X[1],
(double)_ekf.X[2],
(double)_ekf.X[3],
current_position.x,
current_position.y,
(double)_vario.alt,
(double)wind_drift.x,
(double)wind_drift.y,
(double)_thermalability);
}
void SoaringController::update_cruising()
{
// Reserved for future tasks that need to run continuously while in FBWB or AUTO mode,
// for example, calculation of optimal airspeed and flap angle.
}
void SoaringController::update_vario()
{
_vario.update(polar_K, polar_CD0, polar_B);
}
float SoaringController::McCready(float alt)
{
// A method shell to be filled in later
return thermal_vspeed;
}
SoaringController::ActiveStatus SoaringController::active_state() const
{
if (!soar_active) {
return ActiveStatus::DISABLED;
}
if (soar_active_ch <= 0) {
// no activation channel
return ActiveStatus::AUTO_MODE_CHANGE;
}
uint16_t radio_in = RC_Channels::get_radio_in(soar_active_ch-1);
// active when above 1400, with auto mode changes when above 1700
if (radio_in >= 1700) {
return ActiveStatus::AUTO_MODE_CHANGE;
} else if (radio_in >= 1400) {
return ActiveStatus::MANUAL_MODE_CHANGE;
}
return ActiveStatus::DISABLED;
}
void SoaringController::update_active_state()
{
ActiveStatus status = active_state();
bool state_changed = !(status == _last_update_status);
if (state_changed) {
switch (status) {
case ActiveStatus::DISABLED:
// It's not enabled, but was enabled on the last loop.
gcs().send_text(MAV_SEVERITY_INFO, "Soaring: Disabled.");
set_throttle_suppressed(false);
break;
case ActiveStatus::MANUAL_MODE_CHANGE:
// It's enabled, but wasn't on the last loop.
gcs().send_text(MAV_SEVERITY_INFO, "Soaring: Enabled, manual mode changes.");
set_throttle_suppressed(true);
break;
case ActiveStatus::AUTO_MODE_CHANGE:
gcs().send_text(MAV_SEVERITY_INFO, "Soaring: Enabled, automatic mode changes.");
set_throttle_suppressed(true);
break;
}
}
_last_update_status = status;
}
void SoaringController::set_throttle_suppressed(bool suppressed)
{
_throttle_suppressed = suppressed;
// Let the TECS know.
_spdHgt.set_gliding_requested_flag(suppressed);
}
bool SoaringController::check_drift(Vector2f prev_wp, Vector2f next_wp)
{
// Check for -1 (disabled)
if (max_drift<0) {
return false;
}
// Check against the estimated thermal.
Vector2f position(_ekf.X[2], _ekf.X[3]);
Vector2f start_pos(_thermal_start_pos.x, _thermal_start_pos.y);
Vector2f mission_leg = next_wp - prev_wp;
if (prev_wp.is_zero() || mission_leg.length() < 0.1) {
// Simple check of distance from initial start point.
return (position - start_pos).length() > max_drift;
} else {
// Regard the effective start point as projected onto mission leg.
// Calculate drift parallel and perpendicular to mission leg.
// Drift parallel and in direction of mission leg is acceptable.
Vector2f effective_start, vec1, vec2;
// Calculate effective start point (on mission leg).
vec1 = (start_pos - prev_wp).projected(mission_leg);
effective_start = prev_wp + vec1;
// Calculate parallel and perpendicular offsets.
vec2 = position - effective_start;
float parallel = vec2 * mission_leg.normalized();
float perpendicular = (vec2 - mission_leg.normalized()*parallel).length();
// Check if we've drifted beyond the next wp.
if (parallel>(next_wp - effective_start).length()) {
return true;
}
// Check if we've drifted too far laterally or backwards. We don't count positive parallel offsets
// as these are favourable (towards next wp)
parallel = parallel>0 ? 0 : parallel;
return (powf(parallel,2)+powf(perpendicular,2)) > powf(max_drift,2);;
}
}